train.py 10.1 KB
Newer Older
D
dzhwinter 已提交
1
import math, os
2
import numpy as np
D
daminglu 已提交
3
import paddle
4
import paddle.v2.dataset.conll05 as conll05
D
daminglu 已提交
5 6
import paddle.fluid as fluid
import time
7

D
dzhwinter 已提交
8 9
with_gpu = os.getenv('WITH_GPU', '0') != '0'

10 11 12
word_dict, verb_dict, label_dict = conll05.get_dict()
word_dict_len = len(word_dict)
label_dict_len = len(label_dict)
D
daminglu 已提交
13
pred_dict_len = len(verb_dict)
14

15 16 17 18 19 20
mark_dict_len = 2
word_dim = 32
mark_dim = 5
hidden_dim = 512
depth = 8
mix_hidden_lr = 1e-3
21

D
daminglu 已提交
22 23 24
IS_SPARSE = True
PASS_NUM = 10
BATCH_SIZE = 10
25

D
daminglu 已提交
26
embedding_name = 'emb'
27

28

D
daminglu 已提交
29 30 31 32
def load_parameter(file_name, h, w):
    with open(file_name, 'rb') as f:
        f.read(16)  # skip header.
        return np.fromfile(f, dtype=np.float32).reshape(h, w)
33 34


D
daminglu 已提交
35 36 37 38
def db_lstm(word, predicate, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, mark,
            **ignored):
    # 8 features
    predicate_embedding = fluid.layers.embedding(
39
        input=predicate,
D
daminglu 已提交
40 41 42 43 44 45 46 47 48 49
        size=[pred_dict_len, word_dim],
        dtype='float32',
        is_sparse=IS_SPARSE,
        param_attr='vemb')

    mark_embedding = fluid.layers.embedding(
        input=mark,
        size=[mark_dict_len, mark_dim],
        dtype='float32',
        is_sparse=IS_SPARSE)
50 51 52

    word_input = [word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2]
    emb_layers = [
D
daminglu 已提交
53 54 55
        fluid.layers.embedding(
            size=[word_dict_len, word_dim],
            input=x,
56 57
            param_attr=fluid.ParamAttr(name=embedding_name, trainable=False))
        for x in word_input
58 59 60 61
    ]
    emb_layers.append(predicate_embedding)
    emb_layers.append(mark_embedding)

D
daminglu 已提交
62 63 64 65
    hidden_0_layers = [
        fluid.layers.fc(input=emb, size=hidden_dim, act='tanh')
        for emb in emb_layers
    ]
66

D
daminglu 已提交
67
    hidden_0 = fluid.layers.sums(input=hidden_0_layers)
68

D
daminglu 已提交
69
    lstm_0 = fluid.layers.dynamic_lstm(
70
        input=hidden_0,
D
daminglu 已提交
71 72 73 74
        size=hidden_dim,
        candidate_activation='relu',
        gate_activation='sigmoid',
        cell_activation='sigmoid')
75

D
daminglu 已提交
76
    # stack L-LSTM and R-LSTM with direct edges
77 78 79
    input_tmp = [hidden_0, lstm_0]

    for i in range(1, depth):
D
daminglu 已提交
80 81 82 83 84 85
        mix_hidden = fluid.layers.sums(input=[
            fluid.layers.fc(input=input_tmp[0], size=hidden_dim, act='tanh'),
            fluid.layers.fc(input=input_tmp[1], size=hidden_dim, act='tanh')
        ])

        lstm = fluid.layers.dynamic_lstm(
86
            input=mix_hidden,
D
daminglu 已提交
87 88 89 90 91
            size=hidden_dim,
            candidate_activation='relu',
            gate_activation='sigmoid',
            cell_activation='sigmoid',
            is_reverse=((i % 2) == 1))
92 93 94

        input_tmp = [mix_hidden, lstm]

