Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
hapi
提交
386f2d13
H
hapi
项目概览
PaddlePaddle
/
hapi
通知
11
Star
2
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
4
列表
看板
标记
里程碑
合并请求
7
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
H
hapi
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
4
Issue
4
列表
看板
标记
里程碑
合并请求
7
合并请求
7
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
386f2d13
编写于
5月 19, 2020
作者:
G
guosheng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Make Transformer, seq2seq, sequence_tagging adapt to paddle.incubate.hapi
上级
b337063c
变更
14
隐藏空白更改
内联
并排
Showing
14 changed file
with
996 addition
and
92 deletion
+996
-92
examples/seq2seq/seq2seq_attn.py
examples/seq2seq/seq2seq_attn.py
+2
-1
examples/seq2seq/seq2seq_base.py
examples/seq2seq/seq2seq_base.py
+2
-1
examples/seq2seq/train.py
examples/seq2seq/train.py
+3
-2
examples/seq2seq/utility.py
examples/seq2seq/utility.py
+20
-1
examples/sequence_tagging/eval.py
examples/sequence_tagging/eval.py
+8
-17
examples/sequence_tagging/predict.py
examples/sequence_tagging/predict.py
+11
-18
examples/sequence_tagging/reader.py
examples/sequence_tagging/reader.py
+249
-0
examples/sequence_tagging/sequence_tagging.py
examples/sequence_tagging/sequence_tagging.py
+196
-0
examples/sequence_tagging/train.py
examples/sequence_tagging/train.py
+13
-24
examples/sequence_tagging/utils/__init__.py
examples/sequence_tagging/utils/__init__.py
+0
-0
examples/sequence_tagging/utils/check.py
examples/sequence_tagging/utils/check.py
+58
-0
examples/sequence_tagging/utils/configure.py
examples/sequence_tagging/utils/configure.py
+356
-0
examples/sequence_tagging/utils/metrics.py
examples/sequence_tagging/utils/metrics.py
+75
-0
examples/transformer/transformer.py
examples/transformer/transformer.py
+3
-28
未找到文件。
examples/seq2seq/seq2seq_attn.py
浏览文件 @
386f2d13
...
...
@@ -19,7 +19,8 @@ from paddle.fluid.initializer import UniformInitializer
from
paddle.fluid.dygraph
import
Embedding
,
Linear
,
Layer
from
paddle.fluid.layers
import
BeamSearchDecoder
from
paddle.incubate.hapi.model
import
Model
,
Loss
from
paddle.incubate.hapi.model
import
Model
from
paddle.incubate.hapi.loss
import
Loss
from
paddle.incubate.hapi.text
import
DynamicDecode
,
RNN
,
BasicLSTMCell
,
RNNCell
from
seq2seq_base
import
Encoder
...
...
examples/seq2seq/seq2seq_base.py
浏览文件 @
386f2d13
...
...
@@ -19,7 +19,8 @@ from paddle.fluid.initializer import UniformInitializer
from
paddle.fluid.dygraph
import
Embedding
,
Linear
,
Layer
from
paddle.fluid.layers
import
BeamSearchDecoder
from
paddle.incubate.hapi.model
import
Model
,
Loss
from
paddle.incubate.hapi.model
import
Model
from
paddle.incubate.hapi.loss
import
Loss
from
paddle.incubate.hapi.text
import
DynamicDecode
,
RNN
,
BasicLSTMCell
,
RNNCell
...
...
examples/seq2seq/train.py
浏览文件 @
386f2d13
...
...
@@ -26,7 +26,7 @@ from args import parse_args
from
seq2seq_base
import
BaseModel
,
CrossEntropyCriterion
from
seq2seq_attn
import
AttentionModel
from
reader
import
create_data_loader
from
utility
import
PPL
,
TrainCallback
from
utility
import
PPL
,
TrainCallback
,
get_model_cls
def
do_train
(
args
):
...
...
@@ -56,7 +56,8 @@ def do_train(args):
# def dataloader
train_loader
,
eval_loader
=
create_data_loader
(
args
,
device
)
model_maker
=
AttentionModel
if
args
.
attention
else
BaseModel
model_maker
=
get_model_cls
(
AttentionModel
)
if
args
.
attention
else
get_model_cls
(
BaseModel
)
model
=
model_maker
(
args
.
src_vocab_size
,
args
.
tar_vocab_size
,
args
.
hidden_size
,
args
.
hidden_size
,
args
.
num_layers
,
args
.
dropout
)
...
...
examples/seq2seq/utility.py
浏览文件 @
386f2d13
...
...
@@ -18,6 +18,7 @@ import paddle.fluid as fluid
from
paddle.incubate.hapi.metrics
import
Metric
from
paddle.incubate.hapi.callbacks
import
ProgBarLogger
from
paddle.incubate.hapi.text
import
BasicLSTMCell
class
TrainCallback
(
ProgBarLogger
):
...
...
@@ -77,4 +78,22 @@ class PPL(Metric):
def
cal_acc_ppl
(
self
,
batch_loss
,
batch_size
):
self
.
total_loss
+=
batch_loss
*
batch_size
ppl
=
math
.
exp
(
self
.
total_loss
/
self
.
word_count
)
return
ppl
\ No newline at end of file
return
ppl
def
get_model_cls
(
model_cls
):
"""
Patch for BasicLSTMCell to make `_forget_bias.stop_gradient=True`
Remove this workaround when BasicLSTMCell or recurrent_op is fixed.
"""
def
__lstm_patch__
(
self
,
*
args
,
**
kwargs
):
self
.
_raw_init
(
*
args
,
**
kwargs
)
layers
=
self
.
sublayers
(
include_sublayers
=
True
)
for
layer
in
layers
:
if
isinstance
(
layer
,
BasicLSTMCell
):
layer
.
_forget_bias
.
stop_gradient
=
False
model_cls
.
_raw_init
=
model_cls
.
__init__
model_cls
.
__init__
=
__lstm_patch__
return
model_cls
examples/sequence_tagging/eval.py
浏览文件 @
386f2d13
...
