Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
book
提交
68f41a42
B
book
项目概览
PaddlePaddle
/
book
通知
16
Star
4
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
40
列表
看板
标记
里程碑
合并请求
37
Wiki
5
Wiki
分析
仓库
DevOps
项目成员
Pages
B
book
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
40
Issue
40
列表
看板
标记
里程碑
合并请求
37
合并请求
37
Pages
分析
分析
仓库分析
DevOps
Wiki
5
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
68f41a42
编写于
10月 03, 2018
作者:
M
minqiyang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Port current book code and doc to python3
上级
fb351603
变更
20
隐藏空白更改
内联
并排
Showing
20 changed file
with
278 addition
and
43 deletion
+278
-43
01.fit_a_line/README.cn.md
01.fit_a_line/README.cn.md
+75
-2
01.fit_a_line/README.md
01.fit_a_line/README.md
+75
-2
01.fit_a_line/image/ranges.png
01.fit_a_line/image/ranges.png
+0
-0
01.fit_a_line/plot.py
01.fit_a_line/plot.py
+83
-0
01.fit_a_line/train.py
01.fit_a_line/train.py
+2
-2
03.image_classification/README.cn.md
03.image_classification/README.cn.md
+1
-1
03.image_classification/README.md
03.image_classification/README.md
+1
-1
03.image_classification/resnet.py
03.image_classification/resnet.py
+1
-1
03.image_classification/train.py
03.image_classification/train.py
+1
-1
04.word2vec/README.cn.md
04.word2vec/README.cn.md
+2
-1
04.word2vec/README.md
04.word2vec/README.md
+2
-1
04.word2vec/train.py
04.word2vec/train.py
+3
-2
06.understand_sentiment/README.cn.md
06.understand_sentiment/README.cn.md
+1
-1
06.understand_sentiment/README.md
06.understand_sentiment/README.md
+1
-1
06.understand_sentiment/train_conv.py
06.understand_sentiment/train_conv.py
+7
-7
06.understand_sentiment/train_dyn_rnn.py
06.understand_sentiment/train_dyn_rnn.py
+7
-7
06.understand_sentiment/train_stacked_lstm.py
06.understand_sentiment/train_stacked_lstm.py
+7
-7
07.label_semantic_roles/README.cn.md
07.label_semantic_roles/README.cn.md
+3
-2
07.label_semantic_roles/README.md
07.label_semantic_roles/README.md
+3
-2
07.label_semantic_roles/train.py
07.label_semantic_roles/train.py
+3
-2
未找到文件。
01.fit_a_line/README.cn.md
浏览文件 @
68f41a42
...
...
@@ -177,6 +177,80 @@ PaddlePaddle提供了读取数据者发生器机制来读取训练数据。读
feed_order
=
[
'x'
,
'y'
]
```
以及一个绘画器来进行绘制:
```
python
import
six
import
os
class
PlotData
(
object
):
def
__init__
(
self
):
self
.
step
=
[]
self
.
value
=
[]
def
append
(
self
,
step
,
value
):
self
.
step
.
append
(
step
)
self
.
value
.
append
(
value
)
def
reset
(
self
):
self
.
step
=
[]
self
.
value
=
[]
class
Ploter
(
object
):
def
__init__
(
self
,
*
args
):
self
.
__args__
=
args
self
.
__plot_data__
=
{}
for
title
in
args
:
self
.
__plot_data__
[
title
]
=
PlotData
()
# demo in notebooks will use Ploter to plot figure, but when we convert
# the ipydb to py file for testing, the import of matplotlib will make the
# script crash. So we can use `export DISABLE_PLOT=True` to disable import
# these libs
self
.
__disable_plot__
=
os
.
environ
.
get
(
"DISABLE_PLOT"
)
if
not
self
.
__plot_is_disabled__
():
import
matplotlib.pyplot
as
plt
from
IPython
import
display
self
.
plt
=
plt
self
.
display
=
display
def
__plot_is_disabled__
(
self
):
return
self
.
