train.py 10.1 KB
Newer Older
1 2
from __future__ import print_function

D
dzhwinter 已提交
3
import math, os
4
import numpy as np
D
daminglu 已提交
5
import paddle
6
import paddle.dataset.conll05 as conll05
D
daminglu 已提交
7
import paddle.fluid as fluid
8
import six
D
daminglu 已提交
9
import time
10

D
dzhwinter 已提交
11 12
with_gpu = os.getenv('WITH_GPU', '0') != '0'

13 14 15
word_dict, verb_dict, label_dict = conll05.get_dict()
word_dict_len = len(word_dict)
label_dict_len = len(label_dict)
D
daminglu 已提交
16
pred_dict_len = len(verb_dict)
17

18 19 20 21 22 23
mark_dict_len = 2
word_dim = 32
mark_dim = 5
hidden_dim = 512
depth = 8
mix_hidden_lr = 1e-3
24

D
daminglu 已提交
25 26 27
IS_SPARSE = True
PASS_NUM = 10
BATCH_SIZE = 10
28

D
daminglu 已提交
29
embedding_name = 'emb'
30

31

D
daminglu 已提交
32 33 34 35
def load_parameter(file_name, h, w):
    with open(file_name, 'rb') as f:
        f.read(16)  # skip header.
        return np.fromfile(f, dtype=np.float32).reshape(h, w)
36 37


D
daminglu 已提交
38 39 40 41
def db_lstm(word, predicate, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, mark,
            **ignored):
    # 8 features
    predicate_embedding = fluid.layers.embedding(
42
        input=predicate,
D
daminglu 已提交
43 44 45 46 47 48 49 50 51 52
        size=[pred_dict_len, word_dim],
        dtype='float32',
        is_sparse=IS_SPARSE,
        param_attr='vemb')

    mark_embedding = fluid.layers.embedding(
        input=mark,
        size=[mark_dict_len, mark_dim],
        dtype='float32',
        is_sparse=IS_SPARSE)
53 54 55

    word_input = [word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2]
    emb_layers = [
D
daminglu 已提交
56 57 58
        fluid.layers.embedding(
            size=[word_dict_len, word_dim],
            input=x,
59 60
            param_attr=fluid.ParamAttr(name=embedding_name, trainable=False))
        for x in word_input
61 62 63 64
    ]
    emb_layers.append(predicate_embedding)
    emb_layers.append(mark_embedding)

D
daminglu 已提交
65 66 67 68
    hidden_0_layers = [
        fluid.layers.fc(input=emb, size=hidden_dim, act='tanh')
        for emb in emb_layers
    ]
69

D
daminglu 已提交
70
    hidden_0 = fluid.layers.sums(input=hidden_0_layers)
71

D
daminglu 已提交
72
    lstm_0 = fluid.layers.dynamic_lstm(
73
        input=hidden_0,
D
daminglu 已提交
74 75 76 77
        size=hidden_dim,
        candidate_activation='relu',
        gate_activation='sigmoid',
        cell_activation='sigmoid')
78

D
daminglu 已提交
79
    # stack L-LSTM and R-LSTM with direct edges
80 81 82
    input_tmp = [hidden_0, lstm_0]

    for i in range(1, depth):
D
daminglu 已提交
83 84 85 86 87 88
        mix_hidden = fluid.layers.sums(input=[
            fluid.layers.fc(input=input_tmp[0], size=hidden_dim, act='tanh'),
            fluid.layers.fc(input=input_tmp[1], size=hidden_dim, act='tanh')
        ])

        lstm = fluid.layers.dynamic_lstm(
89
            input=mix_hidden,
D
daminglu 已提交
90 91 92 93 94
            size=hidden_dim,
            candidate_activation='relu',
            gate_activation='sigmoid',
            cell_activation='sigmoid',
            is_reverse=((i % 2) == 1))
95 96 97

        input_tmp = [mix_hidden, lstm]

