seq2seq_attn.py 9.1 KB
Newer Older
G
guosheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle.fluid as fluid
import paddle.fluid.layers as layers
from paddle.fluid import ParamAttr
from paddle.fluid.initializer import UniformInitializer
from paddle.fluid.dygraph import Embedding, Linear, Layer
from paddle.fluid.layers import BeamSearchDecoder

from text import DynamicDecode, RNN, BasicLSTMCell, RNNCell
from model import Model, Loss
from seq2seq_base import Encoder


class AttentionLayer(Layer):
    def __init__(self, hidden_size, bias=False, init_scale=0.1):
        super(AttentionLayer, self).__init__()
        self.input_proj = Linear(
            hidden_size,
            hidden_size,
            param_attr=ParamAttr(initializer=UniformInitializer(
                low=-init_scale, high=init_scale)),
            bias_attr=bias)
        self.output_proj = Linear(
            hidden_size + hidden_size,
            hidden_size,
            param_attr=ParamAttr(initializer=UniformInitializer(
                low=-init_scale, high=init_scale)),
            bias_attr=bias)

    def forward(self, hidden, encoder_output, encoder_padding_mask):
        query = self.input_proj(hidden)
        attn_scores = layers.matmul(
            layers.unsqueeze(query, [1]), encoder_output, transpose_y=True)
        if encoder_padding_mask is not None:
            attn_scores = layers.elementwise_add(attn_scores,
                                                 encoder_padding_mask)
        attn_scores = layers.softmax(attn_scores)
        attn_out = layers.squeeze(
            layers.matmul(attn_scores, encoder_output), [1])
        attn_out = layers.concat([attn_out, hidden], 1)
        attn_out = self.output_proj(attn_out)
        return attn_out


class DecoderCell(RNNCell):
    def __init__(self,
                 num_layers,
                 input_size,
                 hidden_size,
                 dropout_prob=0.,
                 init_scale=0.1):
        super(DecoderCell, self).__init__()
        self.dropout_prob = dropout_prob
        # use add_sublayer to add multi-layers
        self.lstm_cells = []
        for i in range(num_layers):
            self.lstm_cells.append(
                self.add_sublayer(
                    "lstm_%d" % i,
                    BasicLSTMCell(
                        input_size=input_size + hidden_size
                        if i == 0 else hidden_size,
                        hidden_size=hidden_size)))
        self.attention_layer = AttentionLayer(hidden_size)

    def forward(self,
                step_input,
                states,
                encoder_output,
                encoder_padding_mask=None):
        lstm_states, input_feed = states
        new_lstm_states = []
        step_input = layers.concat([step_input, input_feed], 1)
        for i, lstm_cell in enumerate(self.lstm_cells):
            out, new_lstm_state = lstm_cell(step_input, lstm_states[i])
            step_input = layers.dropout(
                out, self.dropout_prob) if self.dropout_prob > 0 else out
            new_lstm_states.append(new_lstm_state)
        out = self.attention_layer(step_input, encoder_output,
                                   encoder_padding_mask)
        return out, [new_lstm_states, out]


class Decoder(Layer):
    def __init__(self,
                 vocab_size,
                 embed_dim,
                 hidden_size,
                 num_layers,
                 dropout_prob=0.,
                 init_scale=0.1):
        super(Decoder, self).__init__()
        self.embedder = Embedding(
            size=[vocab_size, embed_dim],
            param_attr=ParamAttr(initializer=UniformInitializer(
                low=-init_scale, high=init_scale)))
        self.lstm_attention = RNN(DecoderCell(num_layers, embed_dim,
                                              hidden_size, init_scale),
                                  is_reverse=False,
                                  time_major=False)
        self.output_layer = Linear(
            hidden_size,
            vocab_size,
            param_attr=ParamAttr(initializer=UniformInitializer(
                low=-init_scale, high=init_scale)),
            bias_attr=False)

