seq2seq_attn.py 9.4 KB
Newer Older
G
guosheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle.fluid as fluid
import paddle.fluid.layers as layers
from paddle.fluid import ParamAttr
from paddle.fluid.initializer import UniformInitializer
from paddle.fluid.dygraph import Embedding, Linear, Layer
from paddle.fluid.layers import BeamSearchDecoder

22 23
from paddle.incubate.hapi.model import Model
from paddle.incubate.hapi.loss import Loss
L
LielinJiang 已提交
24
from paddle.incubate.hapi.text import DynamicDecode, RNN, BasicLSTMCell, RNNCell
25

G
guosheng 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
from seq2seq_base import Encoder


class AttentionLayer(Layer):
    def __init__(self, hidden_size, bias=False, init_scale=0.1):
        super(AttentionLayer, self).__init__()
        self.input_proj = Linear(
            hidden_size,
            hidden_size,
            param_attr=ParamAttr(initializer=UniformInitializer(
                low=-init_scale, high=init_scale)),
            bias_attr=bias)
        self.output_proj = Linear(
            hidden_size + hidden_size,
            hidden_size,
            param_attr=ParamAttr(initializer=UniformInitializer(
                low=-init_scale, high=init_scale)),
            bias_attr=bias)

    def forward(self, hidden, encoder_output, encoder_padding_mask):
G
guosheng 已提交
46 47
        # query = self.input_proj(hidden)
        encoder_output = self.input_proj(encoder_output)
G
guosheng 已提交
48
        attn_scores = layers.matmul(
G
guosheng 已提交
49
            layers.unsqueeze(hidden, [1]), encoder_output, transpose_y=True)
G
guosheng 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
        if encoder_padding_mask is not None:
            attn_scores = layers.elementwise_add(attn_scores,
                                                 encoder_padding_mask)
        attn_scores = layers.softmax(attn_scores)
        attn_out = layers.squeeze(
            layers.matmul(attn_scores, encoder_output), [1])
        attn_out = layers.concat([attn_out, hidden], 1)
        attn_out = self.output_proj(attn_out)
        return attn_out


class DecoderCell(RNNCell):
    def __init__(self,
                 num_layers,
                 input_size,
                 hidden_size,
                 dropout_prob=0.,
                 init_scale=0.1):
        super(DecoderCell, self).__init__()
        self.dropout_prob = dropout_prob
        # use add_sublayer to add multi-layers
        self.lstm_cells = []
        for i in range(num_layers):
            self.lstm_cells.append(
                self.add_sublayer(
                    "lstm_%d" % i,
                    BasicLSTMCell(
                        input_size=input_size + hidden_size
                        if i == 0 else hidden_size,
G
guosheng 已提交
79 80 81
                        hidden_size=hidden_size,
                        param_attr=ParamAttr(initializer=UniformInitializer(
                            low=-init_scale, high=init_scale)))))
G
guosheng 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94
        self.attention_layer = AttentionLayer(hidden_size)

    def forward(self,
                step_input,
                states,
                encoder_output,
                encoder_padding_mask=None):
        lstm_states, input_feed = states
        new_lstm_states = []
        step_input = layers.concat([step_input, input_feed], 1)
        for i, lstm_cell in enumerate(self.lstm_cells):
            out, new_lstm_state = lstm_cell(step_input, lstm_states[i])
            step_input = layers.dropout(
G
guosheng 已提交
95 96 97 98
                out,
                self.dropout_prob,
                dropout_implementation='upscale_in_train'
            ) if self.dropout_prob > 0 else out
G
guosheng 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
            new_lstm_states.append(new_lstm_state)
        out = self.attention_layer(step_input, encoder_output,
                                   encoder_padding_mask)
        return out, [new_lstm_states, out]


class Decoder(Layer):
    def __init__(self,
                 vocab_size,
                 embed_dim,
                 hidden_size,
                 num_layers,
                 dropout_prob=0.,
                 init_scale=0.1):
        super(Decoder, self).__init__()
        self.embedder = Embedding(
            size=[vocab_size, embed_dim],
            param_attr=ParamAttr(initializer=UniformInitializer(
                low=-init_scale, high=init_scale)))
G
guosheng 已提交
118 119
        self.lstm_attention = RNN(DecoderCell(
            num_layers, embed_dim, hidden_size, dropout_prob, init_scale),
G
guosheng 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
                                  is_reverse=False,
                                  time_major=False)
        self.output_layer = Linear(
            hidden_size,
            vocab_size,
            param_attr=ParamAttr(initializer=UniformInitializer(
                low=-init_scale, high=init_scale)),
            bias_attr=False)

