tf_op_mapper.py 59.4 KB
Newer Older
S
SunAhong1993 已提交
1
# Copyright (c) 2020  PaddlePaddle Authors. All Rights Reserved.
S
SunAhong1993 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

S
SunAhong1993 已提交
15
from x2paddle.decoder.tf_decoder import TFGraph, TFGraphNode
S
release  
SunAhong1993 已提交
16
from x2paddle.core.program import PaddleGraph
S
SunAhong1993 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
from x2paddle.core.op_mapper import OpMapper
from x2paddle.core.util import *
import traceback
import math
import inspect
import numpy
import sys

name_counter = dict()


def gen_name(op_name, var_name):
    name = "{}_{}".format(op_name, var_name)
    if name not in name_counter:
        name_counter[name] = 0
    else:
        name_counter[name] += 1
    name = name + '_' + str(name_counter[name])
    return name


# compute padding size for SAME mode
def get_same_padding(in_size, kernel_size, stride):
    new_size = int(math.ceil(in_size * 1.0 / stride))
    pad_size = (new_size - 1) * stride + kernel_size - in_size
    if pad_size < 0:
        pad_size = 0
    pad0 = int(pad_size / 2)
    pad1 = pad_size - pad0
    return [pad0, pad1]


class TFOpMapper(OpMapper):
    directly_map_ops = {
        'Relu': ['paddle.nn.ReLU'],
        'Relu6': ['paddle.nn.ReLU6'],
        'Abs': ['paddle.abs'],
        'Sigmoid': ['paddle.nn.Sigmoid'],
        'Exp': ['paddle.exp'],
        'Rsqrt': ['paddle.rsqrt'],
        'Sqrt': ['paddle.sqrt'],
        'swish_f32': ['paddle.nn.Swish'],
        'Tanh': ['paddle.nn.Tanh'],
        'Softplus': ['paddle.nn.Softplus'],
S
release  
SunAhong1993 已提交
61
        'LeakyRelu': ['paddle.nn.LeakyReLU', dict(alpha='negative_slope')],
S
SunAhong1993 已提交
62
        'Softmax': ['paddle.nn.Softmax'],
S
SunAhong1993 已提交
63 64 65 66 67 68 69 70
        'Floor': ['paddle.floor'],
        'Erf': ['paddle.erf'],
        'Square': ['paddle.square']
    }
    elementwise_ops = {
        'Add': 'paddle.add',
        'AddV2': 'paddle.add',
        'RealDiv': 'paddle.divide',
S
SunAhong1993 已提交
71
        'DivNoNan': 'paddle.divide',
S
SunAhong1993 已提交
72
        'Sub': 'paddle.subtract',
S
SunAhong1993 已提交
73 74
        'Maximum': 'paddle.maximum',
        'Minimum': 'paddle.minimum',
S
SunAhong1993 已提交
75 76 77 78 79 80
        'Mul': 'paddle.multiply',
        'FloorDiv': 'paddle.floor_divide',
        'FloorMod': 'paddle.floor_mod',
        'LogicalAnd': 'logical_and',
    }
    bool_ops = {
S
SunAhong1993 已提交
81 82
        'LessEqual': 'paddle.less_equal',
        'GreaterEqual': 'paddle.greater_equal',
S
SunAhong1993 已提交
83 84 85
        'Greater': 'paddle.greater_than',
        'NotEqual': 'paddle.not_equal',
        'Equal': 'paddle.equal',
S
SunAhong1993 已提交
86 87 88 89 90 91
    }

    def __init__(self, decoder):
        super(TFOpMapper, self).__init__()
        self.decoder = decoder
        self.graph = decoder.tf_graph
S
SunAhong1993 已提交
92 93
        if not self.op_checker():
            raise Exception("Model is not supported yet.")
S
SunAhong1993 已提交
94 95 96 97
        self.params = dict()
        self.nn_name2id = dict()
        self.input_index = 0
        self.inputs_info = dict()
S
release  
SunAhong1993 已提交
98 99
        self.paddle_graph = PaddleGraph(
            parent_layer=None, graph_type="dygraph", source_type="tf")
S
SunAhong1993 已提交
100
        self.paddle_graph.outputs = self.graph.output_nodes
S
SunAhong1993 已提交
101 102 103 104 105 106 107 108 109 110 111

        not_placeholder = list()
        for name in self.graph.input_nodes:
            if self.graph.get_node(
                    name).layer_type != "Placeholder" and self.graph.get_node(
                        name
                    ).layer_type != "OneShotIterator" and self.graph.get_node(
                        name).layer_type != "IteratorV2":
                not_placeholder.append(name)
        for name in not_placeholder:
            idx = self.graph.input_nodes.index(name)
S
release  
SunAhong1993 已提交
112
            del self.graph.input_nodes[idx]
S
SunAhong1993 已提交
113 114 115 116 117 118 119

        print("Total nodes: {}".format(
            sum([
                isinstance(node, TFGraphNode)
                for name, node in self.graph.node_map.items()
            ])))
        print("Nodes converting ...")
S
SunAhong1993 已提交
120 121 122 123 124 125 126 127
        for i, node_name in enumerate(self.graph.topo_sort):
            sys.stderr.write("\rConverting node {} ...     ".format(i + 1))
            node = self.graph.get_node(node_name)
            op = node.layer_type
            if op in self.directly_map_ops:
                self.directly_map(node)
            elif op in self.elementwise_ops:
                self.elementwise_map(node)
S
SunAhong1993 已提交
128 129
            elif op in self.bool_ops:
                self.bool_map(node)
S
SunAhong1993 已提交
130 131
            elif hasattr(self, op):
                func = getattr(self, op)
S
SunAhong1993 已提交
132 133
                func(node)
        print("\nNodes converted.")
S
SunAhong1993 已提交
134 135 136
        self.paddle_graph.set_name(self.graph.graph_name)
        self.paddle_graph.set_parameters(self.params)
        self.paddle_graph.set_inputs_info(self.inputs_info)
S
release  
SunAhong1993 已提交
137

S
SunAhong1993 已提交
138 139 140 141 142 143 144
    def op_checker(self):
        unsupported_ops = set()
        for node_name in self.graph.topo_sort:
            node = self.graph.get_node(node_name)
            op = node.layer_type
            if not hasattr(self, op) and \
                op not in self.directly_map_ops and \
S
SunAhong1993 已提交
145 146
                op not in self.elementwise_ops and \
                op not in self.bool_ops:
S
SunAhong1993 已提交
147 148 149 150 151
                unsupported_ops.add(op)
        if len(unsupported_ops) == 0:
            return True
        else:
            if len(unsupported_ops) > 0:
S
release  
SunAhong1993 已提交
152 153
                print("\n========= {} OPs are not supported yet ===========".
                      format(len(unsupported_ops)))
S
SunAhong1993 已提交
154 155
            for op in unsupported_ops:
                print("========== {} ============".format(op))
S
release  
SunAhong1993 已提交
156
            return False
S
SunAhong1993 已提交
157 158