...
@@ -18,24 +18,14 @@ SequenceTagging eval structure
from
__future__
import
division
from
__future__
import
print_function
import
io
import
os
import
sys
import
math
import
argparse
import
numpy
as
np
work_dir
=
os
.
path
.
dirname
(
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
)))
sys
.
path
.
append
(
os
.
path
.
join
(
work_dir
,
"../"
))
from
paddle.incubate.hapi.model
import
set_device
,
Input
from
paddle.incubate.hapi.text.sequence_tagging
import
SeqTagging
,
ChunkEval
,
LacLoss
from
paddle.incubate.hapi.text.sequence_tagging
import
LacDataset
,
LacDataLoader
from
paddle.incubate.hapi.text.sequence_tagging
import
check_gpu
,
check_version
from
paddle.incubate.hapi.text.sequence_tagging
import
PDConfig
import
paddle.fluid
as
fluid
from
paddle.fluid.layers.utils
import
flatten
from
paddle.incubate.hapi.model
import
Input
,
set_device
from
sequence_tagging
import
SeqTagging
,
LacLoss
,
ChunkEval
from
reader
import
LacDataset
,
LacDataLoader
from
utils.check
import
check_gpu
,
check_version
from
utils.configure
import
PDConfig
def
main
(
args
):
...
...
@@ -79,5 +69,6 @@ if __name__ == '__main__':
use_gpu
=
True
if
args
.
device
==
"gpu"
else
False
check_gpu
(
use_gpu
)
check_version
()
# TODO: add check for 2.0.0-alpha0 if fluid.require_version support
# check_version()
main
(
args
)
examples/sequence_tagging/predict.py
浏览文件 @
386f2d13
...
...
@@ -18,25 +18,16 @@ SequenceTagging predict structure
from
__future__
import
division
from
__future__
import
print_function
import
io
import
os
import
sys
import
six
import
math
import
argparse
import
numpy
as
np
work_dir
=
os
.
path
.
dirname
(
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
)))
sys
.
path
.
append
(
os
.
path
.
join
(
work_dir
,
"../"
))
from
paddle.incubate.hapi.text.sequence_tagging
import
SeqTagging
from
paddle.incubate.hapi.model
import
Input
,
set_device
from
paddle.incubate.hapi.text.sequence_tagging
import
LacDataset
,
LacDataLoader
from
paddle.incubate.hapi.text.sequence_tagging
import
check_gpu
,
check_version
from
paddle.incubate.hapi.text.sequence_tagging
import
PDConfig
import
paddle.fluid
as
fluid
from
paddle.fluid.layers.utils
import
flatten
from
paddle.incubate.hapi.model
import
Input
,
set_device
from
sequence_tagging
import
SeqTagging
,
LacLoss
,
ChunkEval
from
reader
import
LacDataset
,
LacDataLoader
from
utils.check
import
check_gpu
,
check_version
from
utils.configure
import
PDConfig
def
main
(
args
):
...
...
@@ -45,8 +36,9 @@ def main(args):
inputs
=
[
Input
(
[
None
,
None
],
'int64'
,
name
=
'words'
),
Input
(
[
None
],
'int64'
,
name
=
'length'
)
[
None
,
None
],
'int64'
,
name
=
'words'
),
Input
(
[
None
],
'int64'
,
name
=
'length'
),
]
dataset
=
LacDataset
(
args
)
...
...
@@ -87,5 +79,6 @@ if __name__ == '__main__':
use_gpu
=
True
if
args
.
device
==
"gpu"
else
False
check_gpu
(
use_gpu
)
check_version
()
# TODO: add check for 2.0.0-alpha0 if fluid.require_version support
# check_version()
main
(
args
)
examples/sequence_tagging/reader.py
0 → 100644
浏览文件 @
386f2d13
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
SequenceTagging dataset
"""
from
__future__
import
division
from
__future__
import
print_function
import
io
import
os
import
numpy
as
np
import
shutil
from
functools
import
partial
import
paddle
from
paddle.io
import
BatchSampler
,
DataLoader
,
Dataset
from
paddle.fluid.dygraph.parallel
import
ParallelEnv
from
paddle.incubate.hapi.distributed
import
DistributedBatchSampler
class
LacDataset
(
Dataset
):
"""
Load lexical analysis dataset
"""
def
__init__
(
self
,
args
):
self
.
word_dict_path
=
args
.
word_dict_path
self
.
label_dict_path
=
args
.
label_dict_path
self
.
word_rep_dict_path
=
args
.
word_rep_dict_path
self
.
_load_dict
()
self
.
examples
=
[]
def
_load_dict
(
self
):
self
.
word2id_dict
=
self
.
load_kv_dict
(
self
.
word_dict_path
,
reverse
=
True
,
value_func
=
np
.
int64
)
self
.
id2word_dict
=
self
.
load_kv_dict
(
self
.
word_dict_path
)
self
.
label2id_dict
=
self
.
load_kv_dict
(
self
.
label_dict_path
,
reverse
=
True
,
value_func
=
np
.
int64
)
self
.
id2label_dict
=
self
.
load_kv_dict
(
self
.
label_dict_path
)
if
self
.
word_rep_dict_path
is
None
:
self
.
word_replace_dict
=
dict
()
else
:
self
.
word_replace_dict
=
self
.
load_kv_dict
(
self
.
word_rep_dict_path
)
def
load_kv_dict
(
self
,
dict_path
,
reverse
=
False
,
delimiter
=
"
\t
"
,
key_func
=
None
,
value_func
=
None
):
"""
Load key-value dict from file
"""
result_dict
=
{}
for
line
in
io
.
open
(
dict_path
,
"r"
,
encoding
=
'utf8'
):
terms
=
line
.
strip
(
"
\n
"
).
split
(
delimiter
)
if
len
(
terms
)
!=
2
:
continue
if
reverse
:
value
,
key
=
terms
else
:
key
,
value
=
terms
if
key
in
result_dict
:
raise
KeyError
(
"key duplicated with [%s]"
%
(
key
))
if
key_func
:
key
=
key_func
(
key
)
if
value_func
:
value
=
value_func
(
value
)
result_dict
[
key
]
=
value
return
result_dict
@
property
def
vocab_size
(
self
):
return
max
(
self
.
