Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
book
提交
efac2fa4
B
book
项目概览
PaddlePaddle
/
book
通知
16
Star
4
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
40
列表
看板
标记
里程碑
合并请求
37
Wiki
5
Wiki
分析
仓库
DevOps
项目成员
Pages
B
book
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
40
Issue
40
列表
看板
标记
里程碑
合并请求
37
合并请求
37
Pages
分析
分析
仓库分析
DevOps
Wiki
5
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
efac2fa4
编写于
6月 18, 2018
作者:
D
daminglu
提交者:
GitHub
6月 18, 2018
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
07 label_semantic_roles (#548)
上级
11903b95
变更
3
展开全部
隐藏空白更改
内联
并排
Showing
3 changed file
with
828 addition
and
682 deletion
+828
-682
07.label_semantic_roles/README.cn.md
07.label_semantic_roles/README.cn.md
+304
-255
07.label_semantic_roles/README.md
07.label_semantic_roles/README.md
+288
-248
07.label_semantic_roles/train.py
07.label_semantic_roles/train.py
+236
-179
未找到文件。
07.label_semantic_roles/README.cn.md
浏览文件 @
efac2fa4
此差异已折叠。
点击以展开。
07.label_semantic_roles/README.md
浏览文件 @
efac2fa4
此差异已折叠。
点击以展开。
07.label_semantic_roles/train.py
浏览文件 @
efac2fa4
import
math
,
os
import
numpy
as
np
import
paddle
.v2
as
paddle
import
paddle
import
paddle.v2.dataset.conll05
as
conll05
import
paddle.v2.evaluator
as
evaluator
import
paddle.fluid
as
fluid
import
time
with_gpu
=
os
.
getenv
(
'WITH_GPU'
,
'0'
)
!=
'0'
word_dict
,
verb_dict
,
label_dict
=
conll05
.
get_dict
()
word_dict_len
=
len
(
word_dict
)
label_dict_len
=
len
(
label_dict
)
pred_len
=
len
(
verb_dict
)
pred_
dict_
len
=
len
(
verb_dict
)
mark_dict_len
=
2
word_dim
=
32
mark_dim
=
5
hidden_dim
=
512
depth
=
8
default_std
=
1
/
math
.
sqrt
(
hidden_dim
)
/
3.0
mix_hidden_lr
=
1e-3
IS_SPARSE
=
True
PASS_NUM
=
10
BATCH_SIZE
=
10
def
d_type
(
size
):
return
paddle
.
data_type
.
integer_value_sequence
(
size
)
embedding_name
=
'emb'
def
load_parameter
(
file_name
,
h
,
w
):
with
open
(
file_name
,
'rb'
)
as
f
:
f
.
read
(
16
)
# skip header.
return
np
.
fromfile
(
f
,
dtype
=
np
.
float32
).
reshape
(
h
,
w
)
def
db_lstm
():
#8 features
word
=
paddle
.
layer
.
data
(
name
=
'word_data'
,
type
=
d_type
(
word_dict_len
))
predicate
=
paddle
.
layer
.
data
(
name
=
'verb_data'
,
type
=
d_type
(
pred_len
))
ctx_n2
=
paddle
.
layer
.
data
(
name
=
'ctx_n2_data'
,
type
=
d_type
(
word_dict_len
))
ctx_n1
=
paddle
.
layer
.
data
(
name
=
'ctx_n1_data'
,
type
=
d_type
(
word_dict_len
))
ctx_0
=
paddle
.
layer
.
data
(
name
=
'ctx_0_data'
,
type
=
d_type
(
word_dict_len
))
ctx_p1
=
paddle
.
layer
.
data
(
name
=
'ctx_p1_data'
,
type
=
d_type
(
word_dict_len
))
ctx_p2
=
paddle
.
layer
.
data
(
name
=
'ctx_p2_data'
,
type
=
d_type
(
word_dict_len
))
mark
=
paddle
.
layer
.
data
(
name
=
'mark_data'
,
type
=
d_type
(
mark_dict_len
))
emb_para
=
paddle
.
attr
.
Param
(
name
=
'emb'
,
initial_std
=
0.
,
is_static
=
True
)
std_0
=
paddle
.
attr
.
Param
(
initial_std
=
0.
)
std_default
=
paddle
.
attr
.
Param
(
initial_std
=
default_std
)
predicate_embedding
=
paddle
.
layer
.
embedding
(
size
=
word_dim
,
def
db_lstm
(
word
,
predicate
,
ctx_n2
,
ctx_n1
,
ctx_0
,
ctx_p1
,
ctx_p2
,
mark
,
**
ignored
):
# 8 features
predicate_embedding
=
fluid
.
layers
.
embedding
(
input
=
predicate
,
param_attr
=
paddle
.
attr
.