    def directly_map(self, node):
S
SunAhong1993 已提交
159 160
        inputs = node.layer.input
        assert len(inputs) == 1, 'directly_map error with multi inputs'
S
SunAhong1993 已提交
161
        op_info = self.directly_map_ops[node.layer_type]
S
SunAhong1993 已提交
162 163
        input = self.graph.get_input_node(node, 0)
        paddle_op = op_info[0]
S
SunAhong1993 已提交
164
        layer_attrs = dict()
S
SunAhong1993 已提交
165 166
        if len(op_info) > 1:
            attrs_name_map_dict = op_info[1]
S
fix  
SunAhong1993 已提交
167
            for tf_attr_name, pd_attr_name in attrs_name_map_dict.items():
S
SunAhong1993 已提交
168 169 170
                layer_attrs[pd_attr_name] = node.get_attr(tf_attr_name)
        if paddle_op.startswith("paddle.nn"):
            op_name = paddle_op[10:].lower()
S
SunAhong1993 已提交
171 172 173 174
            op_name = name_generator(op_name, self.nn_name2id)
            output_name = node.name
            layer_outputs = [op_name, output_name]
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
175
                kernel=paddle_op,
S
SunAhong1993 已提交
176 177 178 179 180
                inputs={"x": input.name},
                outputs=layer_outputs,
                **layer_attrs)
        else:
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
181
                kernel=paddle_op,
S
SunAhong1993 已提交
182 183 184 185
                inputs={"x": input.name},
                outputs=[node.name],
                **layer_attrs)

S
SunAhong1993 已提交
186 187 188 189
    def elementwise_map(self, node, op_type=None):
        if op_type is None:
            assert node.layer_type in self.elementwise_ops
            op_type = self.elementwise_ops[node.layer_type]
S
SunAhong1993 已提交
190 191
        x = self.graph.get_input_node(node, 0)
        y = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
192 193
        x_shape = x.out_shapes[0]
        y_shape = y.out_shapes[0]
S
SunAhong1993 已提交
194
        layer_id = self.paddle_graph.add_layer(
S
SunAhong1993 已提交
195 196 197 198
            kernel=op_type,
            inputs={"x": x.name,
                    "y": y.name},
            outputs=[node.name])
S
release  
SunAhong1993 已提交
199 200 201 202 203
        self.paddle_graph.layers[layer_id].input_shapes = {
            "x": x_shape,
            "y": y_shape
        }

S
SunAhong1993 已提交
204 205 206 207
    def bool_map(self, node):
        op_type = self.bool_ops[node.layer_type]
        self.elementwise_map(node, op_type)
        node.set_dtype("bool")
S
SunAhong1993 已提交
208 209 210 211 212 213

    def Placeholder(self, node):
        shape = node.out_shapes[0]
        assert len(shape) != 0, "Unknown shape of input nodes[{}].".format(
            node.layer_name)
        dtype = node.dtype
S
release  
SunAhong1993 已提交
214

S
SunAhong1993 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
        self.paddle_graph.add_layer(
            kernel="paddle.to_tensor",
            inputs={},
            outputs=[node.name],
            data="x{}".format(self.input_index))
        self.inputs_info["x{}".format(self.input_index)] = [shape, node.dtype]
        self.input_index += 1

    def Const(self, node):
        shape = node.out_shapes[0]
        dtype = node.dtype
        value = node.value
        if len(shape) == 0:
            assert value.size == 1, "Unexpected situation happend"
            if value == float('inf'):
                value = "float('inf')"
            self.paddle_graph.add_layer(
S
release  
SunAhong1993 已提交
232 233
                "paddle.full",
                inputs={},
S
SunAhong1993 已提交
234 235 236 237 238 239
                outputs=[node.name],
                dtype=string(dtype),
                shape=[1],
                fill_value=value)
            return
        self.params[node.name] = node.value
S
release  
SunAhong1993 已提交
240

S
SunAhong1993 已提交
241
        if 0 not in shape:
S
SunAhong1993 已提交
242
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
243 244 245 246
                "self.create_parameter",
                inputs={},
                outputs=[node.name],
                shape=shape,
S
SunAhong1993 已提交
247 248 249
                attr=string(node.name),
                dtype=string(dtype),
                default_initializer="paddle.nn.initializer.Constant(value=0.0)")
S
release  
SunAhong1993 已提交
250

S
SunAhong1993 已提交
251
    def Transpose(self, node):
S
SunAhong1993 已提交
252 253
        input = self.graph.get_input_node(node, 0)
        perm = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
254 255 256
        if perm.layer_type == "Const":
            perm = perm.value.tolist()
        else:
S
release  
SunAhong1993 已提交
257 258 259
            perm = self.decoder.infer_tensor(
                perm, use_diff_inputs=False).tolist()

S
SunAhong1993 已提交
260 261 262 263 264
        self.paddle_graph.add_layer(
            "paddle.transpose",
            inputs={"x": input.name},
            outputs=[node.name],
            perm=perm)
S
release  
SunAhong1993 已提交
265

S
SunAhong1993 已提交
266 267 268 269
    def Where(self, node):
        if len(node.layer.input) == 1:
            cond = self.graph.get_input_node(node, 0)
            self.paddle_graph.add_layer(
S
release  
SunAhong1993 已提交
270
                "paddle.nonzero", inputs={"x": cond.name}, outputs=[node.name])
S
SunAhong1993 已提交
271 272 273 274 275 276 277 278 279 280
        else:
            cond = self.graph.get_input_node(node, 0)
            x = self.graph.get_input_node(node, 1)
            y = self.graph.get_input_node(node, 2)
            self.paddle_graph.add_layer(
                "paddle.where",
                inputs={"condition": cond.name,
                        "x": x.name,
                        "y": y.name},
                outputs=[node.name])
S
release  
SunAhong1993 已提交
281

S
add beg  
SunAhong1993 已提交
282 283
    def Neg(self, node):
        input = self.graph.get_input_node(node, 0)
S
release  
SunAhong1993 已提交
284

S
add beg  
SunAhong1993 已提交
285 286 287 288 289
        self.paddle_graph.add_layer(
            "paddle.scale",
            inputs={"x": input.name},
            outputs=[node.name],
            scale=-1)
S
SunAhong1993 已提交
290 291

    def Fill(self, node):
S
SunAhong1993 已提交
292 293
        dims = self.graph.get_input_node(node, 0)
        input_value = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
294 295 296 297 298 299 300 301
        inputs = dict()
        layer_attrs = dict()
        assert input_value.layer_type == "Const", "Value of fill OP should be Const"
        if dims.layer_type == "Const":
            layer_attrs["shape"] = dims.value.tolist()
        else:
            inputs["shape"] = dims.name
        layer_attrs["dtype"] = string(input_value.dtype)
S
SunAhong1993 已提交
302
        layer_attrs["fill_value"] = input_value.value
S
SunAhong1993 已提交
303 304

        self.paddle_graph.add_layer(
S
release  
SunAhong1993 已提交
305
            "paddle.full", inputs=inputs, outputs=[node.name], **layer_attrs)
S
SunAhong1993 已提交
306 307

    def DepthToSpace(self, node):
S
SunAhong1993 已提交
308
        input = self.graph.get_input_node(node, 0)
S
SunAhong1993 已提交
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349

        block_size = node.get_attr("block_size")
        data_format = node.get_attr("data_format").decode()
        if data_format == "NHWC":
            n, h, w, c = input.out_shapes[0]
        else:
            n, c, h, w = input.out_shapes[0]

        input_name = input.name
        if data_format == "NHWC":
            transpose_name = gen_name("depth_to_space", "transpose")
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

        shape = [0, block_size * block_size, -1, h, w]
        reshape_name = gen_name("depth_to_space", "reshape")
        self.paddle_graph.add_layer(
            kernel="paddle.reshape",
            inputs={"x": input_name},
            outputs=[reshape_name],
            shape=shape)

        transpose_name = gen_name("depth_to_space", "transpose")
        self.paddle_graph.add_layer(
            kernel="paddle.transpose",
            inputs={"x": reshape_name},
            outputs=[transpose_name],
            perm=[0, 2, 1, 3, 4])

        reshape_name = gen_name("depth_to_space", "reshape")
        self.paddle_graph.add_layer(
            kernel="paddle.reshape",
            inputs={"x": transpose_name},
            outputs=[reshape_name],
            shape=[0, c, h, w])

