Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
hapi
提交
3500061d
H
hapi
项目概览
PaddlePaddle
/
hapi
通知
11
Star
2
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
4
列表
看板
标记
里程碑
合并请求
7
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
H
hapi
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
4
Issue
4
列表
看板
标记
里程碑
合并请求
7
合并请求
7
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
3500061d
编写于
4月 08, 2020
作者:
G
guosheng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add seq2seq infer
上级
27afc286
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
155 addition
and
15 deletion
+155
-15
seq2seq/predict.py
seq2seq/predict.py
+126
-0
seq2seq/reader.py
seq2seq/reader.py
+5
-0
seq2seq/seq2seq_attn.py
seq2seq/seq2seq_attn.py
+8
-2
seq2seq/seq2seq_base.py
seq2seq/seq2seq_base.py
+8
-2
seq2seq/train.py
seq2seq/train.py
+8
-11
未找到文件。
seq2seq/predict.py
浏览文件 @
3500061d
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
logging
import
os
import
io
import
sys
sys
.
path
.
append
(
os
.
path
.
dirname
(
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))))
import
random
from
functools
import
partial
import
numpy
as
np
import
paddle.fluid
as
fluid
from
paddle.fluid.layers.utils
import
flatten
from
paddle.fluid.io
import
DataLoader
from
model
import
Input
,
set_device
from
args
import
parse_args
from
seq2seq_base
import
BaseInferModel
from
seq2seq_attn
import
AttentionInferModel
from
reader
import
Seq2SeqDataset
,
Seq2SeqBatchSampler
,
SortType
,
prepare_infer_input
def
post_process_seq
(
seq
,
bos_idx
,
eos_idx
,
output_bos
=
False
,
output_eos
=
False
):
"""
Post-process the decoded sequence.
"""
eos_pos
=
len
(
seq
)
-
1
for
i
,
idx
in
enumerate
(
seq
):
if
idx
==
eos_idx
:
eos_pos
=
i
break
seq
=
[
idx
for
idx
in
seq
[:
eos_pos
+
1
]
if
(
output_bos
or
idx
!=
bos_idx
)
and
(
output_eos
or
idx
!=
eos_idx
)
]
return
seq
def
do_predict
(
args
):
device
=
set_device
(
"gpu"
if
args
.
use_gpu
else
"cpu"
)
fluid
.
enable_dygraph
(
device
)
if
args
.
eager_run
else
None
# define model
inputs
=
[
Input
(
[
None
,
None
],
"int64"
,
name
=
"src_word"
),
Input
(
[
None
],
"int64"
,
name
=
"src_length"
),
]
# def dataloader
dataset
=
Seq2SeqDataset
(
fpattern
=
args
.
infer_file
,
src_vocab_fpath
=
args
.
vocab_prefix
+
"."
+
args
.
src_lang
,
trg_vocab_fpath
=
args
.
vocab_prefix
+
"."
+
args
.
tar_lang
,
token_delimiter
=
None
,
start_mark
=
"<s>"
,
end_mark
=
"</s>"
,
unk_mark
=
"<unk>"
)
trg_idx2word
=
Seq2SeqDataset
.
load_dict
(
dict_path
=
args
.
vocab_prefix
+
"."
+
args
.
tar_lang
,
reverse
=
True
)
(
args
.
src_vocab_size
,
args
.
trg_vocab_size
,
bos_id
,
eos_id
,
unk_id
)
=
dataset
.
get_vocab_summary
()
batch_sampler
=
Seq2SeqBatchSampler
(
dataset
=
dataset
,
use_token_batch
=
False
,
batch_size
=
args
.
batch_size
)
data_loader
=
DataLoader
(
dataset
=
dataset
,
batch_sampler
=
batch_sampler
,
places
=
device
,
feed_list
=
None
if
fluid
.
in_dygraph_mode
()
else
[
x
.
forward
()
for
x
in
inputs
],
collate_fn
=
partial
(
prepare_infer_input
,
bos_id
=
bos_id
,
eos_id
=
eos_id
,
pad_id
=
eos_id
),
num_workers
=
0
,
return_list
=
True
)
model_maker
=
AttentionInferModel
if
args
.
attention
else
BaseInferModel
model
=
model_maker
(
args
.
src_vocab_size
,
args
.
tar_vocab_size
,
args
.
hidden_size
,
args
.
hidden_size
,
args
.
num_layers
,
args
.
dropout
,
bos_id
=
bos_id
,
eos_id
=
eos_id
,
beam_size
=
args
.
beam_size
,
max_out_len
=
256
)
model
.
prepare
(
inputs
=
inputs
)
# load the trained model
assert
args
.
reload_model
,
(
"Please set reload_model to load the infer model."
