train.py 7.3 KB
Newer Older
D
dzhwinter 已提交
1
import math, os
2 3 4
import numpy as np
import paddle.v2 as paddle
import paddle.v2.dataset.conll05 as conll05
5
import paddle.v2.evaluator as evaluator
6

D
dzhwinter 已提交
7 8
with_gpu = os.getenv('WITH_GPU', '0') != '0'

9 10 11 12
word_dict, verb_dict, label_dict = conll05.get_dict()
word_dict_len = len(word_dict)
label_dict_len = len(label_dict)
pred_len = len(verb_dict)
13

14 15 16 17 18 19 20
mark_dict_len = 2
word_dim = 32
mark_dim = 5
hidden_dim = 512
depth = 8
default_std = 1 / math.sqrt(hidden_dim) / 3.0
mix_hidden_lr = 1e-3
21 22


23 24 25
def d_type(size):
    return paddle.data_type.integer_value_sequence(size)

26

27 28
def db_lstm():
    #8 features
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
    word = paddle.layer.data(name='word_data', type=d_type(word_dict_len))
    predicate = paddle.layer.data(name='verb_data', type=d_type(pred_len))

    ctx_n2 = paddle.layer.data(name='ctx_n2_data', type=d_type(word_dict_len))
    ctx_n1 = paddle.layer.data(name='ctx_n1_data', type=d_type(word_dict_len))
    ctx_0 = paddle.layer.data(name='ctx_0_data', type=d_type(word_dict_len))
    ctx_p1 = paddle.layer.data(name='ctx_p1_data', type=d_type(word_dict_len))
    ctx_p2 = paddle.layer.data(name='ctx_p2_data', type=d_type(word_dict_len))
    mark = paddle.layer.data(name='mark_data', type=d_type(mark_dict_len))

    emb_para = paddle.attr.Param(name='emb', initial_std=0., is_static=True)
    std_0 = paddle.attr.Param(initial_std=0.)
    std_default = paddle.attr.Param(initial_std=default_std)

    predicate_embedding = paddle.layer.embedding(
        size=word_dim,
        input=predicate,
46
        param_attr=paddle.attr.Param(name='vemb', initial_std=default_std))
47 48 49 50 51
    mark_embedding = paddle.layer.embedding(
        size=mark_dim, input=mark, param_attr=std_0)

    word_input = [word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2]
    emb_layers = [
52 53
        paddle.layer.embedding(size=word_dim, input=x, param_attr=emb_para)
        for x in word_input
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
    ]
    emb_layers.append(predicate_embedding)
    emb_layers.append(mark_embedding)

    hidden_0 = paddle.layer.mixed(
        size=hidden_dim,
        bias_attr=std_default,
        input=[
            paddle.layer.full_matrix_projection(
                input=emb, param_attr=std_default) for emb in emb_layers
        ])

    lstm_para_attr = paddle.attr.Param(initial_std=0.0, learning_rate=1.0)
    hidden_para_attr = paddle.attr.Param(
        initial_std=default_std, learning_rate=mix_hidden_lr)

    lstm_0 = paddle.layer.lstmemory(
        input=hidden_0,
        act=paddle.activation.Relu(),
        gate_act=paddle.activation.Sigmoid(),
        state_act=paddle.activation.Sigmoid(),
        bias_attr=std_0,
        param_attr=lstm_para_attr)

    #stack L-LSTM and R-LSTM with direct edges
    input_tmp = [hidden_0, lstm_0]

    for i in range(1, depth):
        mix_hidden = paddle.layer.mixed(
            size=hidden_dim,
            bias_attr=std_default,
            input=[
                paddle.layer.full_matrix_projection(
                    input=input_tmp[0], param_attr=hidden_para_attr),
                paddle.layer.full_matrix_projection(
                    input=input_tmp[1], param_attr=lstm_para_attr)
            ])

        lstm = paddle.layer.lstmemory(
            input=mix_hidden,
            act=paddle.activation.Relu(),
            gate_act=paddle.activation.Sigmoid(),
            state_act=paddle.activation.Sigmoid(),
            reverse=((i % 2) == 1),
            bias_attr=std_0,
            param_attr=lstm_para_attr)

        input_tmp = [mix_hidden, lstm]

    feature_out = paddle.layer.mixed(
        size=label_dict_len,
        bias_attr=std_default,
        input=[
            paddle.layer.full_matrix_projection(
                input=input_tmp[0], param_attr=hidden_para_attr),
            paddle.layer.full_matrix_projection(
                input=input_tmp[1], param_attr=lstm_para_attr)
        ], )