D
daminglu 已提交
95 96 97 98
    feature_out = fluid.layers.sums(input=[
        fluid.layers.fc(input=input_tmp[0], size=label_dict_len, act='tanh'),
        fluid.layers.fc(input=input_tmp[1], size=label_dict_len, act='tanh')
    ])
99

100
    return feature_out
101 102


D
daminglu 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
def train(use_cuda, save_dirname=None, is_local=True):
    # define network topology
    word = fluid.layers.data(
        name='word_data', shape=[1], dtype='int64', lod_level=1)
    predicate = fluid.layers.data(
        name='verb_data', shape=[1], dtype='int64', lod_level=1)
    ctx_n2 = fluid.layers.data(
        name='ctx_n2_data', shape=[1], dtype='int64', lod_level=1)
    ctx_n1 = fluid.layers.data(
        name='ctx_n1_data', shape=[1], dtype='int64', lod_level=1)
    ctx_0 = fluid.layers.data(
        name='ctx_0_data', shape=[1], dtype='int64', lod_level=1)
    ctx_p1 = fluid.layers.data(
        name='ctx_p1_data', shape=[1], dtype='int64', lod_level=1)
    ctx_p2 = fluid.layers.data(
        name='ctx_p2_data', shape=[1], dtype='int64', lod_level=1)
    mark = fluid.layers.data(
        name='mark_data', shape=[1], dtype='int64', lod_level=1)
121 122

    # define network topology
D
daminglu 已提交
123 124 125 126
    feature_out = db_lstm(**locals())
    target = fluid.layers.data(
        name='target', shape=[1], dtype='int64', lod_level=1)
    crf_cost = fluid.layers.linear_chain_crf(
127 128
        input=feature_out,
        label=target,
129
        param_attr=fluid.ParamAttr(name='crfw', learning_rate=mix_hidden_lr))
D
daminglu 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145

    avg_cost = fluid.layers.mean(crf_cost)

    sgd_optimizer = fluid.optimizer.SGD(
        learning_rate=fluid.layers.exponential_decay(
            learning_rate=0.01,
            decay_steps=100000,
            decay_rate=0.5,
            staircase=True))

    sgd_optimizer.minimize(avg_cost)

    crf_decode = fluid.layers.crf_decoding(
        input=feature_out, param_attr=fluid.ParamAttr(name='crfw'))

    train_data = paddle.batch(
146
        paddle.reader.shuffle(paddle.dataset.conll05.test(), buf_size=8192),
D
daminglu 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
        batch_size=BATCH_SIZE)

    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()

    feeder = fluid.DataFeeder(
        feed_list=[
            word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, predicate, mark, target
        ],
        place=place)
    exe = fluid.Executor(place)

    def train_loop(main_program):
        exe.run(fluid.default_startup_program())
        embedding_param = fluid.global_scope().find_var(
            embedding_name).get_tensor()
        embedding_param.set(
            load_parameter(conll05.get_embedding(), word_dict_len, word_dim),
            place)

        start_time = time.time()
        batch_id = 0
        for pass_id in xrange(PASS_NUM):
            for data in train_data():
170 171
                cost = exe.run(
                    main_program, feed=feeder.feed(data), fetch_list=[avg_cost])
D
daminglu 已提交
172 173 174 175 176
                cost = cost[0]

                if batch_id % 10 == 0:
                    print("avg_cost:" + str(cost))
                    if batch_id != 0:
177 178
                        print("second per batch: " + str((
                            time.time() - start_time) / batch_id))
D
daminglu 已提交
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
                    # Set the threshold low to speed up the CI test
                    if float(cost) < 60.0:
                        if save_dirname is not None:
                            # TODO(liuyiqun): Change the target to crf_decode
                            fluid.io.save_inference_model(save_dirname, [
                                'word_data', 'verb_data', 'ctx_n2_data',
                                'ctx_n1_data', 'ctx_0_data', 'ctx_p1_data',
                                'ctx_p2_data', 'mark_data'
                            ], [feature_out], exe)
                        return

                batch_id = batch_id + 1

    train_loop(fluid.default_main_program())


def infer(use_cuda, save_dirname=None):
    if save_dirname is None:
        return