)
model
.
load
(
args
.
reload_model
)
# TODO(guosheng): use model.predict when support variant length
with
io
.
open
(
args
.
infer_output_file
,
'w'
,
encoding
=
'utf-8'
)
as
f
:
for
data
in
data_loader
():
finished_seq
=
model
.
test
(
inputs
=
flatten
(
data
))[
0
]
finished_seq
=
np
.
transpose
(
finished_seq
,
[
0
,
2
,
1
])
for
ins
in
finished_seq
:
for
beam_idx
,
beam
in
enumerate
(
ins
):
id_list
=
post_process_seq
(
beam
,
bos_id
,
eos_id
)
word_list
=
[
trg_idx2word
[
id
]
for
id
in
id_list
]
sequence
=
" "
.
join
(
word_list
)
+
"
\n
"
f
.
write
(
sequence
)
break
if
__name__
==
"__main__"
:
args
=
parse_args
()
do_predict
(
args
)
seq2seq/reader.py
浏览文件 @
3500061d
...
@@ -33,6 +33,11 @@ def prepare_train_input(insts, bos_id, eos_id, pad_id):
...
@@ -33,6 +33,11 @@ def prepare_train_input(insts, bos_id, eos_id, pad_id):
return
src
,
src_length
,
trg
[:,
:
-
1
],
trg_length
,
trg
[:,
1
:,
np
.
newaxis
]
return
src
,
src_length
,
trg
[:,
:
-
1
],
trg_length
,
trg
[:,
1
:,
np
.
newaxis
]
def
prepare_infer_input
(
insts
,
bos_id
,
eos_id
,
pad_id
):
src
,
src_length
=
pad_batch_data
(
insts
,
pad_id
=
pad_id
)
return
src
,
src_length
def
pad_batch_data
(
insts
,
pad_id
):
def
pad_batch_data
(
insts
,
pad_id
):
"""
"""
Pad the instances to the max sequence length in batch, and generate the
Pad the instances to the max sequence length in batch, and generate the
...
...
seq2seq/seq2seq_attn.py
浏览文件 @
3500061d
...
@@ -90,7 +90,10 @@ class DecoderCell(RNNCell):
...
@@ -90,7 +90,10 @@ class DecoderCell(RNNCell):
for
i
,
lstm_cell
in
enumerate
(
self
.
lstm_cells
):
for
i
,
lstm_cell
in
enumerate
(
self
.
lstm_cells
):
out
,
new_lstm_state
=
lstm_cell
(
step_input
,
lstm_states
[
i
])
out
,
new_lstm_state
=
lstm_cell
(
step_input
,
lstm_states
[
i
])
step_input
=
layers
.
dropout
(
step_input
=
layers
.
dropout
(
out
,
self
.
dropout_prob
)
if
self
.
dropout_prob
>
0
else
out
out
,
self
.
dropout_prob
,
dropout_implementation
=
'upscale_in_train'
)
if
self
.
dropout_prob
>
0
else
out
new_lstm_states
.
append
(
new_lstm_state
)
new_lstm_states
.
append
(
new_lstm_state
)
out
=
self
.
attention_layer
(
step_input
,
encoder_output
,
out
=
self
.
attention_layer
(
step_input
,
encoder_output
,
encoder_padding_mask
)
encoder_padding_mask
)
...
@@ -180,7 +183,8 @@ class AttentionModel(Model):
...
@@ -180,7 +183,8 @@ class AttentionModel(Model):
class
AttentionInferModel
(
AttentionModel
):
class
AttentionInferModel
(
AttentionModel
):
def
__init__
(
self
,
def
__init__
(
self
,
vocab_size
,
src_vocab_size
,
trg_vocab_size
,
embed_dim
,
embed_dim
,
hidden_size
,
hidden_size
,
num_layers
,
num_layers
,
...
@@ -192,6 +196,8 @@ class AttentionInferModel(AttentionModel):
...
@@ -192,6 +196,8 @@ class AttentionInferModel(AttentionModel):
args
=
dict
(
locals
())
args
=
dict
(
locals
())
args
.
pop
(
"self"
)
args
.
pop
(
"self"
)
args
.
pop
(
"__class__"
,
None
)
# py3
args
.
pop
(
"__class__"
,
None
)
# py3
self
.
bos_id
=
args
.
pop
(
"bos_id"
)
self
.
eos_id
=
args
.
pop
(
"eos_id"
)
self
.
beam_size
=
args
.
pop
(
"beam_size"
)
self
.
beam_size
=
args
.
pop
(
"beam_size"
)
self
.
max_out_len
=
args
.
pop
(
"max_out_len"
)
self
.
max_out_len
=
args
.
pop
(
"max_out_len"
)
super
(
AttentionInferModel
,
self
).
__init__
(
**
args
)
super
(
AttentionInferModel
,
self
).
__init__
(
**
args
)
...
...
seq2seq/seq2seq_base.py
浏览文件 @
3500061d
...
@@ -63,7 +63,10 @@ class EncoderCell(RNNCell):
...
@@ -63,7 +63,10 @@ class EncoderCell(RNNCell):
for
i
,
lstm_cell
in
enumerate
(
self
.
lstm_cells
):
for
i
,
lstm_cell
in
enumerate
(
self
.
lstm_cells
):
out
,
new_state
=
lstm_cell
(
step_input
,
states
[
i
])
out
,
new_state
=
lstm_cell
(
step_input
,
states
[
i
])
step_input
=
layers
.
dropout
(
step_input
=
layers
.
dropout
(
out
,
self
.
dropout_prob
)
if
self
.
dropout_prob
>
0
else
out
out
,
self
.
dropout_prob
,
dropout_implementation
=
'upscale_in_train'
)
if
self
.
dropout_prob
>
0
else
out
new_states
.
append
(
new_state
)
new_states
.
append
(
new_state
)
return
step_input
,
new_states
return
step_input
,
new_states
...