        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
350
            kernel="paddle.nn.functional.pixel_shuffle",
S
SunAhong1993 已提交
351 352 353 354 355 356 357 358 359 360 361 362
            inputs={"x": reshape_name},
            outputs=[node.name],
            upscale_factor=block_size)

        if data_format == "NHWC":
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])

    def MaxPool(self, node):
S
SunAhong1993 已提交
363
        input = self.graph.get_input_node(node, 0)
S
SunAhong1993 已提交
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384

        k_size = node.get_attr("ksize")
        strides = node.get_attr("strides")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()

        input_name = input.name
        if data_format == "NHWC":
            transpose_name = gen_name("max_pool", "transpose")
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            strides = [strides[i] for i in [0, 3, 1, 2]]
            k_size = [k_size[i] for i in [0, 3, 1, 2]]
            input_name = transpose_name

        op_name = name_generator("pool", self.nn_name2id)
        output_name = node.name
        layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
385

S
SunAhong1993 已提交
386
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
387
            kernel="paddle.nn.MaxPool2D",
S
SunAhong1993 已提交
388 389
            inputs={"input": input_name},
            outputs=layer_outputs,
S
SunAhong1993 已提交
390 391 392
            kernel_size=k_size[2:4],
            stride=strides[2:4],
            padding=string(pad_mode))
S
SunAhong1993 已提交
393 394 395 396 397 398 399 400 401 402 403 404

        if data_format == "NHWC":
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])

    def Conv2D(self, node):
        op_name = name_generator("conv", self.nn_name2id)
        output_name = node.name
        layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
405 406
        input = self.graph.get_input_node(node, 0)
        kernel = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
407 408 409 410 411 412 413 414 415 416 417 418 419 420

        k_size = kernel.out_shapes[0]
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
        if data_format == "NHWC":
            n, h, w, c = input.out_shapes[0]
        else:
            n, c, h, w = input.out_shapes[0]

        if kernel.layer_type == 'Const':
            kernel_value = kernel.value
        else:
S
release  
SunAhong1993 已提交
421 422
            kernel_value = self.decoder.infer_tensor(
                kernel, use_diff_inputs=False)
S
SunAhong1993 已提交
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
        kernel_weight_name = op_name + ".weight"
        self.params[kernel_weight_name] = numpy.transpose(kernel_value,
                                                          (3, 2, 0, 1))

        input_name = input.name
        if data_format == "NHWC":
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
            transpose_name = gen_name("conv2d", "transpose")
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

        if c == -1:
            attr = {"shape": [0, k_size[2], 0, 0]}
            self.paddle_graph.add_layer(
                kernel="paddle.reshape",
                inputs={"x": input_name},
                outputs=[input_name],
                shape=[0, k_size[2], 0, 0])

        self.paddle_graph.add_layer(
            kernel="paddle.nn.Conv2D",
            inputs={"input": input_name},
            outputs=layer_outputs,
            weight_attr=string(kernel_weight_name),
            bias_attr=False,
            in_channels=k_size[2],
            out_channels=k_size[3],
            kernel_size=k_size[0:2],
            stride=strides[2:4],
            dilation=dilations[2:4],
            padding=string(pad_mode))

        if data_format == "NHWC":
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
S
release  
SunAhong1993 已提交
466

S
SunAhong1993 已提交
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
    def Conv3D(self, node):
        op_name = name_generator("conv", self.nn_name2id)
        output_name = node.name
        layer_outputs = [op_name, output_name]
        input = self.graph.get_input_node(node, 0)
        kernel = self.graph.get_input_node(node, 1)

        k_size = kernel.out_shapes[0]
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
        if data_format == "NDHWC":
            n, d, h, w, c = input.out_shapes[0]
        else:
            n, c, d, h, w = input.out_shapes[0]

        if kernel.layer_type == 'Const':
            kernel_value = kernel.value
        else:
S
release  
SunAhong1993 已提交
487 488
            kernel_value = self.decoder.infer_tensor(
                kernel, use_diff_inputs=False)
S
SunAhong1993 已提交
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
        kernel_weight_name = op_name + ".weight"
        self.params[kernel_weight_name] = numpy.transpose(kernel_value,
                                                          (4, 3, 0, 1, 2))

        input_name = input.name
        if data_format == "NDHWC":
            strides = [strides[i] for i in [0, 4, 1, 2, 3]]
            dilations = [dilations[i] for i in [0, 4, 1, 2, 3]]
            transpose_name = gen_name("conv3d", "transpose")
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 4, 1, 2, 3])
            input_name = transpose_name

        if c == -1:
            attr = {"shape": [0, k_size[2], 0, 0, 0]}
            self.paddle_graph.add_layer(
                kernel="paddle.reshape",
                inputs={"x": input_name},
                outputs=[input_name],
                shape=[0, k_size[2], 0, 0, 0])

        self.paddle_graph.add_layer(
            kernel="paddle.nn.Conv3D",
            inputs={"input": input_name},
            outputs=layer_outputs,
            weight_attr=string(kernel_weight_name),
            bias_attr=False,
            in_channels=k_size[3],
            out_channels=k_size[4],
            kernel_size=k_size[0:3],
            stride=strides[2:5],
            dilation=dilations[2:5],
            padding=string(pad_mode))

        if data_format == "NDHWC":
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 4, 1])
S
SunAhong1993 已提交
532 533

    def BiasAdd(self, node):
S
SunAhong1993 已提交
534 535
        input = self.graph.get_input_node(node, 0)
        bias = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
536 537 538 539 540 541 542 543 544 545
        self.paddle_graph.add_layer(
            kernel="paddle.add",
            inputs={"x": input.name,
                    "y": bias.name},
            outputs=[node.name])

    def FusedBatchNorm(self, node):
        op_name = name_generator("bn", self.nn_name2id)
        output_name = node.name
        layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
546
        input = self.graph.get_input_node(node, 0)
S
SunAhong1993 已提交
547

S
SunAhong1993 已提交
548 549 550 551
        gamma = self.graph.get_input_node(node, 1)
        beta = self.graph.get_input_node(node, 2)
        moving_mean = self.graph.get_input_node(node, 3)
        moving_var = self.graph.get_input_node(node, 4)
S
SunAhong1993 已提交
552 553 554 555 556 557 558
        data_format = node.get_attr("data_format").decode()

        assert gamma.layer_type == "Const"
        assert beta.layer_type == "Const"
        assert moving_mean.layer_type == "Const"
        assert moving_var.layer_type == "Const"