__disable_plot__
==
"True"
def
append
(
self
,
title
,
step
,
value
):
assert
isinstance
(
title
,
six
.
string_types
)
assert
title
in
self
.
__plot_data__
data
=
self
.
__plot_data__
[
title
]
assert
isinstance
(
data
,
PlotData
)
data
.
append
(
step
,
value
)
def
plot
(
self
,
path
=
None
):
if
self
.
__plot_is_disabled__
():
return
titles
=
[]
for
title
in
self
.
__args__
:
data
=
self
.
__plot_data__
[
title
]
assert
isinstance
(
data
,
PlotData
)
if
len
(
data
.
step
)
>
0
:
titles
.
append
(
title
)
self
.
plt
.
plot
(
data
.
step
,
data
.
value
)
self
.
plt
.
legend
(
titles
,
loc
=
'upper left'
)
if
path
is
None
:
self
.
display
.
clear_output
(
wait
=
True
)
self
.
display
.
display
(
self
.
plt
.
gcf
())
else
:
self
.
plt
.
savefig
(
path
)
self
.
plt
.
gcf
().
clear
()
def
reset
(
self
):
for
key
in
self
.
__plot_data__
:
data
=
self
.
__plot_data__
[
key
]
assert
isinstance
(
data
,
PlotData
)
data
.
reset
()
```
除此之外,可以定义一个事件响应器来处理类似
`打印训练进程`
的事件:
```
python
...
...
@@ -184,7 +258,6 @@ feed_order=['x', 'y']
params_dirname
=
"fit_a_line.inference.model"
# Plot data
from
paddle.v2.plot
import
Ploter
train_title
=
"Train cost"
test_title
=
"Test cost"
plot_cost
=
Ploter
(
train_title
,
test_title
)
...
...
@@ -259,7 +332,7 @@ inferencer = fluid.contrib.inferencer.Inferencer(
batch_size
=
10
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
uci_housing
.
test
(),
batch_size
=
batch_size
)
test_data
=
test_reader
().
next
(
)
test_data
=
next
(
test_reader
()
)
test_x
=
numpy
.
array
([
data
[
0
]
for
data
in
test_data
]).
astype
(
"float32"
)
test_y
=
numpy
.
array
([
data
[
1
]
for
data
in
test_data
]).
astype
(
"float32"
)
...
...
01.fit_a_line/README.md
浏览文件 @
68f41a42
...
...
@@ -196,6 +196,80 @@ for loading the training data. A reader may return multiple columns, and we need
feed_order
=
[
'x'
,
'y'
]
```
And a ploter to plot metrics:
```
python
import
six
import
os
class
PlotData
(
object
):
def
__init__
(
self
):
self
.
step
=
[]
self
.
value
=
[]
def
append
(
self
,
step
,
value
):
self
.
step
.
append
(
step
)
self
.
value
.
append
(
value
)
def
reset
(
self
):
self
.
step
=
[]
self
.
value
=
[]
class
Ploter
(
object
):
def
__init__
(
self
,
*
args
):
self
.
__args__
=
args
self
.
__plot_data__
=
{}
for
title
in
args
:
self
.
__plot_data__
[
title
]
=
PlotData
()
# demo in notebooks will use Ploter to plot figure, but when we convert
# the ipydb to py file for testing, the import of matplotlib will make the
# script crash. So we can use `export DISABLE_PLOT=True` to disable import
# these libs
self
.
__disable_plot__
=
os
.
environ
.
get
(
"DISABLE_PLOT"
)
if
not
self
.
__plot_is_disabled__
():
import
matplotlib.pyplot
as
plt
from
IPython
import
display
self
.
plt
=
plt
self
.
display
=
display
def
__plot_is_disabled__
(
self
):
return
self
.
__disable_plot__
==
"True"
def
append
(
self
,
title
,
step
,
value
):
assert
isinstance
(
title
,
six
.
string_types
)
assert
title
in
self
.
__plot_data__
data
=
self
.