    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)

    inference_scope = fluid.core.Scope()
    with fluid.scope_guard(inference_scope):
        # Use fluid.io.load_inference_model to obtain the inference program desc,
        # the feed_target_names (the names of variables that will be fed
        # data using feed operators), and the fetch_targets (variables that
        # we want to obtain data from using fetch operators).
        [inference_program, feed_target_names,
         fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)

        # Setup inputs by creating LoDTensors to represent sequences of words.
        # Here each word is the basic element of these LoDTensors and the shape of
        # each word (base_shape) should be [1] since it is simply an index to
        # look up for the corresponding word vector.
        # Suppose the length_based level of detail (lod) info is set to [[3, 4, 2]],
        # which has only one lod level. Then the created LoDTensors will have only
        # one higher level structure (sequence of words, or sentence) than the basic
        # element (word). Hence the LoDTensor will hold data for three sentences of
        # length 3, 4 and 2, respectively.
        # Note that lod info should be a list of lists.
        lod = [[3, 4, 2]]
        base_shape = [1]
        # The range of random integers is [low, high]
        word = fluid.create_random_int_lodtensor(
            lod, base_shape, place, low=0, high=word_dict_len - 1)
        pred = fluid.create_random_int_lodtensor(
            lod, base_shape, place, low=0, high=pred_dict_len - 1)
        ctx_n2 = fluid.create_random_int_lodtensor(
            lod, base_shape, place, low=0, high=word_dict_len - 1)
        ctx_n1 = fluid.create_random_int_lodtensor(
            lod, base_shape, place, low=0, high=word_dict_len - 1)
        ctx_0 = fluid.create_random_int_lodtensor(
            lod, base_shape, place, low=0, high=word_dict_len - 1)
        ctx_p1 = fluid.create_random_int_lodtensor(
            lod, base_shape, place, low=0, high=word_dict_len - 1)
        ctx_p2 = fluid.create_random_int_lodtensor(
            lod, base_shape, place, low=0, high=word_dict_len - 1)
        mark = fluid.create_random_int_lodtensor(
            lod, base_shape, place, low=0, high=mark_dict_len - 1)

        # Construct feed as a dictionary of {feed_target_name: feed_target_data}
        # and results will contain a list of data corresponding to fetch_targets.
        assert feed_target_names[0] == 'word_data'
        assert feed_target_names[1] == 'verb_data'
        assert feed_target_names[2] == 'ctx_n2_data'
        assert feed_target_names[3] == 'ctx_n1_data'
        assert feed_target_names[4] == 'ctx_0_data'
        assert feed_target_names[5] == 'ctx_p1_data'
        assert feed_target_names[6] == 'ctx_p2_data'
        assert feed_target_names[7] == 'mark_data'

252 253 254 255 256 257 258 259 260 261 262 263 264 265
        results = exe.run(
            inference_program,
            feed={
                feed_target_names[0]: word,
                feed_target_names[1]: pred,
                feed_target_names[2]: ctx_n2,
                feed_target_names[3]: ctx_n1,
                feed_target_names[4]: ctx_0,
                feed_target_names[5]: ctx_p1,
                feed_target_names[6]: ctx_p2,
                feed_target_names[7]: mark
            },
            fetch_list=fetch_targets,
            return_numpy=False)
D
daminglu 已提交
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
        print(results[0].lod())
        np_data = np.array(results[0])
        print("Inference Shape: ", np_data.shape)


def main(use_cuda, is_local=True):
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return

    # Directory for saving the trained model
    save_dirname = "label_semantic_roles.inference.model"

    train(use_cuda, save_dirname, is_local)
    infer(use_cuda, save_dirname)


main(use_cuda=False)