S
release  
SunAhong1993 已提交
559
        input_name = input.name
S
SunAhong1993 已提交
560 561 562 563 564 565 566 567
        if data_format == "NHWC":
            transpose_name = gen_name("batch_norm", "transpose")
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name
S
SunAhong1993 已提交
568 569
            n, h, w, c = input.out_shapes[0]
        else:
S
release  
SunAhong1993 已提交
570
            n, c, h, w = input.out_shapes[0]
S
SunAhong1993 已提交
571

S
release  
SunAhong1993 已提交
572 573 574 575 576 577 578 579
        self.params["{}_{}".format(node.name, gamma.name)] = self.params[
            gamma.name]
        self.params["{}_{}".format(node.name, beta.name)] = self.params[
            beta.name]
        self.params["{}_{}".format(node.name, moving_mean.name)] = self.params[
            moving_mean.name]
        self.params["{}_{}".format(node.name, moving_var.name)] = self.params[
            moving_var.name]
S
SunAhong1993 已提交
580 581 582 583
        self.paddle_graph.add_layer(
            kernel="paddle.nn.BatchNorm",
            inputs={"input": input_name},
            outputs=layer_outputs,
S
SunAhong1993 已提交
584
            num_channels=c,
S
SunAhong1993 已提交
585
            epsilon=node.get_attr("epsilon"),
S
SunAhong1993 已提交
586 587
            param_attr=string("{}_{}".format(node.name, gamma.name)),
            bias_attr=string("{}_{}".format(node.name, beta.name)),
S
release  
SunAhong1993 已提交
588 589 590 591
            moving_mean_name=string("{}_{}".format(node.name,
                                                   moving_mean.name)),
            moving_variance_name=string("{}_{}".format(node.name,
                                                       moving_var.name)),
S
SunAhong1993 已提交
592 593 594 595 596 597 598 599
            is_test=True)

        if data_format == "NHWC":
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
S
release  
SunAhong1993 已提交
600

S
SunAhong1993 已提交
601 602
    def FusedBatchNormV3(self, node):
        self.FusedBatchNorm(node)
S
SunAhong1993 已提交
603 604

    def Mean(self, node):
S
SunAhong1993 已提交
605 606
        input = self.graph.get_input_node(node, 0)
        reduce_idx = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
607 608 609 610 611 612 613 614 615 616 617 618
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        dims = reduce_idx.value.tolist()
        keep_dims = node.get_attr("keep_dims")

        self.paddle_graph.add_layer(
            kernel="paddle.mean",
            inputs={"x": input.name},
            outputs=[node.name],
            axis=dims,
            keepdim=keep_dims)

    def Reshape(self, node):
S
SunAhong1993 已提交
619 620
        input = self.graph.get_input_node(node, 0)
        param = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647

        input_name = input.name

        if param.layer_type == "Const":
            shape = param.value.tolist()
            self.paddle_graph.add_layer(
                kernel="paddle.reshape",
                inputs={"x": input_name},
                outputs=[node.name],
                shape=shape)
        else:
            self.paddle_graph.add_layer(
                kernel="paddle.reshape",
                inputs={"x": input_name,
                        "shape": param.name},
                outputs=[node.name])
        if param.layer_type != "Const":
            out_shape = numpy.array(node.out_shapes[0])
            if (out_shape > 0).any():
                out_shape[out_shape < 0] = 0
                self.paddle_graph.add_layer(
                    kernel="paddle.reshape",
                    inputs={"x": node.name},
                    outputs=[node.name],
                    shape=out_shape.tolist())

    def Pad(self, node):
S
SunAhong1993 已提交
648 649
        input = self.graph.get_input_node(node, 0)
        paddings = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
650 651
        assert paddings.layer_type == "Const", "Padding should be Const"
        paddings = paddings.value.flatten().tolist()
S
SunAhong1993 已提交
652
            
S
SunAhong1993 已提交
653 654 655 656 657
        constant_values = 0
        if len(node.layer.input) > 2:
            constant_values = self.graph.get_input_node(node, 2)
            assert constant_values.layer_type == "Const", "Padding should be Const"
            constant_values = constant_values.value
S
SunAhong1993 已提交
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
            
        if len(paddings) == 8 and sum(paddings[:2]) == 0 \
            and sum(paddings[-2:]) == 0:
            paddings = paddings[2: -2]
            self.paddle_graph.add_layer(
                kernel="paddle.nn.functional.pad",
                inputs={"x": input.name},
                outputs=[node.name],
                pad=paddings,
                value=constant_values,
                data_format=string('NHWC'))
        else:
            self.paddle_graph.add_layer(
                kernel="paddle.nn.functional.pad",
                inputs={"x": input.name},
                outputs=[node.name],
                pad=paddings,
                value=constant_values)
S
release  
SunAhong1993 已提交
676

S
SunAhong1993 已提交
677
    def MirrorPad(self, node):
S
SunAhong1993 已提交
678
        self.Pad(node)
S
release  
SunAhong1993 已提交
679

S
SunAhong1993 已提交
680 681
    def PadV2(self, node):
        self.Pad(node)
S
SunAhong1993 已提交
682 683

    def Squeeze(self, node):
S
SunAhong1993 已提交
684
        input = self.graph.get_input_node(node, 0)
S
SunAhong1993 已提交
685 686 687 688 689 690 691 692
        squeeze_dims = node.get_attr('squeeze_dims')
        self.paddle_graph.add_layer(
            kernel="paddle.squeeze",
            inputs={"x": input.name},
            outputs=[node.name],
            axis=squeeze_dims)

    def Shape(self, node):
S
SunAhong1993 已提交
693
        input = self.graph.get_input_node(node, 0)
S
SunAhong1993 已提交
694 695 696 697 698
        input_name = input.name
        self.paddle_graph.add_layer(
            kernel="paddle.shape",
            inputs={"input": input_name},
            outputs=[node.name])
S
release  
SunAhong1993 已提交
699

S
SunAhong1993 已提交
700 701 702 703 704 705 706 707
    def Size(self, node):
        input = self.graph.get_input_node(node, 0)
        input_name = input.name
        self.paddle_graph.add_layer(
            kernel="paddle.shape",
            inputs={"input": input_name},
            outputs=[node.name])
        self.paddle_graph.add_layer(
S
release  
SunAhong1993 已提交
708 709
            kernel="paddle.prod", inputs={"x": node.name}, outputs=[node.name])

S
SunAhong1993 已提交
710 711 712
    def Ceil(self, node):
        input = self.graph.get_input_node(node, 0)
        self.paddle_graph.add_layer(
S
release  
SunAhong1993 已提交
713
            kernel="paddle.ceil", inputs={"x": input.name},
S
SunAhong1993 已提交
714
            outputs=[node.name])
S
SunAhong1993 已提交
715 716

    def ArgMax(self, node):
S
SunAhong1993 已提交
717 718
        input = self.graph.get_input_node(node, 0)
        axis = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
719 720 721 722 723 724 725
        assert axis.layer_type == "Const", "ArgMax only support Const parameter"
        axis = axis.value
        self.paddle_graph.add_layer(
            kernel="paddle.argmax",
            inputs={"x": input.name},
            outputs=[node.name],
            axis=axis)
S
release  
SunAhong1993 已提交
726