__plot_data__
[
title
]
assert
isinstance
(
data
,
PlotData
)
data
.
append
(
step
,
value
)
def
plot
(
self
,
path
=
None
):
if
self
.
__plot_is_disabled__
():
return
titles
=
[]
for
title
in
self
.
__args__
:
data
=
self
.
__plot_data__
[
title
]
assert
isinstance
(
data
,
PlotData
)
if
len
(
data
.
step
)
>
0
:
titles
.
append
(
title
)
self
.
plt
.
plot
(
data
.
step
,
data
.
value
)
self
.
plt
.
legend
(
titles
,
loc
=
'upper left'
)
if
path
is
None
:
self
.
display
.
clear_output
(
wait
=
True
)
self
.
display
.
display
(
self
.
plt
.
gcf
())
else
:
self
.
plt
.
savefig
(
path
)
self
.
plt
.
gcf
().
clear
()
def
reset
(
self
):
for
key
in
self
.
__plot_data__
:
data
=
self
.
__plot_data__
[
key
]
assert
isinstance
(
data
,
PlotData
)
data
.
reset
()
```
Moreover, an event handler is provided to print the training progress:
```
python
...
...
@@ -203,7 +277,6 @@ Moreover, an event handler is provided to print the training progress:
params_dirname
=
"fit_a_line.inference.model"
# Plot data
from
paddle.v2.plot
import
Ploter
train_title
=
"Train cost"
test_title
=
"Test cost"
plot_cost
=
Ploter
(
train_title
,
test_title
)
...
...
@@ -281,7 +354,7 @@ inferencer = fluid.contrib.inferencer.Inferencer(
batch_size
=
10
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
uci_housing
.
test
(),
batch_size
=
batch_size
)
test_data
=
test_reader
().
next
(
)
test_data
=
next
(
test_reader
()
)
test_x
=
numpy
.
array
([
data
[
0
]
for
data
in
test_data
]).
astype
(
"float32"
)
test_y
=
numpy
.
array
([
data
[
1
]
for
data
in
test_data
]).
astype
(
"float32"
)
...
...
01.fit_a_line/image/ranges.png
查看替换文件 @
fb351603
浏览文件 @
68f41a42
6.6 KB
|
W:
|
H:
6.6 KB
|
W:
|
H:
2-up
Swipe
Onion skin
01.fit_a_line/plot.py
0 → 100644
浏览文件 @
68f41a42
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
six
import
os
class
PlotData
(
object
):
def
__init__
(
self
):
self
.
step
=
[]
self
.
value
=
[]
def
append
(
self
,
step
,
value
):
self
.
step
.
append
(
step
)
self
.
value
.
append
(
value
)
def
reset
(
self
):
self
.
step
=
[]
self
.
value
=
[]
class
Ploter
(
object
):
def
__init__
(
self
,
*
args
):
self
.
__args__
=
args
self
.
__plot_data__
=
{}
for
title
in
args
:
self
.
__plot_data__
[
title
]
=
PlotData
()
# demo in notebooks will use Ploter to plot figure, but when we convert
# the ipydb to py file for testing, the import of matplotlib will make the
# script crash. So we can use `export DISABLE_PLOT=True` to disable import
# these libs
self
.
__disable_plot__
=
os
.
environ
.
get
(
"DISABLE_PLOT"
)
if
not
self
.
__plot_is_disabled__
():
import
matplotlib.pyplot
as
plt
from
IPython
import
display
self
.
plt
=
plt
self
.
display
=
display
def
__plot_is_disabled__
(
self
):
return
self
.
__disable_plot__
==
"True"
def
append
(
self
,
title
,
step
,
value
):
assert
isinstance
(
title
,
six
.
string_types
)
assert
title
in
self
.
__plot_data__
data
=
self
.
__plot_data__
[
title
]
assert
isinstance
(
data
,
PlotData
)
data
.
append
(
step
,
value
)
def
plot
(
self
,
path
=
None
):
if
self
.
__plot_is_disabled__
():
return
titles
=
[]
for
title
in
self
.
__args__
:
data
=
self
.