word2id_dict
.
values
())
+
1
@
property
def
num_labels
(
self
):
return
max
(
self
.
label2id_dict
.
values
())
+
1
def
get_num_examples
(
self
,
filename
):
"""num of line of file"""
return
sum
(
1
for
line
in
io
.
open
(
filename
,
"r"
,
encoding
=
'utf8'
))
def
word_to_ids
(
self
,
words
):
"""convert word to word index"""
word_ids
=
[]
for
word
in
words
:
word
=
self
.
word_replace_dict
.
get
(
word
,
word
)
if
word
not
in
self
.
word2id_dict
:
word
=
"OOV"
word_id
=
self
.
word2id_dict
[
word
]
word_ids
.
append
(
word_id
)
return
word_ids
def
label_to_ids
(
self
,
labels
):
"""convert label to label index"""
label_ids
=
[]
for
label
in
labels
:
if
label
not
in
self
.
label2id_dict
:
label
=
"O"
label_id
=
self
.
label2id_dict
[
label
]
label_ids
.
append
(
label_id
)
return
label_ids
def
file_reader
(
self
,
filename
,
phase
=
"train"
):
"""
yield (word_idx, target_idx) one by one from file,
or yield (word_idx, ) in `infer` mode
"""
self
.
phase
=
phase
with
io
.
open
(
filename
,
"r"
,
encoding
=
"utf8"
)
as
fr
:
if
phase
in
[
"train"
,
"test"
]:
headline
=
next
(
fr
)
headline
=
headline
.
strip
().
split
(
'
\t
'
)
assert
len
(
headline
)
==
2
and
headline
[
0
]
==
"text_a"
and
headline
[
1
]
==
"label"
for
line
in
fr
:
line_str
=
line
.
strip
(
"
\n
"
)
if
len
(
line_str
)
<
1
and
len
(
line_str
.
split
(
'
\t
'
))
<
2
:
continue
self
.
examples
.
append
(
line_str
)
else
:
for
idx
,
line
in
enumerate
(
fr
):
words
=
line
.
strip
(
"
\n
"
).
split
(
"
\t
"
)[
0
]
self
.
examples
.
append
(
words
)
def
__getitem__
(
self
,
idx
):
line_str
=
self
.
examples
[
idx
]
if
self
.
phase
in
[
"train"
,
"test"
]:
words
,
labels
=
line_str
.
split
(
'
\t
'
)
word_ids
=
self
.
word_to_ids
(
words
.
split
(
"
\002
"
))
label_ids
=
self
.
label_to_ids
(
labels
.
split
(
"
\002
"
))
assert
len
(
word_ids
)
==
len
(
label_ids
)
return
word_ids
,
label_ids
else
:
words
=
[
w
for
w
in
line_str
]
word_ids
=
self
.
word_to_ids
(
words
)
return
word_ids
def
__len__
(
self
):
return
len
(
self
.
examples
)
def
create_lexnet_data_generator
(
args
,
insts
,
phase
=
"train"
):
def
padding_data
(
max_len
,
batch_data
,
if_len
=
False
):
padding_batch_data
=
[]
padding_lens
=
[]
for
data
in
batch_data
:
data
=
data
[:
max_len
]
if
if_len
:
seq_len
=
np
.
int64
(
len
(
data
))
padding_lens
.
append
(
seq_len
)
data
+=
[
0
for
_
in
range
(
max_len
-
len
(
data
))]
padding_batch_data
.
append
(
data
)
if
if_len
:
return
np
.
array
(
padding_batch_data
),
np
.
array
(
padding_lens
)
else
:
return
np
.
array
(
padding_batch_data
)
if
phase
==
"train"
:
batch_words
=
[
inst
[
0
]
for
inst
in
insts
]
batch_labels
=
[
inst
[
1
]
for
inst
in
insts
]
padding_batch_words
,
padding_lens
=
padding_data
(
args
.
max_seq_len
,
batch_words
,
if_len
=
True
)
padding_batch_labels
=
padding_data
(
args
.
max_seq_len
,
batch_labels
)
return
[
padding_batch_words
,
padding_lens
,
padding_batch_labels
,
padding_batch_labels
]
elif
phase
==
"test"
:
batch_words
=
[
inst
[
0
]
for
inst
in
insts
]
seq_len
=
[
len
(
inst
[
0
])
for
inst
in
insts
]
max_seq_len
=
max
(
seq_len
)
batch_labels
=
[
inst
[
1
]
for
inst
in
insts
]
padding_batch_words
,
padding_lens
=
padding_data
(
max_seq_len
,
batch_words
,
if_len
=
True
)
padding_batch_labels
=
padding_data
(
max_seq_len
,
batch_labels
)
return
[
padding_batch_words
,
padding_lens
,
padding_batch_labels
,
padding_batch_labels
]
else
:
batch_words
=
insts
seq_len
=
[
len
(
inst
)
for
inst
in
insts
]
max_seq_len
=
max
(
seq_len
)
padding_batch_words
,
padding_lens
=
padding_data
(
max_seq_len
,
batch_words
,
if_len
=
True
)
return
[
padding_batch_words
,
padding_lens
]
class
LacDataLoader
(
object
):
def
__init__
(
self
,
args
,
place
,
phase
=
"train"
,
shuffle
=
False
,
num_workers
=
0
,
drop_last
=
False
):
assert
phase
in
[
"train"
,
"test"
,
"predict"
],
"phase should be in [train, test, predict], but get %s"
%
phase
if
phase
==
"train"
:
file_name
=
args
.
train_file
elif
phase
==
"test"
:
file_name
=
args
.
test_file
elif
phase
==
"predict"
:
file_name
=
args
.
predict_file
self
.
dataset
=
LacDataset
(
args
)
self
.
dataset
.
file_reader
(
file_name
,
phase
=
phase
)
if
phase
==
"train"
:
self
.