S
SunAhong1993 已提交
727 728 729 730 731 732 733 734 735 736 737 738
    def TopKV2(self, node):
        input = self.graph.get_input_node(node, 0)
        k = self.graph.get_input_node(node, 1)
        assert k.layer_type == "Const", "ArgMax only support Const parameter"
        k = k.value
        sort = node.get_attr('sorted')
        self.paddle_graph.add_layer(
            kernel="paddle.topk",
            inputs={"x": input.name},
            outputs=[node.name],
            k=k,
            sorted=sort)
S
SunAhong1993 已提交
739 740

    def MatMul(self, node):
S
SunAhong1993 已提交
741 742
        x = self.graph.get_input_node(node, 0)
        y = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
        transpose_a = node.get_attr('transpose_a')
        transpose_b = node.get_attr('transpose_b')
        if transpose_a is None:
            transpose_a = node.get_attr('adj_x')
        if transpose_b is None:
            transpose_b = node.get_attr('adj_y')
        self.paddle_graph.add_layer(
            kernel="paddle.matmul",
            inputs={"x": x.name,
                    "y": y.name},
            outputs=[node.name],
            transpose_x=transpose_a,
            transpose_y=transpose_b)

    def BatchMatMul(self, node):
        return self.MatMul(node)

    def BatchMatMulV2(self, node):
        return self.MatMul(node)

    def DepthwiseConv2dNative(self, node):
        op_name = name_generator("conv", self.nn_name2id)
        output_name = node.name
        layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
767 768
        input = self.graph.get_input_node(node, 0)
        kernel = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
        assert kernel.layer_type == "Const", "Kernel of DepthwiseConv2DNative should be Const"

        in_shape = input.out_shapes[0]
        k_size = kernel.out_shapes[0]
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()

        kernel_weight_name = op_name + ".weight"
        self.params[kernel_weight_name] = numpy.transpose(kernel.value,
                                                          (2, 3, 0, 1))

        input_name = input.name
        if data_format == "NHWC":
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
            transpose_name = gen_name('depthwise_conv2d', 'transpose')
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

        self.paddle_graph.add_layer(
            kernel="paddle.nn.Conv2D",
            inputs={"input": input_name},
            outputs=layer_outputs,
            weight_attr=string(kernel_weight_name),
            bias_attr=False,
            in_channels=in_shape[1],
            out_channels=k_size[2],
            kernel_size=k_size[0:2],
            stride=strides[2:4],
            dilation=dilations[2:4],
            groups=k_size[3] * in_shape[1],
            padding=string(pad_mode))

        if data_format == "NHWC":
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])

    def AvgPool(self, node):
S
SunAhong1993 已提交
817
        input = self.graph.get_input_node(node, 0)
S
SunAhong1993 已提交
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838

        k_size = node.get_attr("ksize")
        strides = node.get_attr("strides")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()

        input_name = input.name
        if data_format == "NHWC":
            transpose_name = gen_name("avg_pool", "transpose")
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            strides = [strides[i] for i in [0, 3, 1, 2]]
            k_size = [k_size[i] for i in [0, 3, 1, 2]]
            input_name = transpose_name

        op_name = name_generator("pool", self.nn_name2id)
        output_name = node.name
        layer_outputs = [op_name, output_name]
S
release  
SunAhong1993 已提交
839

S
SunAhong1993 已提交
840
        # TODO(syf): The op has diff.
S
SunAhong1993 已提交
841
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
842
            kernel="paddle.nn.AvgPool2D",
S
SunAhong1993 已提交
843
            inputs={"input": input_name},
S
SunAhong1993 已提交
844 845 846 847 848
            outputs=layer_outputs,
            kernel_size=k_size[2:4],
            stride=strides[2:4],
            padding=string(pad_mode))

S
SunAhong1993 已提交
849 850 851 852 853 854 855 856
        if data_format == "NHWC":
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])

    def Pack(self, node):
S
SunAhong1993 已提交
857 858 859 860
        inputs_list = list()
        for i in range(len(node.inputs)):
            inputs_list.append(self.graph.get_input_node(node, i))
        input_names = [i.name for i in inputs_list]
S
SunAhong1993 已提交
861 862 863 864 865 866 867 868 869 870 871 872 873 874
        axis = node.get_attr("axis")
        self.paddle_graph.add_layer(
            kernel="paddle.stack",
            inputs={"x": input_names},
            outputs=[node.name],
            axis=axis)
        if len(node.out_shapes[0]) == 1:
            self.paddle_graph.add_layer(
                kernel="paddle.reshape",
                inputs={"x": node.name},
                outputs=[node.name],
                shape=[-1])

    def Unpack(self, node):
S
SunAhong1993 已提交
875
        input = self.graph.get_input_node(node, 0)
S
SunAhong1993 已提交
876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
        axis = node.get_attr("axis")
        num = node.get_attr("num")
        shape = input.out_shapes[0]
        input_name = input.name
        if len(shape) == 1:
            if shape[0] > 0 and num == shape[0]:
                self.paddle_graph.add_layer(
                    kernel="paddle.unsqueeze",
                    inputs={"x": input.name},
                    outputs=[node.name],
                    axis=[0])
                input_name = node.name
                axis = 1
            else:
                raise Exception("Unexpected situation happend in Unpack OP")
S
release  
SunAhong1993 已提交
891 892 893
        layer_outputs = [
            "{}_p{}".format(node.layer_name, i) for i in range(num)
        ]
S
SunAhong1993 已提交
894 895
        if len(layer_outputs) == 1:
            layer_outputs[0] = "[{}]".format(node.layer_name)
S
SunAhong1993 已提交
896 897 898
        self.paddle_graph.add_layer(
            kernel="paddle.unstack",
            inputs={"x": input_name},
S
SunAhong1993 已提交
899
            outputs=layer_outputs,
S
SunAhong1993 已提交
900 901 902 903
            axis=axis,
            num=num)

    def ConcatV2(self, node):
S
SunAhong1993 已提交
904 905 906 907
        inputs_list = list()
        for i in range(len(node.inputs) - 1):
            inputs_list.append(self.graph.get_input_node(node, i))
        axis = self.graph.get_input_node(node, -1)
S
SunAhong1993 已提交
908 909 910
        assert axis.layer_type == "Const", "axis for ConcatV2 must be type Const"
        axis = axis.value
        if axis < 0:
S
fix  
SunAhong1993 已提交
911
            axis += len(inputs_list[0].out_shapes[0])
S
SunAhong1993 已提交
912

S
SunAhong1993 已提交
913
        input_names = [i.name for i in inputs_list]
S
SunAhong1993 已提交
914 915
        self.paddle_graph.add_layer(
            kernel="paddle.concat",
S
SunAhong1993 已提交
916
            inputs={"x": input_names},
S
SunAhong1993 已提交
917 918
            outputs=[node.name],
            axis=axis)
S
release  
SunAhong1993 已提交
919

S
SunAhong1993 已提交
920 921 922 923 924 925 926 927 928
    def Concat(self, node):
        inputs_list = list()
        for i in range(1, len(node.inputs)):
            inputs_list.append(self.graph.get_input_node(node, i))
        axis = self.graph.get_input_node(node, 0)
        assert axis.layer_type == "Const", "axis for ConcatV2 must be type Const"
        axis = axis.value
        if axis < 0:
            axis += len(inputs_list[0].out_shapes[0])
S
release  
SunAhong1993 已提交
929