    def forward(self, target, decoder_initial_states, encoder_output,
                encoder_padding_mask):
        inputs = self.embedder(target)
        decoder_output, _ = self.lstm_attention(
            inputs,
            initial_states=decoder_initial_states,
            encoder_output=encoder_output,
            encoder_padding_mask=encoder_padding_mask)
        predict = self.output_layer(decoder_output)
        return predict


class AttentionModel(Model):
    def __init__(self,
                 src_vocab_size,
                 trg_vocab_size,
                 embed_dim,
                 hidden_size,
                 num_layers,
                 dropout_prob=0.,
                 init_scale=0.1):
        super(AttentionModel, self).__init__()
        self.hidden_size = hidden_size
        self.encoder = Encoder(src_vocab_size, embed_dim, hidden_size,
                               num_layers, dropout_prob, init_scale)
        self.decoder = Decoder(trg_vocab_size, embed_dim, hidden_size,
                               num_layers, dropout_prob, init_scale)

G
guosheng 已提交
157
    def forward(self, src, src_length, trg):
G
guosheng 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
        # encoder
        encoder_output, encoder_final_state = self.encoder(src, src_length)

        # decoder initial states: use input_feed and the structure is
        # [[h,c] * num_layers, input_feed], consistent with DecoderCell.states
        decoder_initial_states = [
            encoder_final_state,
            self.decoder.lstm_attention.cell.get_initial_states(
                batch_ref=encoder_output, shape=[self.hidden_size])
        ]
        # attention mask to avoid paying attention on padddings
        src_mask = layers.sequence_mask(
            src_length,
            maxlen=layers.shape(src)[1],
            dtype=encoder_output.dtype)
        encoder_padding_mask = (src_mask - 1.0) * 1e9
        encoder_padding_mask = layers.unsqueeze(encoder_padding_mask, [1])

        # decoder with attentioon
        predict = self.decoder(trg, decoder_initial_states, encoder_output,
                               encoder_padding_mask)
G
guosheng 已提交
179
        return predict
G
guosheng 已提交
180 181 182 183


class AttentionInferModel(AttentionModel):
    def __init__(self,
G
guosheng 已提交
184 185
                 src_vocab_size,
                 trg_vocab_size,
G
guosheng 已提交
186 187 188 189 190 191 192 193 194 195 196
                 embed_dim,
                 hidden_size,
                 num_layers,
                 dropout_prob=0.,
                 bos_id=0,
                 eos_id=1,
                 beam_size=4,
                 max_out_len=256):
        args = dict(locals())
        args.pop("self")
        args.pop("__class__", None)  # py3
G
guosheng 已提交
197 198
        self.bos_id = args.pop("bos_id")
        self.eos_id = args.pop("eos_id")
G
guosheng 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
        self.beam_size = args.pop("beam_size")
        self.max_out_len = args.pop("max_out_len")
        super(AttentionInferModel, self).__init__(**args)
        # dynamic decoder for inference
        decoder = BeamSearchDecoder(
            self.decoder.lstm_attention.cell,
            start_token=bos_id,
            end_token=eos_id,
            beam_size=beam_size,
            embedding_fn=self.decoder.embedder,
            output_fn=self.decoder.output_layer)
        self.beam_search_decoder = DynamicDecode(
            decoder, max_step_num=max_out_len, is_test=True)

    def forward(self, src, src_length):
        # encoding
        encoder_output, encoder_final_state = self.encoder(src, src_length)

        # decoder initial states
        decoder_initial_states = [
            encoder_final_state,
            self.decoder.lstm_attention.cell.get_initial_states(
                batch_ref=encoder_output, shape=[self.hidden_size])
        ]
        # attention mask to avoid paying attention on padddings
        src_mask = layers.sequence_mask(
            src_length,
            maxlen=layers.shape(src)[1],
            dtype=encoder_output.dtype)
        encoder_padding_mask = (src_mask - 1.0) * 1e9
        encoder_padding_mask = layers.unsqueeze(encoder_padding_mask, [1])

        # Tile the batch dimension with beam_size
        encoder_output = BeamSearchDecoder.tile_beam_merge_with_batch(
            encoder_output, self.beam_size)
        encoder_padding_mask = BeamSearchDecoder.tile_beam_merge_with_batch(
            encoder_padding_mask, self.beam_size)

        # dynamic decoding with beam search
        rs, _ = self.beam_search_decoder(
            inits=decoder_initial_states,
            encoder_output=encoder_output,
            encoder_padding_mask=encoder_padding_mask)
        return rs