Param
(
name
=
'vemb'
,
initial_std
=
default_std
))
mark_embedding
=
paddle
.
layer
.
embedding
(
size
=
mark_dim
,
input
=
mark
,
param_attr
=
std_0
)
size
=
[
pred_dict_len
,
word_dim
],
dtype
=
'float32'
,
is_sparse
=
IS_SPARSE
,
param_attr
=
'vemb'
)
mark_embedding
=
fluid
.
layers
.
embedding
(
input
=
mark
,
size
=
[
mark_dict_len
,
mark_dim
],
dtype
=
'float32'
,
is_sparse
=
IS_SPARSE
)
word_input
=
[
word
,
ctx_n2
,
ctx_n1
,
ctx_0
,
ctx_p1
,
ctx_p2
]
emb_layers
=
[
paddle
.
layer
.
embedding
(
size
=
word_dim
,
input
=
x
,
param_attr
=
emb_para
)
for
x
in
word_input
fluid
.
layers
.
embedding
(
size
=
[
word_dict_len
,
word_dim
],
input
=
x
,
param_attr
=
fluid
.
ParamAttr
(
name
=
embedding_name
,
trainable
=
False
))
for
x
in
word_input
]
emb_layers
.
append
(
predicate_embedding
)
emb_layers
.
append
(
mark_embedding
)
hidden_0
=
paddle
.
layer
.
mixed
(
size
=
hidden_dim
,
bias_attr
=
std_default
,
input
=
[
paddle
.
layer
.
full_matrix_projection
(
input
=
emb
,
param_attr
=
std_default
)
for
emb
in
emb_layers
])
hidden_0_layers
=
[
fluid
.
layers
.
fc
(
input
=
emb
,
size
=
hidden_dim
,
act
=
'tanh'
)
for
emb
in
emb_layers
]
lstm_para_attr
=
paddle
.
attr
.
Param
(
initial_std
=
0.0
,
learning_rate
=
1.0
)
hidden_para_attr
=
paddle
.
attr
.
Param
(
initial_std
=
default_std
,
learning_rate
=
mix_hidden_lr
)
hidden_0
=
fluid
.
layers
.
sums
(
input
=
hidden_0_layers
)
lstm_0
=
paddle
.
layer
.
lstmemory
(
lstm_0
=
fluid
.
layers
.
dynamic_lstm
(
input
=
hidden_0
,
act
=
paddle
.
activation
.
Relu
(),
gate_act
=
paddle
.
activation
.
Sigmoid
(),
state_act
=
paddle
.
activation
.
Sigmoid
(),
bias_attr
=
std_0
,
param_attr
=
lstm_para_attr
)
size
=
hidden_dim
,
candidate_activation
=
'relu'
,
gate_activation
=
'sigmoid'
,
cell_activation
=
'sigmoid'
)
#stack L-LSTM and R-LSTM with direct edges
#
stack L-LSTM and R-LSTM with direct edges
input_tmp
=
[
hidden_0
,
lstm_0
]
for
i
in
range
(
1
,
depth
):
mix_hidden
=
paddle
.
layer
.
mixed
(
size
=
hidden_dim
,
bias_attr
=
std_default
,
input
=
[
paddle
.
layer
.
full_matrix_projection
(
input
=
input_tmp
[
0
],
param_attr
=
hidden_para_attr
),
paddle
.
layer
.
full_matrix_projection
(
input
=
input_tmp
[
1
],
param_attr
=
lstm_para_attr
)
])
lstm
=
paddle
.
layer
.
lstmemory
(
mix_hidden
=
fluid
.
layers
.
sums
(
input
=
[
fluid
.
layers
.
fc
(
input
=
input_tmp
[
0
],
size
=
hidden_dim
,
act
=
'tanh'
),
fluid
.
layers
.
fc
(
input
=
input_tmp
[
1
],
size
=
hidden_dim
,
act
=
'tanh'
)
])
lstm
=
fluid
.
layers
.
dynamic_lstm
(
input
=
mix_hidden
,
act
=
paddle
.
activation
.
Relu
(),
gate_act
=
paddle
.
activation
.
Sigmoid
(),
state_act
=
paddle
.
activation
.