sampler
=
DistributedBatchSampler
(
dataset
=
self
.
dataset
,
batch_size
=
args
.
batch_size
,
shuffle
=
shuffle
,
drop_last
=
drop_last
)
else
:
self
.
sampler
=
BatchSampler
(
dataset
=
self
.
dataset
,
batch_size
=
args
.
batch_size
,
shuffle
=
shuffle
,
drop_last
=
drop_last
)
self
.
dataloader
=
DataLoader
(
dataset
=
self
.
dataset
,
batch_sampler
=
self
.
sampler
,
places
=
place
,
collate_fn
=
partial
(
create_lexnet_data_generator
,
args
,
phase
=
phase
),
num_workers
=
num_workers
,
return_list
=
True
)
examples/sequence_tagging/sequence_tagging.py
0 → 100644
浏览文件 @
386f2d13
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
SequenceTagging network structure
"""
from
__future__
import
division
from
__future__
import
print_function
import
io
import
os
import
sys
import
math
import
argparse
import
numpy
as
np
import
paddle.fluid
as
fluid
from
paddle.incubate.hapi.metrics
import
Metric
from
paddle.incubate.hapi.model
import
Model
from
paddle.incubate.hapi.loss
import
Loss
from
paddle.incubate.hapi.text
import
SequenceTagging
from
utils.check
import
check_gpu
,
check_version
from
utils.configure
import
PDConfig
class
SeqTagging
(
Model
):
def
__init__
(
self
,
args
,
vocab_size
,
num_labels
,
length
=
None
,
mode
=
"train"
):
super
(
SeqTagging
,
self
).
__init__
()
"""
define the lexical analysis network structure
word: stores the input of the model
for_infer: a boolean value, indicating if the model to be created is for training or predicting.
return:
for infer: return the prediction
otherwise: return the prediction
"""
self
.
mode_type
=
mode
self
.
word_emb_dim
=
args
.
word_emb_dim
self
.
vocab_size
=
vocab_size
self
.
num_labels
=
num_labels
self
.
grnn_hidden_dim
=
args
.
grnn_hidden_dim
self
.
emb_lr
=
args
.
emb_learning_rate
if
'emb_learning_rate'
in
dir
(
args
)
else
1.0
self
.
crf_lr
=
args
.
emb_learning_rate
if
'crf_learning_rate'
in
dir
(
args
)
else
1.0
self
.
bigru_num
=
args
.
bigru_num
self
.
batch_size
=
args
.
batch_size
self
.
init_bound
=
0.1
self
.
length
=
length
self
.
sequence_tagging
=
SequenceTagging
(
vocab_size
=
self
.
vocab_size
,
num_labels
=
self
.
num_labels
,
word_emb_dim
=
self
.
word_emb_dim
,
grnn_hidden_dim
=
self
.
grnn_hidden_dim
,
emb_learning_rate
=
self
.
emb_lr
,
crf_learning_rate
=
self
.
crf_lr
,
bigru_num
=
self
.
bigru_num
,
init_bound
=
self
.
init_bound
)
def
forward
(
self
,
*
inputs
):
"""
Configure the network
"""
word
=
inputs
[
0
]
lengths
=
inputs
[
1
]
if
self
.
mode_type
==
"train"
or
self
.
mode_type
==
"test"
:
target
=
inputs
[
2
]
outputs
=
self
.
sequence_tagging
(
word
,
lengths
,
target
)
else
:
outputs
=
self
.
sequence_tagging
(
word
,
lengths
)
return
outputs
class
Chunk_eval
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
num_chunk_types
,
chunk_scheme
,
excluded_chunk_types
=
None
):
super
(
Chunk_eval
,
self
).
__init__
()
self
.
num_chunk_types
=
num_chunk_types
self
.
chunk_scheme
=
chunk_scheme
self
.
excluded_chunk_types
=
excluded_chunk_types
def
forward
(
self
,
input
,
label
,
seq_length
=
None
):
precision
=
self
.
_helper
.
create_variable_for_type_inference
(
dtype
=
"float32"
)
recall
=
self
.
_helper
.
create_variable_for_type_inference
(
dtype
=
"float32"
)
f1_score
=
self
.
_helper
.
create_variable_for_type_inference
(
dtype
=
"float32"
)
num_infer_chunks
=
self
.
_helper
.
create_variable_for_type_inference
(
dtype
=
"int64"
)
num_label_chunks
=
self
.
_helper
.
create_variable_for_type_inference
(
dtype
=
"int64"
)
num_correct_chunks
=
self
.
_helper
.
create_variable_for_type_inference
(
dtype
=
"int64"
)
this_input
=
{
"Inference"
:
input
,
"Label"
:
label
}
if
seq_length
is
not
None
:
this_input
[
"SeqLength"
]
=
seq_length
self
.
_helper
.
append_op
(
type
=
'chunk_eval'
,
inputs
=
this_input
,
outputs
=
{
"Precision"
:
[
precision
],
"Recall"
:
[
recall
],
"F1-Score"
:
[
f1_score
],
"NumInferChunks"
:
[
num_infer_chunks
],
"NumLabelChunks"
:
[
num_label_chunks
],
"NumCorrectChunks"
:
[
num_correct_chunks
]
},
attrs
=
{
"num_chunk_types"
:
self
.
num_chunk_types
,
"chunk_scheme"
:
self
.
chunk_scheme
,
"excluded_chunk_types"
:
self
.
excluded_chunk_types
or
[]
})
return
(
num_infer_chunks
,
num_label_chunks
,
num_correct_chunks
)
class
LacLoss
(
Loss
):
def
__init__
(
self
):
super
(
LacLoss
,
self
).
__init__
()
pass
def
forward
(
self
,
outputs
,
labels
):
avg_cost
=
outputs
[
1
]
return
avg_cost
class
ChunkEval
(
Metric
):
def
__init__
(
self
,
num_labels
,
name
=
None
,
*
args
,
**
kwargs
):
super
(
ChunkEval
,
self
).
__init__
(
*
args
,
**
kwargs
)
self
.