__plot_data__
[
title
]
assert
isinstance
(
data
,
PlotData
)
if
len
(
data
.
step
)
>
0
:
titles
.
append
(
title
)
self
.
plt
.
plot
(
data
.
step
,
data
.
value
)
self
.
plt
.
legend
(
titles
,
loc
=
'upper left'
)
if
path
is
None
:
self
.
display
.
clear_output
(
wait
=
True
)
self
.
display
.
display
(
self
.
plt
.
gcf
())
else
:
self
.
plt
.
savefig
(
path
)
self
.
plt
.
gcf
().
clear
()
def
reset
(
self
):
for
key
in
self
.
__plot_data__
:
data
=
self
.
__plot_data__
[
key
]
assert
isinstance
(
data
,
PlotData
)
data
.
reset
()
01.fit_a_line/train.py
浏览文件 @
68f41a42
...
...
@@ -70,7 +70,7 @@ feed_order = ['x', 'y']
params_dirname
=
"fit_a_line.inference.model"
# Plot data
from
p
addle.v2.p
lot
import
Ploter
from
plot
import
Ploter
train_title
=
"Train cost"
test_title
=
"Test cost"
...
...
@@ -125,7 +125,7 @@ inferencer = Inferencer(
batch_size
=
10
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
uci_housing
.
test
(),
batch_size
=
batch_size
)
test_data
=
test_reader
().
next
(
)
test_data
=
next
(
test_reader
()
)
test_x
=
numpy
.
array
([
data
[
0
]
for
data
in
test_data
]).
astype
(
"float32"
)
test_y
=
numpy
.
array
([
data
[
1
]
for
data
in
test_data
]).
astype
(
"float32"
)
...
...
03.image_classification/README.cn.md
浏览文件 @
68f41a42
...
...
@@ -282,7 +282,7 @@ def layer_warp(block_func, input, ch_in, ch_out, count, stride):
def
resnet_cifar10
(
ipt
,
depth
=
32
):
# depth should be one of 20, 32, 44, 56, 110, 1202
assert
(
depth
-
2
)
%
6
==
0
n
=
(
depth
-
2
)
/
6
n
=
(
depth
-
2
)
/
/
6
nStages
=
{
16
,
64
,
128
}
conv1
=
conv_bn_layer
(
ipt
,
ch_out
=
16
,
filter_size
=
3
,
stride
=
1
,
padding
=
1
)
res1
=
layer_warp
(
basicblock
,
conv1
,
16
,
16
,
n
,
1
)
...
...
03.image_classification/README.md
浏览文件 @
68f41a42
...
...
@@ -282,7 +282,7 @@ Note: besides the first convolutional layer and the last fully-connected layer,
def
resnet_cifar10
(
ipt
,
depth
=
32
):
# depth should be one of 20, 32, 44, 56, 110, 1202
assert
(
depth
-
2
)
%
6
==
0
n
=
(
depth
-
2
)
/
6
n
=
(
depth
-
2
)
/
/
6
nStages
=
{
16
,
64
,
128
}
conv1
=
conv_bn_layer
(
ipt
,
ch_out
=
16
,
filter_size
=
3
,
stride
=
1
,
padding
=
1
)
res1
=
layer_warp
(
basicblock
,
conv1
,
16
,
16
,
n
,
1
)
...
...
03.image_classification/resnet.py
浏览文件 @
68f41a42
...
...
@@ -70,7 +70,7 @@ def layer_warp(block_func, input, ch_in, ch_out, count, stride):
def
resnet_cifar10
(
ipt
,
depth
=
32
):
# depth should be one of 20, 32, 44, 56, 110, 1202
assert
(
depth
-
2
)
%
6
==
0
n
=
(
depth
-
2
)
/
6
n
=
(
depth
-
2
)
/
/
6
nStages
=
{
16
,
64
,
128
}
conv1
=
conv_bn_layer
(
ipt
,
ch_out
=
16
,
filter_size
=
3
,
stride
=
1
,
padding
=
1
)
res1
=
layer_warp
(
basicblock
,
conv1
,
16
,
16
,
n
,
1
)
...