113
    return feature_out
114 115 116 117 118 119 120 121 122


def load_parameter(file_name, h, w):
    with open(file_name, 'rb') as f:
        f.read(16)  # skip header.
        return np.fromfile(f, dtype=np.float32).reshape(h, w)


def main():
D
dzhwinter 已提交
123
    paddle.init(use_gpu=with_gpu, trainer_count=1)
124 125

    # define network topology
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
    feature_out = db_lstm()
    target = paddle.layer.data(name='target', type=d_type(label_dict_len))
    crf_cost = paddle.layer.crf(
        size=label_dict_len,
        input=feature_out,
        label=target,
        param_attr=paddle.attr.Param(
            name='crfw', initial_std=default_std, learning_rate=mix_hidden_lr))

    crf_dec = paddle.layer.crf_decoding(
        size=label_dict_len,
        input=feature_out,
        label=target,
        param_attr=paddle.attr.Param(name='crfw'))
    evaluator.sum(input=crf_dec)
141 142

    # create parameters
143
    parameters = paddle.parameters.create(crf_cost)
144 145 146 147 148 149 150 151 152 153
    parameters.set('emb', load_parameter(conll05.get_embedding(), 44068, 32))

    # create optimizer
    optimizer = paddle.optimizer.Momentum(
        momentum=0,
        learning_rate=2e-2,
        regularization=paddle.optimizer.L2Regularization(rate=8e-4),
        model_average=paddle.optimizer.ModelAverage(
            average_window=0.5, max_average_window=10000), )

154
    trainer = paddle.trainer.SGD(
155 156 157 158
        cost=crf_cost,
        parameters=parameters,
        update_equation=optimizer,
        extra_layers=crf_dec)
159

D
dangqingqing 已提交
160
    reader = paddle.batch(
161
        paddle.reader.shuffle(conll05.test(), buf_size=8192), batch_size=10)
162

Y
Yu Yang 已提交
163 164 165
    test_reader = paddle.batch(
        paddle.reader.shuffle(conll05.test(), buf_size=8192), batch_size=10)

D
dangqingqing 已提交
166
    feeding = {
167 168 169 170 171 172 173 174 175 176 177 178 179 180
        'word_data': 0,
        'ctx_n2_data': 1,
        'ctx_n1_data': 2,
        'ctx_0_data': 3,
        'ctx_p1_data': 4,
        'ctx_p2_data': 5,
        'verb_data': 6,
        'mark_data': 7,
        'target': 8
    }

    def event_handler(event):
        if isinstance(event, paddle.event.EndIteration):
            if event.batch_id % 100 == 0:
181 182 183
                print "Pass %d, Batch %d, Cost %f, %s" % (
                    event.pass_id, event.batch_id, event.cost, event.metrics)
            if event.batch_id % 1000 == 0:
Y
Yu Yang 已提交
184
                result = trainer.test(reader=test_reader, feeding=feeding)
185 186 187 188 189
                print "\nTest with Pass %d, Batch %d, %s" % (
                    event.pass_id, event.batch_id, result.metrics)

        if isinstance(event, paddle.event.EndPass):
            # save parameters
190
            with open('params_pass_%d.tar' % event.pass_id, 'w') as f:
191
                trainer.save_parameter_to_tar(f)
192

Y
Yu Yang 已提交
193
            result = trainer.test(reader=test_reader, feeding=feeding)
194
            print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics)
195 196 197 198

    trainer.train(
        reader=reader,
        event_handler=event_handler,
199
        num_passes=1,
D
dangqingqing 已提交
200
        feeding=feeding)
201

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
    test_creator = paddle.dataset.conll05.test()
    test_data = []
    for item in test_creator():
        test_data.append(item[0:8])
        if len(test_data) == 1:
            break

    predict = paddle.layer.crf_decoding(
        size=label_dict_len,
        input=feature_out,
        param_attr=paddle.attr.Param(name='crfw'))
    probs = paddle.infer(
        output_layer=predict,
        parameters=parameters,
        input=test_data,
Y
Yu Yang 已提交
217
        feeding=feeding,
218 219 220 221 222 223 224 225
        field='id')
    assert len(probs) == len(test_data[0][0])
    labels_reverse = {}
    for (k, v) in label_dict.items():
        labels_reverse[v] = k
    pre_lab = [labels_reverse[i] for i in probs]
    print pre_lab

226 227 228

if __name__ == '__main__':
    main()