Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
hapi
提交
0a326f39
H
hapi
项目概览
PaddlePaddle
/
hapi
通知
11
Star
2
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
4
列表
看板
标记
里程碑
合并请求
7
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
H
hapi
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
4
Issue
4
列表
看板
标记
里程碑
合并请求
7
合并请求
7
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
0a326f39
编写于
4月 21, 2020
作者:
G
guosheng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Update seq2seq to adapt to latest code.
上级
38fd12ef
变更
11
隐藏空白更改
内联
并排
Showing
11 changed file
with
15 addition
and
149 deletion
+15
-149
examples/seq2seq/README.md
examples/seq2seq/README.md
+0
-0
examples/seq2seq/args.py
examples/seq2seq/args.py
+0
-0
examples/seq2seq/download.py
examples/seq2seq/download.py
+0
-0
examples/seq2seq/predict.py
examples/seq2seq/predict.py
+3
-6
examples/seq2seq/reader.py
examples/seq2seq/reader.py
+0
-0
examples/seq2seq/run.sh
examples/seq2seq/run.sh
+0
-0
examples/seq2seq/seq2seq_attn.py
examples/seq2seq/seq2seq_attn.py
+3
-91
examples/seq2seq/seq2seq_base.py
examples/seq2seq/seq2seq_base.py
+3
-43
examples/seq2seq/train.py
examples/seq2seq/train.py
+1
-5
examples/seq2seq/utility.py
examples/seq2seq/utility.py
+2
-2
hapi/text/text.py
hapi/text/text.py
+3
-2
未找到文件。
seq2seq/README.md
→
examples/
seq2seq/README.md
浏览文件 @
0a326f39
文件已移动
seq2seq/args.py
→
examples/
seq2seq/args.py
浏览文件 @
0a326f39
文件已移动
seq2seq/download.py
→
examples/
seq2seq/download.py
浏览文件 @
0a326f39
文件已移动
seq2seq/predict.py
→
examples/
seq2seq/predict.py
浏览文件 @
0a326f39
...
...
@@ -15,8 +15,6 @@
import
logging
import
os
import
io
import
sys
sys
.
path
.
append
(
os
.
path
.
dirname
(
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))))
import
random
from
functools
import
partial
...
...
@@ -25,10 +23,10 @@ import paddle.fluid as fluid
from
paddle.fluid.layers.utils
import
flatten
from
paddle.fluid.io
import
DataLoader
from
model
import
Input
,
set_device
from
hapi.
model
import
Input
,
set_device
from
args
import
parse_args
from
seq2seq_base
import
BaseInferModel
from
seq2seq_attn
import
AttentionInferModel
,
AttentionGreedyInferModel
from
seq2seq_attn
import
AttentionInferModel
from
reader
import
Seq2SeqDataset
,
Seq2SeqBatchSampler
,
SortType
,
prepare_infer_input
...
...
@@ -87,8 +85,7 @@ def do_predict(args):
num_workers
=
0
,
return_list
=
True
)
# model_maker = AttentionInferModel if args.attention else BaseInferModel
model_maker
=
AttentionGreedyInferModel
if
args
.
attention
else
BaseInferModel
model_maker
=
AttentionInferModel
if
args
.
attention
else
BaseInferModel
model
=
model_maker
(
args
.
src_vocab_size
,
args
.
tar_vocab_size
,
...
...
seq2seq/reader.py
→
examples/
seq2seq/reader.py
浏览文件 @
0a326f39
文件已移动
seq2seq/run.sh
→
examples/
seq2seq/run.sh
浏览文件 @
0a326f39
文件已移动
seq2seq/seq2seq_attn.py
→
examples/
seq2seq/seq2seq_attn.py
浏览文件 @
0a326f39
...
...
@@ -19,8 +19,9 @@ from paddle.fluid.initializer import UniformInitializer
from
paddle.fluid.dygraph
import
Embedding
,
Linear
,
Layer
from
paddle.fluid.layers
import
BeamSearchDecoder
from
text
import
DynamicDecode
,
RNN
,
BasicLSTMCell
,
RNNCell
from
model
import
Model
,
Loss
from
hapi.model
import
Model
,
Loss
from
hapi.text
import
DynamicDecode
,
RNN
,
BasicLSTMCell
,
RNNCell
from
seq2seq_base
import
Encoder
...
...
@@ -238,92 +239,3 @@ class AttentionInferModel(AttentionModel):
encoder_output
=
encoder_output
,
encoder_padding_mask
=
encoder_padding_mask
)
return
rs
class
GreedyEmbeddingHelper
(
fluid
.
layers
.