...
03.image_classification/train.py
浏览文件 @
68f41a42
...
...
@@ -102,7 +102,7 @@ def infer(use_cuda, inference_program, params_dirname=None):
inferencer
=
Inferencer
(
infer_func
=
inference_program
,
param_path
=
params_dirname
,
place
=
place
)
# Prepare testing data.
# Prepare testing data.
from
PIL
import
Image
import
numpy
as
np
import
os
...
...
04.word2vec/README.cn.md
浏览文件 @
68f41a42
...
...
@@ -208,6 +208,7 @@ import numpy
from
functools
import
partial
import
math
import
os
import
six
import
sys
from
__future__
import
print_function
```
...
...
@@ -394,7 +395,7 @@ def infer(use_cuda, inference_program, params_dirname=None):
most_possible_word_index
=
numpy
.
argmax
(
result
[
0
])
print
(
most_possible_word_index
)
print
([
key
for
key
,
value
in
word_dict
.
iteritems
(
)
key
for
key
,
value
in
six
.
iteritems
(
word_dict
)
if
value
==
most_possible_word_index
][
0
])
```
...
...
04.word2vec/README.md
浏览文件 @
68f41a42
...
...
@@ -221,6 +221,7 @@ import numpy
from
functools
import
partial
import
math
import
os
import
six
import
sys
from
__future__
import
print_function
```
...
...
@@ -412,7 +413,7 @@ def infer(use_cuda, inference_program, params_dirname=None):
most_possible_word_index
=
numpy
.
argmax
(
result
[
0
])
print
(
most_possible_word_index
)
print
([
key
for
key
,
value
in
word_dict
.
iteritems
(
)
key
for
key
,
value
in
six
.
iteritems
(
word_dict
)
if
value
==
most_possible_word_index
][
0
])
```
...
...
04.word2vec/train.py
浏览文件 @
68f41a42
...
...
@@ -12,8 +12,9 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
paddle
.v2
as
paddle
import
paddle
as
paddle
import
paddle.fluid
as
fluid
import
six
import
sys
try
:
...
...
@@ -176,7 +177,7 @@ def infer(use_cuda, inference_program, params_dirname=None):
most_possible_word_index
=
numpy
.
argmax
(
result
[
0
])
print
(
most_possible_word_index
)
print
([
key
for
key
,
value
in
word_dict
.
iteritems
(
)
key
for
key
,
value
in
six
.
iteritems
(
word_dict
)
if
value
==
most_possible_word_index
][
0
])
...
...
06.understand_sentiment/README.cn.md
浏览文件 @
68f41a42
...
...
@@ -274,7 +274,7 @@ params_dirname = "understand_sentiment_conv.inference.model"
def
event_handler
(
event
):
if
isinstance
(
event
,
fluid
.
contrib
.
trainer
.
EndStepEvent
):
print
(
"Step {0}, Epoch {1} Metrics {2}"
.
format
(
event
.
step
,
event
.
epoch
,
map
(
np
.
array
,
event
.
metrics
)))
event
.
step
,
event
.
epoch
,
list
(
map
(
np
.
array
,
event
.
metrics
)
)))
if
event
.
step
==
10
:
trainer
.
save_params
(
params_dirname
)
...
...
06.understand_sentiment/README.md
浏览文件 @
68f41a42
...
...
@@ -281,7 +281,7 @@ params_dirname = "understand_sentiment_conv.inference.model"
def
event_handler
(
event
):
if
isinstance
(
event
,
fluid
.
contrib
.
trainer
.
EndStepEvent
):
print
(
"Step {0}, Epoch {1} Metrics {2}"
.
format
(
event
.
step
,
event
.
epoch
,
map
(
np
.
array
,
event
.
metrics
)))
event
.
step
,
event
.
epoch
,
list
(
map
(
np
.
array
,
event
.
metrics
)
)))
if
event
.
step
==
10
:
trainer
.
save_params
(
params_dirname
)
...
...