@@ -163,7 +166,8 @@ class BaseModel(Model):
...
@@ -163,7 +166,8 @@ class BaseModel(Model):
class
BaseInferModel
(
BaseModel
):
class
BaseInferModel
(
BaseModel
):
def
__init__
(
self
,
def
__init__
(
self
,
vocab_size
,
src_vocab_size
,
trg_vocab_size
,
embed_dim
,
embed_dim
,
hidden_size
,
hidden_size
,
num_layers
,
num_layers
,
...
@@ -175,6 +179,8 @@ class BaseInferModel(BaseModel):
...
@@ -175,6 +179,8 @@ class BaseInferModel(BaseModel):
args
=
dict
(
locals
())
args
=
dict
(
locals
())
args
.
pop
(
"self"
)
args
.
pop
(
"self"
)
args
.
pop
(
"__class__"
,
None
)
# py3
args
.
pop
(
"__class__"
,
None
)
# py3
self
.
bos_id
=
args
.
pop
(
"bos_id"
)
self
.
eos_id
=
args
.
pop
(
"eos_id"
)
self
.
beam_size
=
args
.
pop
(
"beam_size"
)
self
.
beam_size
=
args
.
pop
(
"beam_size"
)
self
.
max_out_len
=
args
.
pop
(
"max_out_len"
)
self
.
max_out_len
=
args
.
pop
(
"max_out_len"
)
super
(
BaseInferModel
,
self
).
__init__
(
**
args
)
super
(
BaseInferModel
,
self
).
__init__
(
**
args
)
...
...
seq2seq/train.py
浏览文件 @
3500061d
...
@@ -14,25 +14,20 @@
...
@@ -14,25 +14,20 @@
import
logging
import
logging
import
os
import
os
import
six
import
sys
import
sys
sys
.
path
.
append
(
os
.
path
.
dirname
(
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))))
sys
.
path
.
append
(
os
.
path
.
dirname
(
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))))
import
random
import
random
from
functools
import
partial
from
functools
import
partial
import
numpy
as
np
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
from
paddle.fluid.dygraph
import
to_variable
from
paddle.fluid.io
import
DataLoader
from
paddle.fluid.io
import
DataLoader
from
paddle.fluid.dygraph_grad_clip
import
GradClipByGlobalNorm
import
reader
from
model
import
Input
,
set_device
from
callbacks
import
ProgBarLogger
from
args
import
parse_args
from
args
import
parse_args
from
seq2seq_base
import
BaseModel
,
CrossEntropyCriterion
from
seq2seq_base
import
BaseModel
,
CrossEntropyCriterion
from
seq2seq_attn
import
AttentionModel
from
seq2seq_attn
import
AttentionModel
from
model
import
Input
,
set_device
from
callbacks
import
ProgBarLogger
from
reader
import
Seq2SeqDataset
,
Seq2SeqBatchSampler
,
SortType
,
prepare_train_input
from
reader
import
Seq2SeqDataset
,
Seq2SeqBatchSampler
,
SortType
,
prepare_train_input
...
@@ -97,9 +92,10 @@ def do_train(args):
...
@@ -97,9 +92,10 @@ def do_train(args):
data_loaders
[
i
]
=
data_loader
data_loaders
[
i
]
=
data_loader
train_loader
,
eval_loader
=
data_loaders
train_loader
,
eval_loader
=
data_loaders
model
=
AttentionModel
(
args
.
src_vocab_size
,
args
.
tar_vocab_size
,
model_maker
=
AttentionModel
if
args
.
attention
else
BaseModel
args
.
hidden_size
,
args
.
hidden_size
,
args
.
num_layers
,
model
=
model_maker
(
args
.
src_vocab_size
,
args
.
tar_vocab_size
,
args
.
dropout
)
args
.
hidden_size
,
args
.
hidden_size
,
args
.
num_layers
,
args
.
dropout
)
model
.
prepare
(
model
.
prepare
(
fluid
.
optimizer
.
Adam
(
fluid
.
optimizer
.
Adam
(
...
@@ -110,9 +106,10 @@ def do_train(args):
...
@@ -110,9 +106,10 @@ def do_train(args):
labels
=
labels
)
labels
=
labels
)
model
.
fit
(
train_data
=
train_loader
,
model
.
fit
(
train_data
=
train_loader
,
eval_data
=
eval_loader
,
eval_data
=
eval_loader
,
epochs
=
1
,
epochs
=
args
.
max_epoch
,
eval_freq
=
1
,
eval_freq
=
1
,
save_freq
=
1
,
save_freq
=
1
,
save_dir
=
args
.
model_path
,
log_freq
=
1
,
log_freq
=
1
,
verbose
=
2
)
verbose
=
2
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录