    def forward(self, target, decoder_initial_states, encoder_output,
                encoder_padding_mask):
        inputs = self.embedder(target)
        decoder_output, _ = self.lstm_attention(
            inputs,
            initial_states=decoder_initial_states,
            encoder_output=encoder_output,
            encoder_padding_mask=encoder_padding_mask)
        predict = self.output_layer(decoder_output)
        return predict


class AttentionModel(Model):
    def __init__(self,
                 src_vocab_size,
                 trg_vocab_size,
                 embed_dim,
                 hidden_size,
                 num_layers,
                 dropout_prob=0.,
                 init_scale=0.1):
        super(AttentionModel, self).__init__()
        self.hidden_size = hidden_size
        self.encoder = Encoder(src_vocab_size, embed_dim, hidden_size,
                               num_layers, dropout_prob, init_scale)
        self.decoder = Decoder(trg_vocab_size, embed_dim, hidden_size,
                               num_layers, dropout_prob, init_scale)

    def forward(self, src, src_length, trg, trg_length):
        # encoder
        encoder_output, encoder_final_state = self.encoder(src, src_length)

        # decoder initial states: use input_feed and the structure is
        # [[h,c] * num_layers, input_feed], consistent with DecoderCell.states
        decoder_initial_states = [
            encoder_final_state,
            self.decoder.lstm_attention.cell.get_initial_states(
                batch_ref=encoder_output, shape=[self.hidden_size])
        ]
        # attention mask to avoid paying attention on padddings
        src_mask = layers.sequence_mask(
            src_length,
            maxlen=layers.shape(src)[1],
            dtype=encoder_output.dtype)
        encoder_padding_mask = (src_mask - 1.0) * 1e9
        encoder_padding_mask = layers.unsqueeze(encoder_padding_mask, [1])

        # decoder with attentioon
        predict = self.decoder(trg, decoder_initial_states, encoder_output,
                               encoder_padding_mask)

        # for target padding mask
        mask = layers.sequence_mask(
            trg_length, maxlen=layers.shape(trg)[1], dtype=predict.dtype)
        return predict, mask


class AttentionInferModel(AttentionModel):
    def __init__(self,
                 vocab_size,
                 embed_dim,
                 hidden_size,
                 num_layers,
                 dropout_prob=0.,
                 bos_id=0,
                 eos_id=1,
                 beam_size=4,
                 max_out_len=256):
        args = dict(locals())
        args.pop("self")
        args.pop("__class__", None)  # py3
        self.beam_size = args.pop("beam_size")
        self.max_out_len = args.pop("max_out_len")
        super(AttentionInferModel, self).__init__(**args)
        # dynamic decoder for inference
        decoder = BeamSearchDecoder(
            self.decoder.lstm_attention.cell,
            start_token=bos_id,
            end_token=eos_id,
            beam_size=beam_size,
            embedding_fn=self.decoder.embedder,
            output_fn=self.decoder.output_layer)
        self.beam_search_decoder = DynamicDecode(
            decoder, max_step_num=max_out_len, is_test=True)

    def forward(self, src, src_length):
        # encoding
        encoder_output, encoder_final_state = self.encoder(src, src_length)

        # decoder initial states
        decoder_initial_states = [
            encoder_final_state,
            self.decoder.lstm_attention.cell.get_initial_states(
                batch_ref=encoder_output, shape=[self.hidden_size])
        ]
        # attention mask to avoid paying attention on padddings
        src_mask = layers.sequence_mask(
            src_length,
            maxlen=layers.shape(src)[1],
            dtype=encoder_output.dtype)
        encoder_padding_mask = (src_mask - 1.0) * 1e9
        encoder_padding_mask = layers.unsqueeze(encoder_padding_mask, [1])

        # Tile the batch dimension with beam_size
        encoder_output = BeamSearchDecoder.tile_beam_merge_with_batch(
            encoder_output, self.beam_size)
        encoder_padding_mask = BeamSearchDecoder.tile_beam_merge_with_batch(
            encoder_padding_mask, self.beam_size)

        # dynamic decoding with beam search
        rs, _ = self.beam_search_decoder(
            inits=decoder_initial_states,
            encoder_output=encoder_output,
            encoder_padding_mask=encoder_padding_mask)
        return rs