06.understand_sentiment/train_conv.py
浏览文件 @
68f41a42
...
...
@@ -111,7 +111,7 @@ def train(use_cuda, train_program, params_dirname):
event
.
step
,
avg_cost
,
acc
))
print
(
"Step {0}, Epoch {1} Metrics {2}"
.
format
(
event
.
step
,
event
.
epoch
,
map
(
np
.
array
,
event
.
metrics
)))
event
.
step
,
event
.
epoch
,
list
(
map
(
np
.
array
,
event
.
metrics
)
)))
elif
isinstance
(
event
,
EndEpochEvent
):
trainer
.
save_params
(
params_dirname
)
...
...
@@ -133,14 +133,14 @@ def infer(use_cuda, inference_program, params_dirname=None):
place
=
place
)
# Setup input by creating LoDTensor to represent sequence of words.
# Here each word is the basic element of the LoDTensor and the shape of
# each word (base_shape) should be [1] since it is simply an index to
# Here each word is the basic element of the LoDTensor and the shape of
# each word (base_shape) should be [1] since it is simply an index to
# look up for the corresponding word vector.
# Suppose the length_based level of detail (lod) info is set to [[3, 4, 2]],
# which has only one lod level. Then the created LoDTensor will have only
# one higher level structure (sequence of words, or sentence) than the basic
# element (word). Hence the LoDTensor will hold data for three sentences of
# length 3, 4 and 2, respectively.
# which has only one lod level. Then the created LoDTensor will have only
# one higher level structure (sequence of words, or sentence) than the basic
# element (word). Hence the LoDTensor will hold data for three sentences of
# length 3, 4 and 2, respectively.
# Note that lod info should be a list of lists.
reviews_str
=
[
...
...
06.understand_sentiment/train_dyn_rnn.py
浏览文件 @
68f41a42
...
...
@@ -128,7 +128,7 @@ def train(use_cuda, train_program, params_dirname):
event
.
step
,
avg_cost
,
acc
))
print
(
"Step {0}, Epoch {1} Metrics {2}"
.
format
(
event
.
step
,
event
.
epoch
,
map
(
np
.
array
,
event
.
metrics
)))
event
.
step
,
event
.
epoch
,
list
(
map
(
np
.
array
,
event
.
metrics
)
)))
elif
isinstance
(
event
,
EndEpochEvent
):
trainer
.
save_params
(
params_dirname
)
...
...
@@ -150,14 +150,14 @@ def infer(use_cuda, inference_program, params_dirname=None):
place
=
place
)
# Setup input by creating LoDTensor to represent sequence of words.
# Here each word is the basic element of the LoDTensor and the shape of
# each word (base_shape) should be [1] since it is simply an index to
# Here each word is the basic element of the LoDTensor and the shape of
# each word (base_shape) should be [1] since it is simply an index to
# look up for the corresponding word vector.
# Suppose the length_based level of detail (lod) info is set to [[3, 4, 2]],
# which has only one lod level. Then the created LoDTensor will have only
# one higher level structure (sequence of words, or sentence) than the basic
# element (word). Hence the LoDTensor will hold data for three sentences of
# length 3, 4 and 2, respectively.
# which has only one lod level. Then the created LoDTensor will have only
# one higher level structure (sequence of words, or sentence) than the basic
# element (word). Hence the LoDTensor will hold data for three sentences of
# length 3, 4 and 2, respectively.
# Note that lod info should be a list of lists.
reviews_str
=
[
...
...
06.understand_sentiment/train_stacked_lstm.py
浏览文件 @
68f41a42
...
...
@@ -119,7 +119,7 @@ def train(use_cuda, train_program, params_dirname):
event
.
step
,
avg_cost
,
acc
))
print
(
"Step {0}, Epoch {1} Metrics {2}"
.
format
(
event
.
step
,
event
.
epoch
,
map
(
np
.
array
,
event
.
metrics
)))
event
.
step
,
event
.
epoch
,
list
(
map
(
np
.
array
,
event
.
metrics
)
)))
elif
isinstance
(
event
,
EndEpochEvent
):
trainer
.
save_params
(
params_dirname
)
...