S
SunAhong1993 已提交
930 931 932 933 934 935
        input_names = [i.name for i in inputs_list]
        self.paddle_graph.add_layer(
            kernel="paddle.concat",
            inputs={"x": input_names},
            outputs=[node.name],
            axis=axis)
S
release  
SunAhong1993 已提交
936

S
SunAhong1993 已提交
937 938 939 940 941 942 943 944 945 946
    def AddN(self, node):
        inputs_list = list()
        for i in range(len(node.inputs) - 1):
            inputs_list.append(self.graph.get_input_node(node, i))

        input_names = [i.name for i in inputs_list]
        self.paddle_graph.add_layer(
            kernel="paddle.add_n",
            inputs={"inputs": input_names},
            outputs=[node.name])
S
SunAhong1993 已提交
947 948

    def StridedSlice(self, node):
S
SunAhong1993 已提交
949 950 951 952
        input = self.graph.get_input_node(node, 0)
        begin = self.graph.get_input_node(node, 1)
        end = self.graph.get_input_node(node, 2)
        strides = self.graph.get_input_node(node, 3)
S
SunAhong1993 已提交
953 954 955 956

        if strides.layer_type == "Const":
            strides = strides.value.tolist()
        else:
S
SunAhong1993 已提交
957
            strides = self.decoder.infer_tensor(strides)
S
SunAhong1993 已提交
958 959 960
        if begin.layer_type == "Const":
            begin = begin.value.tolist()
        else:
S
SunAhong1993 已提交
961
            begin = self.decoder.infer_tensor(begin)
S
SunAhong1993 已提交
962 963 964
        if end.layer_type == "Const":
            end = end.value.tolist()
        else:
S
SunAhong1993 已提交
965
            end = self.decoder.infer_tensor(end)
S
SunAhong1993 已提交
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013

        assert len(set(strides)) == 1 and strides[
            0] == 1, "Only support strides be 1 in StridedSlice OP"

        if len(begin) < len(input.out_shapes[0]):
            begin = begin + [0] * (len(input.out_shapes[0]) - len(begin))
        if len(end) < len(input.out_shapes[0]):
            end = end + [0] * (len(input.out_shapes[0]) - len(end))
        for i in range(len(end)):
            if end[i] == 0:
                end[i] = 999999

        begin_mask = node.get_attr('begin_mask')
        end_mask = node.get_attr('end_mask')
        ellipsis_mask = node.get_attr('ellipsis_mask')
        new_axis_mask = node.get_attr('new_axis_mask')
        shrink_axis_mask = node.get_attr('shrink_axis_mask')

        assert ellipsis_mask == 0, "(OP:{} Name:{})Only support ellipsis_mask be 0[now: {}] n StridedSlice OP".format(
            node.layer_type, node.layer.name, ellipsis_mask)

        # TODO codes without validation
        # Use it carefully
        new_begin = list()
        new_end = list()
        new_axes = list()
        shrink_axes = list()
        for i, item in enumerate(begin):
            mask = (new_axis_mask >> i) & 1
            if mask != 0:
                new_axes.append(i)
                continue

            mask = (shrink_axis_mask >> i) & 1
            if mask != 0:
                shrink_axes.append(i)

            mask = (begin_mask >> i) & 1
            if mask != 0:
                new_begin.append(0)
            else:
                new_begin.append(item)

            mask = (end_mask >> i) & 1
            if mask != 0:
                new_end.append(999999)
            else:
                new_end.append(end[i])
S
release  
SunAhong1993 已提交
1014

S
fix  
SunAhong1993 已提交
1015 1016 1017 1018 1019 1020
        if input.dtype == "bool":
            self.paddle_graph.add_layer(
                "paddle.cast",
                inputs={"x": input.name},
                outputs=[input.name],
                dtype=string("int32"))
S
SunAhong1993 已提交
1021 1022 1023 1024 1025 1026 1027 1028

        self.paddle_graph.add_layer(
            kernel="paddle.slice",
            inputs={"input": input.name},
            outputs=[node.name],
            axes=[i for i in range(len(new_begin))],
            starts=new_begin,
            ends=new_end)
S
release  
SunAhong1993 已提交
1029

S
fix  
SunAhong1993 已提交
1030 1031 1032 1033 1034 1035 1036
        if input.dtype == "bool":
            self.paddle_graph.add_layer(
                "paddle.cast",
                inputs={"x": node.name},
                outputs=[node.name],
                dtype=string("bool"))

S
SunAhong1993 已提交
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
        if len(new_axes) > 0:
            self.paddle_graph.add_layer(
                kernel="paddle.unsqueeze",
                inputs={"x": node.name},
                outputs=[node.name],
                axis=new_axes)
        if len(shrink_axes) > 0:
            if len(input.out_shapes[0]) + len(new_axes) <= 1:
                pass
            else:
                self.paddle_graph.add_layer(
                    kernel="paddle.squeeze",
                    inputs={"x": node.name},
                    outputs=[node.name],
                    axis=shrink_axes)
S
release  
SunAhong1993 已提交
1052

S
SunAhong1993 已提交
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
    def Prod(self, node):
        input = self.graph.get_input_node(node, 0)
        reduction_indices = self.graph.get_input_node(node, 1)
        assert reduction_indices.layer_type == "Const"
        keep_dims = node.get_attr('keep_dims')
        axis = reduction_indices.value

        self.paddle_graph.add_layer(
            kernel="paddle.prod",
            inputs={"x": input.name},
            outputs=[node.layer_name],
            keepdim=keep_dims,
            axis=axis)
S
SunAhong1993 已提交
1066 1067

    def Split(self, node):
S
SunAhong1993 已提交
1068 1069
        dim = self.graph.get_input_node(node, 0)
        input = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
1070 1071 1072 1073 1074 1075
        assert dim.layer_type == "Const"
        num_split = node.get_attr('num_split')
        dim = dim.value

        self.paddle_graph.add_layer(
            kernel="paddle.split",
S
SunAhong1993 已提交
1076
            inputs={"x": input.name},
S
SunAhong1993 已提交
1077 1078 1079 1080
            outputs=[
                "{}_p{}".format(node.layer_name, i) for i in range(num_split)
            ],
            num_or_sections=num_split,
S
SunAhong1993 已提交
1081
            axis=dim)
S
release  
SunAhong1993 已提交
1082

S
SunAhong1993 已提交
1083 1084 1085 1086 1087 1088 1089 1090
    def SplitV(self, node):
        input = self.graph.get_input_node(node, 0)
        size_splits = self.graph.get_input_node(node, 1)
        assert size_splits.layer_type == "Const", "size_splits of SplitV OP should be Const"
        size_splits = size_splits.value.tolist()
        dim = self.graph.get_input_node(node, 2)
        assert dim.layer_type == "Const", "dim of SplitV OP should be Const"
        dim = dim.value
S
release  
SunAhong1993 已提交
1091