GreedyEmbeddingHelper
):
def
__init__
(
self
,
embedding_fn
,
start_tokens
,
end_token
):
if
isinstance
(
start_tokens
,
int
):
self
.
need_convert_start_tokens
=
True
self
.
start_token_value
=
start_tokens
super
(
GreedyEmbeddingHelper
,
self
).
__init__
(
embedding_fn
,
start_tokens
,
end_token
)
self
.
end_token
=
fluid
.
layers
.
create_global_var
(
shape
=
[
1
],
dtype
=
"int64"
,
value
=
end_token
,
persistable
=
True
)
def
initialize
(
self
,
batch_ref
=
None
):
if
getattr
(
self
,
"need_convert_start_tokens"
,
False
):
assert
batch_ref
is
not
None
,
(
"Need to give batch_ref to get batch size "
"to initialize the tensor for start tokens."
)
self
.
start_tokens
=
fluid
.
layers
.
fill_constant_batch_size_like
(
input
=
fluid
.
layers
.
utils
.
flatten
(
batch_ref
)[
0
],
shape
=
[
-
1
],
dtype
=
"int64"
,
value
=
self
.
start_token_value
,
input_dim_idx
=
0
)
return
super
(
GreedyEmbeddingHelper
,
self
).
initialize
()
class
BasicDecoder
(
fluid
.
layers
.
BasicDecoder
):
def
initialize
(
self
,
initial_cell_states
):
(
initial_inputs
,
initial_finished
)
=
self
.
helper
.
initialize
(
initial_cell_states
)
return
initial_inputs
,
initial_cell_states
,
initial_finished
class
AttentionGreedyInferModel
(
AttentionModel
):
def
__init__
(
self
,
src_vocab_size
,
trg_vocab_size
,
embed_dim
,
hidden_size
,
num_layers
,
dropout_prob
=
0.
,
bos_id
=
0
,
eos_id
=
1
,
beam_size
=
1
,
max_out_len
=
256
):
args
=
dict
(
locals
())
args
.
pop
(
"self"
)
args
.
pop
(
"__class__"
,
None
)
# py3
args
.
pop
(
"beam_size"
,
None
)
self
.
bos_id
=
args
.
pop
(
"bos_id"
)
self
.
eos_id
=
args
.
pop
(
"eos_id"
)
self
.
max_out_len
=
args
.
pop
(
"max_out_len"
)
super
(
AttentionGreedyInferModel
,
self
).
__init__
(
**
args
)
# dynamic decoder for inference
decoder_helper
=
GreedyEmbeddingHelper
(
start_tokens
=
bos_id
,
end_token
=
eos_id
,
embedding_fn
=
self
.
decoder
.
embedder
)
decoder
=
BasicDecoder
(
cell
=
self
.
decoder
.
lstm_attention
.
cell
,
helper
=
decoder_helper
,
output_fn
=
self
.
decoder
.
output_layer
)
self
.
greedy_search_decoder
=
DynamicDecode
(
decoder
,
max_step_num
=
max_out_len
,
is_test
=
True
)
def
forward
(
self
,
src
,
src_length
):
# encoding
encoder_output
,
encoder_final_state
=
self
.
encoder
(
src
,
src_length
)
# decoder initial states
decoder_initial_states
=
[
encoder_final_state
,
self
.
decoder
.
lstm_attention
.
cell
.
get_initial_states
(
batch_ref
=
encoder_output
,
shape
=
[
self
.
hidden_size
])
]
# attention mask to avoid paying attention on padddings
src_mask
=
layers
.
sequence_mask
(
src_length
,
maxlen
=
layers
.
shape
(
src
)[
1
],
dtype
=
encoder_output
.
dtype
)
encoder_padding_mask
=
(
src_mask
-
1.0
)
*
1e9
encoder_padding_mask
=
layers
.
unsqueeze
(
encoder_padding_mask
,
[
1
])
# dynamic decoding with greedy search
rs
,
_
=
self
.
greedy_search_decoder
(
inits
=
decoder_initial_states
,
encoder_output
=
encoder_output
,
encoder_padding_mask
=
encoder_padding_mask
)
return
rs
.
sample_ids
seq2seq/seq2seq_base.py
→
examples/
seq2seq/seq2seq_base.py
浏览文件 @
0a326f39
...
...