_init_name
(
name
)
self
.
chunk_eval
=
Chunk_eval
(
int
(
math
.
ceil
((
num_labels
-
1
)
/
2.0
)),
"IOB"
)
self
.
reset
()
def
add_metric_op
(
self
,
*
args
):
crf_decode
=
args
[
0
]
lengths
=
args
[
2
]
label
=
args
[
3
]
(
num_infer_chunks
,
num_label_chunks
,
num_correct_chunks
)
=
self
.
chunk_eval
(
input
=
crf_decode
,
label
=
label
,
seq_length
=
lengths
)
return
[
num_infer_chunks
,
num_label_chunks
,
num_correct_chunks
]
def
update
(
self
,
num_infer_chunks
,
num_label_chunks
,
num_correct_chunks
,
*
args
,
**
kwargs
):
self
.
infer_chunks_total
+=
num_infer_chunks
self
.
label_chunks_total
+=
num_label_chunks
self
.
correct_chunks_total
+=
num_correct_chunks
precision
=
float
(
num_correct_chunks
)
/
num_infer_chunks
if
num_infer_chunks
else
0
recall
=
float
(
num_correct_chunks
)
/
num_label_chunks
if
num_label_chunks
else
0
f1_score
=
float
(
2
*
precision
*
recall
)
/
(
precision
+
recall
)
if
num_correct_chunks
else
0
return
[
precision
,
recall
,
f1_score
]
def
reset
(
self
):
self
.
infer_chunks_total
=
0
self
.
label_chunks_total
=
0
self
.
correct_chunks_total
=
0
def
accumulate
(
self
):
precision
=
float
(
self
.
correct_chunks_total
)
/
self
.
infer_chunks_total
if
self
.
infer_chunks_total
else
0
recall
=
float
(
self
.
correct_chunks_total
)
/
self
.
label_chunks_total
if
self
.
label_chunks_total
else
0
f1_score
=
float
(
2
*
precision
*
recall
)
/
(
precision
+
recall
)
if
self
.
correct_chunks_total
else
0
res
=
[
precision
,
recall
,
f1_score
]
return
res
def
_init_name
(
self
,
name
):
name
=
name
or
'chunk eval'
self
.
_name
=
[
'precision'
,
'recall'
,
'F1'
]
def
name
(
self
):
return
self
.
_name
examples/sequence_tagging/train.py
浏览文件 @
386f2d13
...
...
@@ -18,24 +18,14 @@ SequenceTagging network structure
from
__future__
import
division
from
__future__
import
print_function
import
io
import
os
import
sys
import
math
import
argparse
import
numpy
as
np
work_dir
=
os
.
path
.
dirname
(
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
)))
sys
.
path
.
append
(
os
.
path
.
join
(
work_dir
,
"../"
))
from
paddle.incubate.hapi.model
import
Input
,
set_device
from
paddle.incubate.hapi.text.sequence_tagging
import
SeqTagging
,
LacLoss
,
ChunkEval
from
paddle.incubate.hapi.text.sequence_tagging
import
LacDataset
,
LacDataLoader
from
paddle.incubate.hapi.text.sequence_tagging
import
check_gpu
,
check_version
from
paddle.incubate.hapi.text.sequence_tagging
import
PDConfig
import
paddle.fluid
as
fluid
from
paddle.fluid.optimizer
import
AdamOptimizer
from
paddle.incubate.hapi.model
import
Input
,
set_device
from
sequence_tagging
import
SeqTagging
,
LacLoss
,
ChunkEval
from
reader
import
LacDataset
,
LacDataLoader
from
utils.check
import
check_gpu
,
check_version
from
utils.configure
import
PDConfig
def
main
(
args
):
...
...
@@ -44,17 +34,15 @@ def main(args):
inputs
=
[
Input
(
[
None
,
None
],
'int64'
,
name
=
'words'
),
Input
(
[
None
],
'int64'
,
name
=
'length'
),
Input
(
[
None
,
None
],
'int64'
,
name
=
'target'
)
[
None
,
None
],
'int64'
,
name
=
'words'
),
Input
(
[
None
],
'int64'
,
name
=
'length'
),
Input
(
[
None
,
None
],
'int64'
,
name
=
'target'
),
]
labels
=
[
Input
([
None
,
None
],
'int64'
,
name
=
'labels'
)]
feed_list
=
None
if
args
.
dynamic
else
[
x
.
forward
()
for
x
in
inputs
+
labels
]
dataset
=
LacDataset
(
args
)
train_dataset
=
LacDataLoader
(
args
,
place
,
phase
=
"train"
)
...
...
@@ -95,6 +83,7 @@ if __name__ == '__main__':
use_gpu
=
True
if
args
.
device
==
"gpu"
else
False
check_gpu
(
use_gpu
)
check_version
()
# TODO: add check for 2.0.0-alpha0 if fluid.require_version support
# check_version()
main
(
args
)
examples/sequence_tagging/utils/__init__.py
0 → 100644
浏览文件 @
386f2d13
examples/sequence_tagging/utils/check.py
0 → 100644
浏览文件 @
386f2d13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
sys
import
paddle.fluid
as
fluid
__all__
=
[
'check_gpu'
,
'check_version'
]
def
check_gpu
(
use_gpu
):
"""
Log error and exit when set use_gpu=true in paddlepaddle
cpu version.
"""
err
=
"Config use_gpu cannot be set as true while you are "
\
"using paddlepaddle cpu version !
\n
Please try:
\n
"
\
"
\t
1. Install paddlepaddle-gpu to run model on GPU
\n
"
\
"
\t
2. Set use_gpu as false in config file to run "
\
"model on CPU"
try
:
if
use_gpu
and
not
fluid
.
is_compiled_with_cuda
():
print
(
err
)
sys
.
exit
(
1
)
except
Exception
as
e
:
pass
def
check_version
():
"""
Log error and exit when the installed version of paddlepaddle is
not satisfied.
"""
err
=
"PaddlePaddle version 2.0 or higher is required, "
\
"or a suitable develop version is satisfied as well.