S
SunAhong1993 已提交
1092 1093 1094 1095
        self.paddle_graph.add_layer(
            kernel="paddle.split",
            inputs={"x": input.name},
            outputs=[
S
release  
SunAhong1993 已提交
1096 1097
                "{}_p{}".format(node.layer_name, i)
                for i in range(len(size_splits))
S
SunAhong1993 已提交
1098 1099 1100
            ],
            num_or_sections=size_splits,
            axis=dim)
S
SunAhong1993 已提交
1101 1102

    def Slice(self, node):
S
SunAhong1993 已提交
1103 1104 1105
        input = self.graph.get_input_node(node, 0)
        begin = self.graph.get_input_node(node, 1)
        size = self.graph.get_input_node(node, 2)
S
SunAhong1993 已提交
1106 1107 1108 1109 1110 1111 1112

        inputs = {"x": input.name}
        attrs = {}
        if begin.layer_type == "Const":
            begin = begin.value.tolist()
            attrs['offsets'] = begin
        else:
S
release  
SunAhong1993 已提交
1113 1114
            begin = self.decoder.infer_tensor(
                begin, use_diff_inputs=False).tolist()
S
SunAhong1993 已提交
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
            attrs['offsets'] = begin
        if size.layer_type == "Const":
            size = size.value.tolist()
            attrs['shape'] = size
        else:
            shape = size.out_shapes[0]
            reshape_name = gen_name("slice", "reshape")
            self.paddle_graph.add_layer(
                kernel="paddle.reshape",
                inputs={"x": size.name},
                outputs=[reshape_name],
                shape=shape)
            inputs['shape'] = reshape_name
        self.paddle_graph.add_layer(
S
release  
SunAhong1993 已提交
1129
            kernel="paddle.crop", inputs=inputs, outputs=[node.name], **attrs)
S
SunAhong1993 已提交
1130 1131

    def ResizeNearestNeighbor(self, node):
S
SunAhong1993 已提交
1132 1133
        input = self.graph.get_input_node(node, 0)
        resize_shape = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
1134
        data_format = "NHWC"
S
SunAhong1993 已提交
1135
        inputs = {"x": input.name}
S
release  
SunAhong1993 已提交
1136 1137 1138 1139 1140
        attrs = {
            "align_corners": node.get_attr("align_corners"),
            "mode": string("nearest"),
            "align_mode": 1
        }
S
SunAhong1993 已提交
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152

        if resize_shape.layer_type == "Const":
            resize_shape = resize_shape.value.tolist()
            attrs["size"] = resize_shape
        else:
            shape = resize_shape.out_shapes[0]
            reshape_name = gen_name("resize_nearest", "reshape")
            self.paddle_graph.add_layer(
                kernel="paddle.reshape",
                inputs={"x": resize_shape.name},
                outputs=[reshape_name],
                shape=shape)
S
SunAhong1993 已提交
1153
            inputs["size"] = reshape_name
S
SunAhong1993 已提交
1154 1155 1156 1157 1158 1159 1160 1161

        if data_format == "NHWC":
            transpose_name = gen_name("resize_nearest", "reshape")
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
S
SunAhong1993 已提交
1162
            inputs["x"] = transpose_name
S
SunAhong1993 已提交
1163 1164

        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1165
            kernel="paddle.nn.functional.interpolate",
S
SunAhong1993 已提交
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
            inputs=inputs,
            outputs=[node.name],
            **attrs)

        if data_format == "NHWC":
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
S
release  
SunAhong1993 已提交
1176

S
SunAhong1993 已提交
1177
    def ResizeBilinear(self, node):
S
SunAhong1993 已提交
1178 1179
        input = self.graph.get_input_node(node, 0)
        resize_shape = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
1180
        data_format = "NHWC"
S
SunAhong1993 已提交
1181
        inputs = {"x": input.name}
S
release  
SunAhong1993 已提交
1182 1183 1184 1185 1186
        attrs = {
            "align_corners": node.get_attr("align_corners"),
            "mode": string("bilinear"),
            "align_mode": 1
        }
S
SunAhong1993 已提交
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198

        if resize_shape.layer_type == "Const":
            resize_shape = resize_shape.value.tolist()
            attrs["size"] = resize_shape
        else:
            shape = resize_shape.out_shapes[0]
            reshape_name = gen_name("resize_bilinear", "reshape")
            self.paddle_graph.add_layer(
                kernel="paddle.reshape",
                inputs={"x": resize_shape.name},
                outputs=[reshape_name],
                shape=shape)
S
SunAhong1993 已提交
1199
            inputs["size"] = reshape_name
S
SunAhong1993 已提交
1200 1201 1202 1203 1204 1205 1206 1207

        if data_format == "NHWC":
            transpose_name = gen_name("resize_bilinear", "reshape")
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
S
SunAhong1993 已提交
1208
            inputs["x"] = transpose_name
S
SunAhong1993 已提交
1209 1210

        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1211
            kernel="paddle.nn.functional.interpolate",
S
SunAhong1993 已提交
1212 1213 1214 1215 1216 1217
            inputs=inputs,
            outputs=[node.name],
            **attrs)

        if data_format == "NHWC":
            self.paddle_graph.add_layer(
S
rename  
SunAhong1993 已提交
1218
                kernel="paddle.transpose",
S
SunAhong1993 已提交
1219 1220 1221 1222 1223
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])

    def Cast(self, node):
S
SunAhong1993 已提交
1224
        input = self.graph.get_input_node(node, 0)
S
SunAhong1993 已提交
1225 1226 1227 1228 1229 1230 1231 1232
        dtype = node.dtype
        self.paddle_graph.add_layer(
            kernel="paddle.cast",
            inputs={"x": input.name},
            outputs=[node.name],
            dtype=string(dtype))

    def Sum(self, node):
S
SunAhong1993 已提交
1233 1234
        input = self.graph.get_input_node(node, 0)
        reduce_idx = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
1235 1236 1237 1238 1239 1240
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        keep_dims = node.get_attr("keep_dims")
        dim = reduce_idx.value.tolist()

        self.paddle_graph.add_layer(
            kernel="paddle.sum",
S
SunAhong1993 已提交
1241
            inputs={"x": input.name},
S
SunAhong1993 已提交
1242 1243 1244 1245 1246
            outputs=[node.name],
            axis=dim,
            keepdim=keep_dims)

    def Max(self, node):
S
SunAhong1993 已提交
1247 1248
        input = self.graph.get_input_node(node, 0)
        reduce_idx = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
1249 1250 1251 1252 1253
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        keep_dims = node.get_attr("keep_dims")
        dim = reduce_idx.value.tolist()
        self.paddle_graph.add_layer(
            kernel="paddle.max",
S
SunAhong1993 已提交
1254
            inputs={"x": input.name},
S
SunAhong1993 已提交
1255 1256 1257 1258 1259
            outputs=[node.name],
            axis=dim,
            keepdim=keep_dims)

    def RandomUniform(self, node):
S
SunAhong1993 已提交
1260
        shape = self.graph.get_input_node(node, 0)
S
SunAhong1993 已提交
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
        if shape.layer_type == "Const":
            shape = shape.value.tolist()
            self.paddle_graph.add_layer(
                kernel="paddle.uniform",
                inputs={},
                outputs=[node.name],
                shape=shape,
                min=0.0,
                max=0.9999)
        else:
            self.paddle_graph.add_layer(
                kernel="paddle.uniform",
                inputs={'shape': shape.name},
                outputs=[node.name],
                min=0.0,
                max=0.9999)