@@ -18,8 +18,9 @@ from paddle.fluid import ParamAttr
from
paddle.fluid.initializer
import
UniformInitializer
from
paddle.fluid.dygraph
import
Embedding
,
Linear
,
Layer
from
paddle.fluid.layers
import
BeamSearchDecoder
from
text
import
DynamicDecode
,
RNN
,
BasicLSTMCell
,
RNNCell
from
model
import
Model
,
Loss
from
hapi.model
import
Model
,
Loss
from
hapi.text
import
DynamicDecode
,
RNN
,
BasicLSTMCell
,
RNNCell
class
CrossEntropyCriterion
(
Loss
):
...
...
@@ -200,44 +201,3 @@ class BaseInferModel(BaseModel):
# dynamic decoding with beam search
rs
,
_
=
self
.
beam_search_decoder
(
inits
=
encoder_final_states
)
return
rs
class
BaseGreedyInferModel
(
BaseModel
):
def
__init__
(
self
,
src_vocab_size
,
trg_vocab_size
,
embed_dim
,
hidden_size
,
num_layers
,
dropout_prob
=
0.
,
bos_id
=
0
,
eos_id
=
1
,
beam_size
=
1
,
max_out_len
=
256
):
args
=
dict
(
locals
())
args
.
pop
(
"self"
)
args
.
pop
(
"__class__"
,
None
)
# py3
args
.
pop
(
"beam_size"
,
None
)
self
.
bos_id
=
args
.
pop
(
"bos_id"
)
self
.
eos_id
=
args
.
pop
(
"eos_id"
)
self
.
max_out_len
=
args
.
pop
(
"max_out_len"
)
super
(
BaseGreedyInferModel
,
self
).
__init__
(
**
args
)
# dynamic decoder for inference
decoder_helper
=
GreedyEmbeddingHelper
(
start_tokens
=
bos_id
,
end_token
=
eos_id
,
embedding_fn
=
self
.
decoder
.
embedder
)
decoder
=
BasicDecoder
(
cell
=
self
.
decoder
.
stack_lstm
.
cell
,
helper
=
decoder_helper
,
output_fn
=
self
.
decoder
.
output_layer
)
self
.
greedy_search_decoder
=
DynamicDecode
(
decoder
,
max_step_num
=
max_out_len
,
is_test
=
True
)
def
forward
(
self
,
src
,
src_length
):
# encoding
encoder_output
,
encoder_final_states
=
self
.
encoder
(
src
,
src_length
)
# dynamic decoding with greedy search
rs
,
_
=
self
.
greedy_search_decoder
(
inits
=
encoder_final_states
)
return
rs
.
sample_ids
seq2seq/train.py
→
examples/
seq2seq/train.py
浏览文件 @
0a326f39
...
...
@@ -14,8 +14,6 @@
import
logging
import
os
import
sys
sys
.
path
.
append
(
os
.
path
.
dirname
(
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))))
import
random
from
functools
import
partial
...
...
@@ -23,9 +21,7 @@ import numpy as np
import
paddle.fluid
as
fluid
from
paddle.fluid.io
import
DataLoader
from
model
import
Input
,
set_device
from
metrics
import
Metric
from
callbacks
import
ProgBarLogger
from
hapi.model
import
Input
,
set_device
from
args
import
parse_args
from
seq2seq_base
import
BaseModel
,
CrossEntropyCriterion
from
seq2seq_attn
import
AttentionModel
...
...
seq2seq/utility.py
→
examples/
seq2seq/utility.py
浏览文件 @
0a326f39
...
...
@@ -15,8 +15,8 @@
import
numpy
as
np
import
paddle.fluid
as
fluid
from
metrics
import
Metric
from
callbacks
import
ProgBarLogger
from
hapi.
metrics
import
Metric
from
hapi.
callbacks
import
ProgBarLogger
class
TrainCallback
(
ProgBarLogger
):
...
...
hapi/text/text.py
浏览文件 @
0a326f39
...
...
@@ -238,8 +238,9 @@ class BasicLSTMCell(RNNCell):
self
.
_bias_attr
=
bias_attr
self
.
_gate_activation
=
gate_activation
or
layers
.
sigmoid
self
.
_activation
=
activation
or
layers
.
tanh
self
.
_forget_bias
=
layers
.
fill_constant
(
[
1
],
dtype
=
dtype
,
value
=
forget_bias
)
# TODO(guosheng): find better way to resolve constants in __init__
self
.
_forget_bias
=
layers
.
create_global_var
(
shape
=
[
1
],
dtype
=
dtype
,
value
=
forget_bias
,
persistable
=
True
)
self
.
_forget_bias
.
stop_gradient
=
False
self
.
_dtype
=
dtype
self
.
_input_size
=
input_size
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录