Sigmoid
(),
reverse
=
((
i
%
2
)
==
1
),
bias_attr
=
std_0
,
param_attr
=
lstm_para_attr
)
size
=
hidden_dim
,
candidate_activation
=
'relu'
,
gate_activation
=
'sigmoid'
,
cell_activation
=
'sigmoid'
,
is_reverse
=
((
i
%
2
)
==
1
))
input_tmp
=
[
mix_hidden
,
lstm
]
feature_out
=
paddle
.
layer
.
mixed
(
size
=
label_dict_len
,
bias_attr
=
std_default
,
input
=
[
paddle
.
layer
.
full_matrix_projection
(
input
=
input_tmp
[
0
],
param_attr
=
hidden_para_attr
),
paddle
.
layer
.
full_matrix_projection
(
input
=
input_tmp
[
1
],
param_attr
=
lstm_para_attr
)
],
)
feature_out
=
fluid
.
layers
.
sums
(
input
=
[
fluid
.
layers
.
fc
(
input
=
input_tmp
[
0
],
size
=
label_dict_len
,
act
=
'tanh'
),
fluid
.
layers
.
fc
(
input
=
input_tmp
[
1
],
size
=
label_dict_len
,
act
=
'tanh'
)
])
return
feature_out
def
load_parameter
(
file_name
,
h
,
w
):
with
open
(
file_name
,
'rb'
)
as
f
:
f
.
read
(
16
)
# skip header.
return
np
.
fromfile
(
f
,
dtype
=
np
.
float32
).
reshape
(
h
,
w
)
def
main
():
paddle
.
init
(
use_gpu
=
with_gpu
,
trainer_count
=
1
)
def
train
(
use_cuda
,
save_dirname
=
None
,
is_local
=
True
):
# define network topology
word
=
fluid
.
layers
.
data
(
name
=
'word_data'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
predicate
=
fluid
.
layers
.
data
(
name
=
'verb_data'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
ctx_n2
=
fluid
.
layers
.
data
(
name
=
'ctx_n2_data'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
ctx_n1
=
fluid
.
layers
.
data
(
name
=
'ctx_n1_data'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
ctx_0
=
fluid
.
layers
.
data
(
name
=
'ctx_0_data'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
ctx_p1
=
fluid
.
layers
.
data
(
name
=
'ctx_p1_data'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
ctx_p2
=
fluid
.
layers
.
data
(
name
=
'ctx_p2_data'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
mark
=
fluid
.
layers
.
data
(
name
=
'mark_data'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
# define network topology
feature_out
=
db_lstm
()
target
=
paddle
.
layer
.
data
(
name
=
'target'
,
type
=
d_type
(
label_dict_len
))
crf_cost
=
paddle
.
layer
.
crf
(
size
=
label_dict_len
,
feature_out
=
db_lstm
(
**
locals
()
)
target
=
fluid
.
layers
.
data
(
name
=
'target'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
crf_cost
=
fluid
.
layers
.
linear_chain_crf
(
input
=
feature_out
,
label
=
target
,
param_attr
=
paddle
.
attr
.
Param
(
name
=
'crfw'
,
initial_std
=
default_std
,
learning_rate
=
mix_hidden_lr
))
param_attr
=
fluid
.
ParamAttr
(
name
=
'crfw'
,
learning_rate
=
mix_hidden_lr
))
avg_cost
=
fluid
.
layers
.
mean
(
crf_cost
)
sgd_optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
fluid
.
layers
.
exponential_decay
(
learning_rate
=
0.01
,
decay_steps
=
100000
,
decay_rate
=
0.5
,
staircase
=
True
))
sgd_optimizer
.
minimize
(
avg_cost
)
crf_decode
=
fluid
.
layers
.
crf_decoding
(
input
=
feature_out
,
param_attr
=
fluid
.
ParamAttr
(
name
=
'crfw'
))
train_data
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
conll05
.
test
(),
buf_size
=
8192
),
batch_size
=
BATCH_SIZE
)
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
feeder
=
fluid
.
DataFeeder
(
feed_list
=
[
word
,
ctx_n2
,
ctx_n1
,
ctx_0
,
ctx_p1
,
ctx_p2
,
predicate
,
mark
,
target
],
place
=
place
)
exe
=
fluid
.