D
daminglu 已提交
98 99 100 101
    feature_out = fluid.layers.sums(input=[
        fluid.layers.fc(input=input_tmp[0], size=label_dict_len, act='tanh'),
        fluid.layers.fc(input=input_tmp[1], size=label_dict_len, act='tanh')
    ])
102

103
    return feature_out
104 105


D
daminglu 已提交
106
def train(use_cuda, save_dirname=None, is_local=True):
Y
Yibing Liu 已提交
107
    # define data layers
D
daminglu 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
    word = fluid.layers.data(
        name='word_data', shape=[1], dtype='int64', lod_level=1)
    predicate = fluid.layers.data(
        name='verb_data', shape=[1], dtype='int64', lod_level=1)
    ctx_n2 = fluid.layers.data(
        name='ctx_n2_data', shape=[1], dtype='int64', lod_level=1)
    ctx_n1 = fluid.layers.data(
        name='ctx_n1_data', shape=[1], dtype='int64', lod_level=1)
    ctx_0 = fluid.layers.data(
        name='ctx_0_data', shape=[1], dtype='int64', lod_level=1)
    ctx_p1 = fluid.layers.data(
        name='ctx_p1_data', shape=[1], dtype='int64', lod_level=1)
    ctx_p2 = fluid.layers.data(
        name='ctx_p2_data', shape=[1], dtype='int64', lod_level=1)
    mark = fluid.layers.data(
        name='mark_data', shape=[1], dtype='int64', lod_level=1)
124 125

    # define network topology
D
daminglu 已提交
126 127 128 129
    feature_out = db_lstm(**locals())
    target = fluid.layers.data(
        name='target', shape=[1], dtype='int64', lod_level=1)
    crf_cost = fluid.layers.linear_chain_crf(
130 131
        input=feature_out,
        label=target,
132
        param_attr=fluid.ParamAttr(name='crfw', learning_rate=mix_hidden_lr))
D
daminglu 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148

    avg_cost = fluid.layers.mean(crf_cost)

    sgd_optimizer = fluid.optimizer.SGD(
        learning_rate=fluid.layers.exponential_decay(
            learning_rate=0.01,
            decay_steps=100000,
            decay_rate=0.5,
            staircase=True))

    sgd_optimizer.minimize(avg_cost)

    crf_decode = fluid.layers.crf_decoding(
        input=feature_out, param_attr=fluid.ParamAttr(name='crfw'))

    train_data = paddle.batch(
149
        paddle.reader.shuffle(paddle.dataset.conll05.test(), buf_size=8192),
D
daminglu 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
        batch_size=BATCH_SIZE)

    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()

    feeder = fluid.DataFeeder(
        feed_list=[
            word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, predicate, mark, target
        ],
        place=place)
    exe = fluid.Executor(place)

    def train_loop(main_program):
        exe.run(fluid.default_startup_program())
        embedding_param = fluid.global_scope().find_var(
            embedding_name).get_tensor()
        embedding_param.set(
            load_parameter(conll05.get_embedding(), word_dict_len, word_dim),
            place)

        start_time = time.time()
        batch_id = 0
171
        for pass_id in six.moves.xrange(PASS_NUM):
D
daminglu 已提交
172
            for data in train_data():
173 174
                cost = exe.run(
                    main_program, feed=feeder.feed(data), fetch_list=[avg_cost])
D
daminglu 已提交
175 176 177 178 179
                cost = cost[0]

                if batch_id % 10 == 0:
                    print("avg_cost:" + str(cost))
                    if batch_id != 0:
180 181
                        print("second per batch: " + str((
                            time.time() - start_time) / batch_id))
D
daminglu 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
                    # Set the threshold low to speed up the CI test
                    if float(cost) < 60.0:
                        if save_dirname is not None:
                            # TODO(liuyiqun): Change the target to crf_decode
                            fluid.io.save_inference_model(save_dirname, [
                                'word_data', 'verb_data', 'ctx_n2_data',
                                'ctx_n1_data', 'ctx_0_data', 'ctx_p1_data',
                                'ctx_p2_data', 'mark_data'
                            ], [feature_out], exe)
                        return

                batch_id = batch_id + 1

    train_loop(fluid.default_main_program())


def infer(use_cuda, save_dirname=None):
    if save_dirname is None:
        return