\n
"
\
"Please make sure the version is good with your code."
\
try
:
fluid
.
require_version
(
'2.0.0'
)
except
Exception
as
e
:
print
(
err
)
sys
.
exit
(
1
)
examples/sequence_tagging/utils/configure.py
0 → 100644
浏览文件 @
386f2d13
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
os
import
sys
import
argparse
import
json
import
yaml
import
six
import
logging
logging_only_message
=
"%(message)s"
logging_details
=
"%(asctime)s.%(msecs)03d %(levelname)s %(module)s - %(funcName)s: %(message)s"
class
JsonConfig
(
object
):
"""
A high-level api for handling json configure file.
"""
def
__init__
(
self
,
config_path
):
self
.
_config_dict
=
self
.
_parse
(
config_path
)
def
_parse
(
self
,
config_path
):
try
:
with
open
(
config_path
)
as
json_file
:
config_dict
=
json
.
load
(
json_file
)
except
:
raise
IOError
(
"Error in parsing bert model config file '%s'"
%
config_path
)
else
:
return
config_dict
def
__getitem__
(
self
,
key
):
return
self
.
_config_dict
[
key
]
def
print_config
(
self
):
for
arg
,
value
in
sorted
(
six
.
iteritems
(
self
.
_config_dict
)):
print
(
'%s: %s'
%
(
arg
,
value
))
print
(
'------------------------------------------------'
)
class
ArgumentGroup
(
object
):
def
__init__
(
self
,
parser
,
title
,
des
):
self
.
_group
=
parser
.
add_argument_group
(
title
=
title
,
description
=
des
)
def
add_arg
(
self
,
name
,
type
,
default
,
help
,
**
kwargs
):
type
=
str2bool
if
type
==
bool
else
type
self
.
_group
.
add_argument
(
"--"
+
name
,
default
=
default
,
type
=
type
,
help
=
help
+
' Default: %(default)s.'
,
**
kwargs
)
class
ArgConfig
(
object
):
"""
A high-level api for handling argument configs.
"""
def
__init__
(
self
):
parser
=
argparse
.
ArgumentParser
()
train_g
=
ArgumentGroup
(
parser
,
"training"
,
"training options."
)
train_g
.
add_arg
(
"epoch"
,
int
,
3
,
"Number of epoches for fine-tuning."
)
train_g
.
add_arg
(
"learning_rate"
,
float
,
5e-5
,
"Learning rate used to train with warmup."
)
train_g
.
add_arg
(
"lr_scheduler"
,
str
,
"linear_warmup_decay"
,
"scheduler of learning rate."
,
choices
=
[
'linear_warmup_decay'
,
'noam_decay'
])
train_g
.
add_arg
(
"weight_decay"
,
float
,
0.01
,
"Weight decay rate for L2 regularizer."
)
train_g
.
add_arg
(
"warmup_proportion"
,
float
,
0.1
,
"Proportion of training steps to perform linear learning rate warmup for."
)
train_g
.
add_arg
(
"save_steps"
,
int
,
1000
,
"The steps interval to save checkpoints."
)
train_g
.
add_arg
(
"use_fp16"
,
bool
,
False
,
"Whether to use fp16 mixed precision training."
)
train_g
.
add_arg
(
"loss_scaling"
,
float
,
1.0
,
"Loss scaling factor for mixed precision training, only valid when use_fp16 is enabled."
)
train_g
.
add_arg
(
"pred_dir"
,
str
,
None
,
"Path to save the prediction results"
)
log_g
=
ArgumentGroup
(
parser
,
"logging"
,
"logging related."
)
log_g
.
add_arg
(
"skip_steps"
,
int
,
10
,
"The steps interval to print loss."
)
log_g
.
add_arg
(
"verbose"
,
bool
,
False
,
"Whether to output verbose log."
)
run_type_g
=
ArgumentGroup
(
parser
,
"run_type"
,
"running type options."
)
run_type_g
.
add_arg
(
"use_cuda"
,
bool
,
True
,
"If set, use GPU for training."
)
run_type_g
.
add_arg
(
"use_fast_executor"
,
bool
,
False
,
"If set, use fast parallel executor (in experiment)."
)
run_type_g
.
add_arg
(
"num_iteration_per_drop_scope"
,
int
,
1
,
"Ihe iteration intervals to clean up temporary variables."
)
run_type_g
.
add_arg
(
"do_train"
,
bool
,
True
,
"Whether to perform training."
)
run_type_g
.
add_arg
(
"do_predict"
,
bool
,
True
,
"Whether to perform prediction."
)
custom_g
=
ArgumentGroup
(
parser
,
"customize"
,
"customized options."
)
self
.
custom_g
=
custom_g
self
.
parser
=
parser
def
add_arg
(
self
,
name
,
dtype
,
default
,
descrip
):
self
.
custom_g
.
add_arg
(
name
,
dtype
,
default
,
descrip
)
def
build_conf
(
self
):
return
self
.
parser
.
parse_args
()
def
str2bool
(
v
):
# because argparse does not support to parse "true, False" as python
# boolean directly
return
v
.
lower
()
in
(
"true"
,
"t"
,
"1"
)
def
print_arguments
(
args
,
log
=
None
):
if
not
log
:
print
(
'----------- Configuration Arguments -----------'
)
for
arg
,
value
in
sorted
(
six
.
iteritems
(
vars
(
args
))):
print
(
'%s: %s'
%
(
arg
,
value
))
print
(
'------------------------------------------------'
)
else
:
log
.
info
(
'----------- Configuration Arguments -----------'
)
for
arg
,
value
in
sorted
(
six
.
iteritems
(
vars
(
args
))):
log
.
info
(
'%s: %s'
%
(
arg
,
value
))
log
.
info
(
'------------------------------------------------'
)
class
PDConfig
(
object
):
"""
A high-level API for managing configuration files in PaddlePaddle.
Can jointly work with command-line-arugment, json files and yaml files.