...
@@ -141,14 +141,14 @@ def infer(use_cuda, inference_program, params_dirname=None):
place
=
place
)
# Setup input by creating LoDTensor to represent sequence of words.
# Here each word is the basic element of the LoDTensor and the shape of
# each word (base_shape) should be [1] since it is simply an index to
# Here each word is the basic element of the LoDTensor and the shape of
# each word (base_shape) should be [1] since it is simply an index to
# look up for the corresponding word vector.
# Suppose the length_based level of detail (lod) info is set to [[3, 4, 2]],
# which has only one lod level. Then the created LoDTensor will have only
# one higher level structure (sequence of words, or sentence) than the basic
# element (word). Hence the LoDTensor will hold data for three sentences of
# length 3, 4 and 2, respectively.
# which has only one lod level. Then the created LoDTensor will have only
# one higher level structure (sequence of words, or sentence) than the basic
# element (word). Hence the LoDTensor will hold data for three sentences of
# length 3, 4 and 2, respectively.
# Note that lod info should be a list of lists.
reviews_str
=
[
...
...
07.label_semantic_roles/README.cn.md
浏览文件 @
68f41a42
...
...
@@ -184,8 +184,9 @@ from __future__ import print_function
import
math
,
os
import
numpy
as
np
import
paddle
import
paddle.
v2.
dataset.conll05
as
conll05
import
paddle.dataset.conll05
as
conll05
import
paddle.fluid
as
fluid
import
six
import
time
with_gpu
=
os
.
getenv
(
'WITH_GPU'
,
'0'
)
!=
'0'
...
...
@@ -417,7 +418,7 @@ def train(use_cuda, save_dirname=None, is_local=True):
start_time
=
time
.
time
()
batch_id
=
0
for
pass_id
in
xrange
(
PASS_NUM
):
for
pass_id
in
six
.
moves
.
xrange
(
PASS_NUM
):
for
data
in
train_data
():
cost
=
exe
.
run
(
main_program
,
feed
=
feeder
.
feed
(
data
),
...
...
07.label_semantic_roles/README.md
浏览文件 @
68f41a42
...
...
@@ -207,8 +207,9 @@ from __future__ import print_function
import
math
,
os
import
numpy
as
np
import
paddle
import
paddle.
v2.
dataset.conll05
as
conll05
import
paddle.dataset.conll05
as
conll05
import
paddle.fluid
as
fluid
import
six
import
time
with_gpu
=
os
.
getenv
(
'WITH_GPU'
,
'0'
)
!=
'0'
...
...
@@ -427,7 +428,7 @@ def train(use_cuda, save_dirname=None, is_local=True):
start_time
=
time
.
time
()
batch_id
=
0
for
pass_id
in
xrange
(
PASS_NUM
):
for
pass_id
in
six
.
moves
.
xrange
(
PASS_NUM
):
for
data
in
train_data
():
cost
=
exe
.
run
(
main_program
,
feed
=
feeder
.
feed
(
data
),
...
...
07.label_semantic_roles/train.py
浏览文件 @
68f41a42
...
...
@@ -3,8 +3,9 @@ from __future__ import print_function
import
math
,
os
import
numpy
as
np
import
paddle
import
paddle.
v2.
dataset.conll05
as
conll05
import
paddle.dataset.conll05
as
conll05
import
paddle.fluid
as
fluid
import
six
import
time
with_gpu
=
os
.
getenv
(
'WITH_GPU'
,
'0'
)
!=
'0'
...
...
@@ -167,7 +168,7 @@ def train(use_cuda, save_dirname=None, is_local=True):
start_time
=
time
.
time
()
batch_id
=
0
for
pass_id
in
xrange
(
PASS_NUM
):
for
pass_id
in
six
.
moves
.
xrange
(
PASS_NUM
):
for
data
in
train_data
():
cost
=
exe
.
run
(
main_program
,
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
avg_cost
])
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录