Executor
(
place
)
def
train_loop
(
main_program
):
exe
.
run
(
fluid
.
default_startup_program
())
embedding_param
=
fluid
.
global_scope
().
find_var
(
embedding_name
).
get_tensor
()
embedding_param
.
set
(
load_parameter
(
conll05
.
get_embedding
(),
word_dict_len
,
word_dim
),
place
)
start_time
=
time
.
time
()
batch_id
=
0
for
pass_id
in
xrange
(
PASS_NUM
):
for
data
in
train_data
():
cost
=
exe
.
run
(
main_program
,
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
avg_cost
])
cost
=
cost
[
0
]
if
batch_id
%
10
==
0
:
print
(
"avg_cost:"
+
str
(
cost
))
if
batch_id
!=
0
:
print
(
"second per batch: "
+
str
((
time
.
time
(
)
-
start_time
)
/
batch_id
))
# Set the threshold low to speed up the CI test
if
float
(
cost
)
<
60.0
:
if
save_dirname
is
not
None
:
# TODO(liuyiqun): Change the target to crf_decode
fluid
.
io
.
save_inference_model
(
save_dirname
,
[
'word_data'
,
'verb_data'
,
'ctx_n2_data'
,
'ctx_n1_data'
,
'ctx_0_data'
,
'ctx_p1_data'
,
'ctx_p2_data'
,
'mark_data'
],
[
feature_out
],
exe
)
return
batch_id
=
batch_id
+
1
train_loop
(
fluid
.
default_main_program
())
def
infer
(
use_cuda
,
save_dirname
=
None
):
if
save_dirname
is
None
:
return
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
inference_scope
=
fluid
.
core
.
Scope
()
with
fluid
.
scope_guard
(
inference_scope
):
# Use fluid.io.load_inference_model to obtain the inference program desc,
# the feed_target_names (the names of variables that will be fed
# data using feed operators), and the fetch_targets (variables that
# we want to obtain data from using fetch operators).
[
inference_program
,
feed_target_names
,
fetch_targets
]
=
fluid
.
io
.
load_inference_model
(
save_dirname
,
exe
)
# Setup inputs by creating LoDTensors to represent sequences of words.
# Here each word is the basic element of these LoDTensors and the shape of
# each word (base_shape) should be [1] since it is simply an index to
# look up for the corresponding word vector.
# Suppose the length_based level of detail (lod) info is set to [[3, 4, 2]],
# which has only one lod level. Then the created LoDTensors will have only
# one higher level structure (sequence of words, or sentence) than the basic
# element (word). Hence the LoDTensor will hold data for three sentences of
# length 3, 4 and 2, respectively.
# Note that lod info should be a list of lists.
lod
=
[[
3
,
4
,
2
]]
base_shape
=
[
1
]
# The range of random integers is [low, high]
word
=
fluid
.
create_random_int_lodtensor
(
lod
,
base_shape
,
place
,
low
=
0
,
high
=
word_dict_len
-
1
)
pred
=
fluid
.
create_random_int_lodtensor
(
lod
,
base_shape
,
place
,
low
=
0
,
high
=
pred_dict_len
-
1
)
ctx_n2
=
fluid
.
create_random_int_lodtensor
(
lod
,
base_shape
,
place
,
low
=
0
,
high
=
word_dict_len
-
1
)
ctx_n1
=
fluid
.
create_random_int_lodtensor
(
lod
,
base_shape
,
place
,
low
=
0
,
high
=
word_dict_len
-
1
)
ctx_0
=
fluid
.
create_random_int_lodtensor
(
lod
,
base_shape
,
place
,
low
=
0
,
high
=
word_dict_len
-
1
)
ctx_p1
=
fluid
.
create_random_int_lodtensor
(
lod
,
base_shape
,
place
,
low
=
0
,
high
=
word_dict_len
-
1
)
ctx_p2
=
fluid
.
create_random_int_lodtensor
(
lod
,
base_shape
,
place
,
low
=
0
,
high
=
word_dict_len
-
1
)
mark
=
fluid
.
create_random_int_lodtensor
(
lod
,
base_shape
,
place
,
low
=
0
,
high
=
mark_dict_len
-
1
)
# Construct feed as a dictionary of {feed_target_name: feed_target_data}
# and results will contain a list of data corresponding to fetch_targets.
assert
feed_target_names
[
0
]
==
'word_data'
assert
feed_target_names
[
1
]
==
'verb_data'
assert
feed_target_names
[
2
]
==
'ctx_n2_data'
assert
feed_target_names
[
3
]
==
'ctx_n1_data'
assert
feed_target_names
[
4
]
==
'ctx_0_data'
assert
feed_target_names
[
5
]
==
'ctx_p1_data'
assert
feed_target_names
[
6
]
==
'ctx_p2_data'
assert
feed_target_names
[
7
]
==
'mark_data'
results
=
exe
.
run
(
inference_program
,
feed
=
{
feed_target_names
[
0
]:
word
,
feed_target_names
[
1
]:
pred
,
feed_target_names
[
2
]:
ctx_n2
,
feed_target_names
[
3
]:
ctx_n1
,
feed_target_names
[
4
]:
ctx_0
,
feed_target_names
[
5
]:
ctx_p1
,
feed_target_names
[
6
]:
ctx_p2
,
feed_target_names
[
7
]:
mark
},
fetch_list
=
fetch_targets
,
return_numpy
=
False
)
print
(
results
[
0
].