"""
def
__init__
(
self
,
json_file
=
""
,
yaml_file
=
""
,
fuse_args
=
True
):
"""
Init funciton for PDConfig.
json_file: the path to the json configure file.
yaml_file: the path to the yaml configure file.
fuse_args: if fuse the json/yaml configs with argparse.
"""
assert
isinstance
(
json_file
,
str
)
assert
isinstance
(
yaml_file
,
str
)
if
json_file
!=
""
and
yaml_file
!=
""
:
raise
Warning
(
"json_file and yaml_file can not co-exist for now. please only use one configure file type."
)
return
self
.
args
=
None
self
.
arg_config
=
{}
self
.
json_config
=
{}
self
.
yaml_config
=
{}
parser
=
argparse
.
ArgumentParser
()
self
.
default_g
=
ArgumentGroup
(
parser
,
"default"
,
"default options."
)
self
.
yaml_g
=
ArgumentGroup
(
parser
,
"yaml"
,
"options from yaml."
)
self
.
json_g
=
ArgumentGroup
(
parser
,
"json"
,
"options from json."
)
self
.
com_g
=
ArgumentGroup
(
parser
,
"custom"
,
"customized options."
)
self
.
default_g
.
add_arg
(
"do_train"
,
bool
,
False
,
"Whether to perform training."
)
self
.
default_g
.
add_arg
(
"do_predict"
,
bool
,
False
,
"Whether to perform predicting."
)
self
.
default_g
.
add_arg
(
"do_eval"
,
bool
,
False
,
"Whether to perform evaluating."
)
self
.
default_g
.
add_arg
(
"do_save_inference_model"
,
bool
,
False
,
"Whether to perform model saving for inference."
)
# NOTE: args for profiler
self
.
default_g
.
add_arg
(
"is_profiler"
,
int
,
0
,
"the switch of profiler tools. (used for benchmark)"
)
self
.
default_g
.
add_arg
(
"profiler_path"
,
str
,
'./'
,
"the profiler output file path. (used for benchmark)"
)
self
.
default_g
.
add_arg
(
"max_iter"
,
int
,
0
,
"the max train batch num.(used for benchmark)"
)
self
.
parser
=
parser
if
json_file
!=
""
:
self
.
load_json
(
json_file
,
fuse_args
=
fuse_args
)
if
yaml_file
:
self
.
load_yaml
(
yaml_file
,
fuse_args
=
fuse_args
)
def
load_json
(
self
,
file_path
,
fuse_args
=
True
):
if
not
os
.
path
.
exists
(
file_path
):
raise
Warning
(
"the json file %s does not exist."
%
file_path
)
return
with
open
(
file_path
,
"r"
)
as
fin
:
self
.
json_config
=
json
.
loads
(
fin
.
read
())
fin
.
close
()
if
fuse_args
:
for
name
in
self
.
json_config
:
if
isinstance
(
self
.
json_config
[
name
],
list
):
self
.
json_g
.
add_arg
(
name
,
type
(
self
.
json_config
[
name
][
0
]),
self
.
json_config
[
name
],
"This is from %s"
%
file_path
,
nargs
=
len
(
self
.
json_config
[
name
]))
continue
if
not
isinstance
(
self
.
json_config
[
name
],
int
)
\
and
not
isinstance
(
self
.
json_config
[
name
],
float
)
\
and
not
isinstance
(
self
.
json_config
[
name
],
str
)
\
and
not
isinstance
(
self
.
json_config
[
name
],
bool
):
continue
self
.
json_g
.
add_arg
(
name
,
type
(
self
.
json_config
[
name
]),
self
.
json_config
[
name
],
"This is from %s"
%
file_path
)
def
load_yaml
(
self
,
file_path
,
fuse_args
=
True
):
if
not
os
.
path
.
exists
(
file_path
):
raise
Warning
(
"the yaml file %s does not exist."
%
file_path
)
return
with
open
(
file_path
,
"r"
)
as
fin
:
self
.
yaml_config
=
yaml
.
load
(
fin
,
Loader
=
yaml
.
SafeLoader
)
fin
.
close
()
if
fuse_args
:
for
name
in
self
.
yaml_config
:
if
isinstance
(
self
.
yaml_config
[
name
],
list
):
self
.
yaml_g
.
add_arg
(
name
,
type
(
self
.
yaml_config
[
name
][
0
]),
self
.
yaml_config
[
name
],
"This is from %s"
%
file_path
,
nargs
=
len
(
self
.
yaml_config
[
name
]))
continue
if
not
isinstance
(
self
.
yaml_config
[
name
],
int
)
\
and
not
isinstance
(
self
.
yaml_config
[
name
],
float
)
\
and
not
isinstance
(
self
.
yaml_config
[
name
],
str
)
\
and
not
isinstance
(
self
.
yaml_config
[
name
],
bool
):
continue
self
.
yaml_g
.
add_arg
(
name
,
type
(
self
.
yaml_config
[
name
]),
self
.
yaml_config
[
name
],
"This is from %s"
%
file_path
)
def
build
(
self
):
self
.
args
=
self
.
parser
.
parse_args
()
self
.
arg_config
=
vars
(
self
.
args
)
def
__add__
(
self
,
new_arg
):
assert
isinstance
(
new_arg
,
list
)
or
isinstance
(
new_arg
,
tuple
)
assert
len
(
new_arg
)
>=
3
assert
self
.
args
is
None
name
=
new_arg
[
0
]
dtype
=
new_arg
[
1
]
dvalue
=
new_arg
[
2
]
desc
=
new_arg
[
3
]
if
len
(
new_arg
)
==
4
else
"Description is not provided."
self
.
com_g
.
add_arg
(
name
,
dtype
,
dvalue
,
desc
)
return
self
def
__getattr__
(
self
,
name
):
if
name
in
self
.
arg_config
:
return
self
.
arg_config
[
name
]
if
name
in
self
.
json_config
:
return
self
.
json_config
[
name
]
if
name
in
self
.
yaml_config
:
return
self
.
yaml_config
[
name
]
raise
Warning
(
"The argument %s is not defined."