    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)

    inference_scope = fluid.core.Scope()
    with fluid.scope_guard(inference_scope):
        # Use fluid.io.load_inference_model to obtain the inference program desc,
        # the feed_target_names (the names of variables that will be fed
        # data using feed operators), and the fetch_targets (variables that
        # we want to obtain data from using fetch operators).
        [inference_program, feed_target_names,
         fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)

        # Setup inputs by creating LoDTensors to represent sequences of words.
        # Here each word is the basic element of these LoDTensors and the shape of
        # each word (base_shape) should be [1] since it is simply an index to
        # look up for the corresponding word vector.
        # Suppose the length_based level of detail (lod) info is set to [[3, 4, 2]],
        # which has only one lod level. Then the created LoDTensors will have only
        # one higher level structure (sequence of words, or sentence) than the basic
        # element (word). Hence the LoDTensor will hold data for three sentences of
        # length 3, 4 and 2, respectively.
        # Note that lod info should be a list of lists.
        lod = [[3, 4, 2]]
        base_shape = [1]
        # The range of random integers is [low, high]
        word = fluid.create_random_int_lodtensor(
            lod, base_shape, place, low=0, high=word_dict_len - 1)
        pred = fluid.create_random_int_lodtensor(
            lod, base_shape, place, low=0, high=pred_dict_len - 1)
        ctx_n2 = fluid.create_random_int_lodtensor(
            lod, base_shape, place, low=0, high=word_dict_len - 1)
        ctx_n1 = fluid.create_random_int_lodtensor(
            lod, base_shape, place, low=0, high=word_dict_len - 1)
        ctx_0 = fluid.create_random_int_lodtensor(
            lod, base_shape, place, low=0, high=word_dict_len - 1)
        ctx_p1 = fluid.create_random_int_lodtensor(
            lod, base_shape, place, low=0, high=word_dict_len - 1)
        ctx_p2 = fluid.create_random_int_lodtensor(
            lod, base_shape, place, low=0, high=word_dict_len - 1)
        mark = fluid.create_random_int_lodtensor(
            lod, base_shape, place, low=0, high=mark_dict_len - 1)

        # Construct feed as a dictionary of {feed_target_name: feed_target_data}
        # and results will contain a list of data corresponding to fetch_targets.
        assert feed_target_names[0] == 'word_data'
        assert feed_target_names[1] == 'verb_data'
        assert feed_target_names[2] == 'ctx_n2_data'
        assert feed_target_names[3] == 'ctx_n1_data'
        assert feed_target_names[4] == 'ctx_0_data'
        assert feed_target_names[5] == 'ctx_p1_data'
        assert feed_target_names[6] == 'ctx_p2_data'
        assert feed_target_names[7] == 'mark_data'

255 256 257 258 259 260 261 262 263 264 265 266 267 268
        results = exe.run(
            inference_program,
            feed={
                feed_target_names[0]: word,
                feed_target_names[1]: pred,
                feed_target_names[2]: ctx_n2,
                feed_target_names[3]: ctx_n1,
                feed_target_names[4]: ctx_0,
                feed_target_names[5]: ctx_p1,
                feed_target_names[6]: ctx_p2,
                feed_target_names[7]: mark
            },
            fetch_list=fetch_targets,
            return_numpy=False)
D
daminglu 已提交
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
        print(results[0].lod())
        np_data = np.array(results[0])
        print("Inference Shape: ", np_data.shape)


def main(use_cuda, is_local=True):
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return

    # Directory for saving the trained model
    save_dirname = "label_semantic_roles.inference.model"

    train(use_cuda, save_dirname, is_local)
    infer(use_cuda, save_dirname)


main(use_cuda=False)