lod
())
np_data
=
np
.
array
(
results
[
0
])
print
(
"Inference Shape: "
,
np_data
.
shape
)
def
main
(
use_cuda
,
is_local
=
True
):
if
use_cuda
and
not
fluid
.
core
.
is_compiled_with_cuda
():
return
# Directory for saving the trained model
save_dirname
=
"label_semantic_roles.inference.model"
train
(
use_cuda
,
save_dirname
,
is_local
)
infer
(
use_cuda
,
save_dirname
)
main
(
use_cuda
=
False
)
crf_dec
=
paddle
.
layer
.
crf_decoding
(
size
=
label_dict_len
,
input
=
feature_out
,
label
=
target
,
param_attr
=
paddle
.
attr
.
Param
(
name
=
'crfw'
))
evaluator
.
sum
(
input
=
crf_dec
)
# create parameters
parameters
=
paddle
.
parameters
.
create
(
crf_cost
)
parameters
.
set
(
'emb'
,
load_parameter
(
conll05
.
get_embedding
(),
44068
,
32
))
# create optimizer
optimizer
=
paddle
.
optimizer
.
Momentum
(
momentum
=
0
,
learning_rate
=
2e-2
,
regularization
=
paddle
.
optimizer
.
L2Regularization
(
rate
=
8e-4
),
model_average
=
paddle
.
optimizer
.
ModelAverage
(
average_window
=
0.5
,
max_average_window
=
10000
),
)
trainer
=
paddle
.
trainer
.
SGD
(
cost
=
crf_cost
,
parameters
=
parameters
,
update_equation
=
optimizer
,
extra_layers
=
crf_dec
)
reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
conll05
.
test
(),
buf_size
=
8192
),
batch_size
=
10
)
test_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
conll05
.
test
(),
buf_size
=
8192
),
batch_size
=
10
)
feeding
=
{
'word_data'
:
0
,
'ctx_n2_data'
:
1
,
'ctx_n1_data'
:
2
,
'ctx_0_data'
:
3
,
'ctx_p1_data'
:
4
,
'ctx_p2_data'
:
5
,
'verb_data'
:
6
,
'mark_data'
:
7
,
'target'
:
8
}
def
event_handler
(
event
):
if
isinstance
(
event
,
paddle
.
event
.
EndIteration
):
if
event
.
batch_id
%
100
==
0
:
print
"Pass %d, Batch %d, Cost %f, %s"
%
(
event
.
pass_id
,
event
.
batch_id
,
event
.
cost
,
event
.
metrics
)
if
event
.
batch_id
%
1000
==
0
:
result
=
trainer
.
test
(
reader
=
test_reader
,
feeding
=
feeding
)
print
"
\n
Test with Pass %d, Batch %d, %s"
%
(
event
.
pass_id
,
event
.
batch_id
,
result
.
metrics
)
if
isinstance
(
event
,
paddle
.
event
.
EndPass
):
# save parameters
with
open
(
'params_pass_%d.tar'
%
event
.
pass_id
,
'w'
)
as
f
:
trainer
.
save_parameter_to_tar
(
f
)
result
=
trainer
.
test
(
reader
=
test_reader
,
feeding
=
feeding
)
print
"
\n
Test with Pass %d, %s"
%
(
event
.
pass_id
,
result
.
metrics
)
trainer
.
train
(
reader
=
reader
,
event_handler
=
event_handler
,
num_passes
=
1
,
feeding
=
feeding
)
test_creator
=
paddle
.
dataset
.
conll05
.
test
()
test_data
=
[]
for
item
in
test_creator
():
test_data
.
append
(
item
[
0
:
8
])
if
len
(
test_data
)
==
1
:
break
predict
=
paddle
.
layer
.
crf_decoding
(
size
=
label_dict_len
,
input
=
feature_out
,
param_attr
=
paddle
.
attr
.
Param
(
name
=
'crfw'
))
probs
=
paddle
.
infer
(
output_layer
=
predict
,
parameters
=
parameters
,
input
=
test_data
,
feeding
=
feeding
,
field
=
'id'
)
assert
len
(
probs
)
==
len
(
test_data
[
0
][
0
])
labels_reverse
=
{}
for
(
k
,
v
)
in
label_dict
.
items
():
labels_reverse
[
v
]
=
k
pre_lab
=
[
labels_reverse
[
i
]
for
i
in
probs
]
print
pre_lab
if
__name__
==
'__main__'
:
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录