%
name
)
def
Print
(
self
):
print
(
"-"
*
70
)
for
name
in
self
.
arg_config
:
print
(
"%s:
\t\t\t\t
%s"
%
(
str
(
name
),
str
(
self
.
arg_config
[
name
])))
for
name
in
self
.
json_config
:
if
name
not
in
self
.
arg_config
:
print
(
"%s:
\t\t\t\t
%s"
%
(
str
(
name
),
str
(
self
.
json_config
[
name
])))
for
name
in
self
.
yaml_config
:
if
name
not
in
self
.
arg_config
:
print
(
"%s:
\t\t\t\t
%s"
%
(
str
(
name
),
str
(
self
.
yaml_config
[
name
])))
print
(
"-"
*
70
)
if
__name__
==
"__main__"
:
"""
pd_config = PDConfig(json_file = "./test/bert_config.json")
pd_config.build()
print(pd_config.do_train)
print(pd_config.hidden_size)
pd_config = PDConfig(yaml_file = "./test/bert_config.yaml")
pd_config.build()
print(pd_config.do_train)
print(pd_config.hidden_size)
"""
pd_config
=
PDConfig
(
yaml_file
=
"./test/bert_config.yaml"
)
pd_config
+=
(
"my_age"
,
int
,
18
,
"I am forever 18."
)
pd_config
.
build
()
print
(
pd_config
.
do_train
)
print
(
pd_config
.
hidden_size
)
print
(
pd_config
.
my_age
)
examples/sequence_tagging/utils/metrics.py
0 → 100644
浏览文件 @
386f2d13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
sys
import
paddle.fluid
as
fluid
__all__
=
[
'chunk_count'
,
"build_chunk"
]
def
build_chunk
(
data_list
,
id2label_dict
):
"""
Assembly entity
"""
tag_list
=
[
id2label_dict
.
get
(
str
(
id
))
for
id
in
data_list
]
ner_dict
=
{}
ner_str
=
""
ner_start
=
0
for
i
in
range
(
len
(
tag_list
)):
tag
=
tag_list
[
i
]
if
tag
==
u
"O"
:
if
i
!=
0
:
key
=
"%d_%d"
%
(
ner_start
,
i
-
1
)
ner_dict
[
key
]
=
ner_str
ner_start
=
i
ner_str
=
tag
elif
tag
.
endswith
(
u
"B"
):
if
i
!=
0
:
key
=
"%d_%d"
%
(
ner_start
,
i
-
1
)
ner_dict
[
key
]
=
ner_str
ner_start
=
i
ner_str
=
tag
.
split
(
'-'
)[
0
]
elif
tag
.
endswith
(
u
"I"
):
if
tag
.
split
(
'-'
)[
0
]
!=
ner_str
:
if
i
!=
0
:
key
=
"%d_%d"
%
(
ner_start
,
i
-
1
)
ner_dict
[
key
]
=
ner_str
ner_start
=
i
ner_str
=
tag
.
split
(
'-'
)[
0
]
return
ner_dict
def
chunk_count
(
infer_numpy
,
label_numpy
,
seq_len
,
id2label_dict
):
"""
calculate num_correct_chunks num_error_chunks total_num for metrics
"""
num_infer_chunks
,
num_label_chunks
,
num_correct_chunks
=
0
,
0
,
0
assert
infer_numpy
.
shape
[
0
]
==
label_numpy
.
shape
[
0
]
for
i
in
range
(
infer_numpy
.
shape
[
0
]):
infer_list
=
infer_numpy
[
i
][:
seq_len
[
i
]]
label_list
=
label_numpy
[
i
][:
seq_len
[
i
]]
infer_dict
=
build_chunk
(
infer_list
,
id2label_dict
)
num_infer_chunks
+=
len
(
infer_dict
)
label_dict
=
build_chunk
(
label_list
,
id2label_dict
)
num_label_chunks
+=
len
(
label_dict
)
for
key
in
infer_dict
:
if
key
in
label_dict
and
label_dict
[
key
]
==
infer_dict
[
key
]:
num_correct_chunks
+=
1
return
num_infer_chunks
,
num_label_chunks
,
num_correct_chunks
examples/transformer/transformer.py
浏览文件 @
386f2d13
...
...
@@ -18,9 +18,9 @@ import numpy as np
import
paddle.fluid
as
fluid
import
paddle.fluid.layers
as
layers
from
paddle.fluid.dygraph
import
Embedding
,
LayerNorm
,
Linear
,
Layer
,
to_variable
from
paddle.
fluid.dygraph.learning_rate_scheduler
import
LearningRateDecay
from
paddle.incubate.hapi.
model
import
Model
,
CrossEntropy
,
Loss
from
paddle.fluid.dygraph
import
Embedding
,
LayerNorm
,
Linear
,
Layer
from
paddle.
incubate.hapi.model
import
Model
from
paddle.incubate.hapi.
loss
import
Loss
from
paddle.incubate.hapi.text
import
TransformerBeamSearchDecoder
,
DynamicDecode
...
...
@@ -43,31 +43,6 @@ def position_encoding_init(n_position, d_pos_vec):
return
position_enc
.
astype
(
"float32"
)
class
NoamDecay
(
LearningRateDecay
):
"""
learning rate scheduler
"""
def
__init__
(
self
,
d_model
,
warmup_steps
,
static_lr
=
2.0
,
begin
=
1
,
step
=
1
,
dtype
=
'float32'
):
super
(
NoamDecay
,
self
).
__init__
(
begin
,
step
,
dtype
)
self
.
d_model
=
d_model
self
.
warmup_steps
=
warmup_steps
self
.
static_lr
=
static_lr
def
step
(
self
):
a
=
self
.
create_lr_var
(
self
.
step_num
**-
0.5
)
b
=
self
.
create_lr_var
((
self
.
warmup_steps
**-
1.5
)
*
self
.
step_num
)
lr_value
=
(
self
.
d_model
**-
0.5
)
*
layers
.
elementwise_min
(
a
,
b
)
*
self
.
static_lr
return
lr_value
class
PrePostProcessLayer
(
Layer
):
"""
PrePostProcessLayer
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录