    def Conv2DBackpropInput(self, node):
        op_name = name_generator("conv", self.nn_name2id)
        output_name = node.name
        layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
1282 1283 1284
        out_shape = self.graph.get_input_node(node, 0)
        kernel = self.graph.get_input_node(node, 1)
        input = self.graph.get_input_node(node, 2)
S
SunAhong1993 已提交
1285 1286 1287 1288 1289 1290

        assert kernel.layer_type == "Const", "Kernel of Conv2DBackpropInput should be Const"

        if out_shape.layer_type == "Const":
            out_shape = out_shape.value.tolist()
        else:
S
release  
SunAhong1993 已提交
1291 1292
            out_shape = self.decoder.infer_tensor(
                out_shape, out_shape=node.out_shapes[0])
S
SunAhong1993 已提交
1293 1294 1295

        in_shape = input.out_shapes[0]
        if in_shape.count(-1) > 2:
S
release  
SunAhong1993 已提交
1296 1297
            in_shape = self.decoder.infer_tensor(
                input, use_diff_inputs=False).shape
S
SunAhong1993 已提交
1298 1299
        k_size = kernel.out_shapes[0]
        if k_size.count(-1) > 2:
S
release  
SunAhong1993 已提交
1300 1301
            k_size = self.decoder.infer_tensor(
                kernel, use_diff_inputs=False).shape
S
SunAhong1993 已提交
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324

        pad_mode = node.get_attr("padding").decode()
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()

        kernel_name = op_name + ".weight"
        self.params[kernel_name] = numpy.transpose(kernel.value, (3, 2, 0, 1))

        input_name = input.name
        if data_format == "NHWC":
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
            transpose_name = gen_name("conv2dbackpropinput", "transpose")
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1325 1326 1327 1328 1329
            "self.create_parameter",
            inputs={},
            outputs=["{}_{}".format(node.name, kernel_name).replace(".", "_")],
            shape=self.params[kernel_name].shape,
            attr=string(kernel_name))
S
release  
SunAhong1993 已提交
1330

S
SunAhong1993 已提交
1331 1332
        self.paddle_graph.add_layer(
            kernel="paddle.nn.functional.conv2d_transpose",
S
release  
SunAhong1993 已提交
1333 1334 1335 1336 1337
            inputs={
                "x": input_name,
                "weight":
                "{}_{}".format(node.name, kernel_name).replace(".", "_")
            },
S
SunAhong1993 已提交
1338 1339
            outputs=[node.name],
            bias=None,
S
SunAhong1993 已提交
1340 1341
            stride=strides[2:4],
            dilation=dilations[2:4],
S
SunAhong1993 已提交
1342 1343
            padding=string(pad_mode),
            output_size=out_shape[1:3])
S
SunAhong1993 已提交
1344 1345 1346 1347 1348 1349 1350 1351 1352

        if data_format == "NHWC":
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])

    def Tile(self, node):
S
SunAhong1993 已提交
1353
        input = self.graph.get_input_node(node, 0)
S
SunAhong1993 已提交
1354
        repeat_times = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
1355 1356 1357
        inputs = {"x": input.name}
        attr = dict()
        in_shape = input.out_shapes[0]
S
SunAhong1993 已提交
1358 1359 1360
        if repeat_times.layer_type == "Const":
            repeat_times = repeat_times.value.tolist()
            attr["repeat_times"] = repeat_times
S
SunAhong1993 已提交
1361
        else:
S
SunAhong1993 已提交
1362
            inputs["repeat_times"] = repeat_times.name
S
SunAhong1993 已提交
1363 1364

        self.paddle_graph.add_layer(
S
release  
SunAhong1993 已提交
1365
            kernel="paddle.tile", inputs=inputs, outputs=[node.name], **attr)
S
SunAhong1993 已提交
1366 1367

    def Range(self, node):
S
SunAhong1993 已提交
1368 1369 1370
        start = self.graph.get_input_node(node, 0)
        limit = self.graph.get_input_node(node, 1)
        delta = self.graph.get_input_node(node, 2)
S
SunAhong1993 已提交
1371 1372 1373 1374 1375 1376 1377 1378 1379
        inputs = dict()
        attr = dict()

        dtype = 'int32'
        if start.dtype.startswith('float'):
            dtype = start.dtype
        if start.layer_type == "Const":
            attr["start"] = start.value
        else:
S
release  
SunAhong1993 已提交
1380

S
SunAhong1993 已提交
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
            inputs["start"] = start.name
        if limit.dtype.startswith('float'):
            dtype = limit.dtype
        if limit.layer_type == "Const":
            attr["end"] = limit.value
        else:
            inputs["end"] = limit.name
        if delta.dtype.startswith('float'):
            dtype = delta.dtype
        if delta.layer_type == "Const":
            attr["step"] = delta.value
        else:
            inputs["step"] = delta.name
        node.set_dtype(dtype)
        attr["dtype"] = string(node.dtype)

        self.paddle_graph.add_layer(
S
release  
SunAhong1993 已提交
1398
            kernel="paddle.arange", inputs=inputs, outputs=[node.name], **attr)
S
SunAhong1993 已提交
1399 1400

    def SquaredDifference(self, node):
S
SunAhong1993 已提交
1401 1402
        x = self.graph.get_input_node(node, 0)
        y = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
1403 1404 1405
        inputs = {"x": x.name, "y": y.name}
        x_shape = x.out_shapes[0]
        y_shape = y.out_shapes[0]
S
SunAhong1993 已提交
1406
        # TODO(syf)
S
SunAhong1993 已提交
1407
        layer_id = self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1408
            "paddle.subtract", inputs=inputs, outputs=[node.name])
S
release  
SunAhong1993 已提交
1409 1410 1411 1412
        self.paddle_graph.layers[layer_id].input_shapes = {
            "x": x_shape,
            "y": y_shape
        }
S
SunAhong1993 已提交
1413 1414 1415 1416 1417 1418

        inputs = {"x": node.name, "y": node.name}
        x_shape = node.out_shapes[0]
        y_shape = node.out_shapes[0]
        layer_id = self.paddle_graph.add_layer(
            "paddle.multiply", inputs=inputs, outputs=[node.name])
S
release  
SunAhong1993 已提交
1419 1420 1421 1422
        self.paddle_graph.layers[layer_id].input_shapes = {
            "x": x_shape,
            "y": y_shape
        }
S
SunAhong1993 已提交
1423 1424

    def OneHot(self, node):
S
SunAhong1993 已提交
1425 1426 1427 1428
        input = self.graph.get_input_node(node, 0)
        depth = self.graph.get_input_node(node, 1)
        on_value = self.graph.get_input_node(node, 2)
        off_value = self.graph.get_input_node(node, 3)
S
SunAhong1993 已提交
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
        assert depth.layer_type == 'Const', 'Parameter depth should be Const in OneHot'
        assert on_value.layer_type == 'Const', 'Parameter on_value should be Const in OneHot'
        assert off_value.layer_type == 'Const', 'Parameter off_value should be Const in OneHot'

        attr = {'depth': depth.value}
        on_value = on_value.value
        off_value = off_value.value
        assert math.fabs(on_value -
                         1.0) < 1e-06, "on_value should be 1 in OneHot"
        assert math.fabs(off_value -
                         0.0) < 1e-06, "off_value should be 0 in OneHot"

        self.paddle_graph.add_layer(
            "paddle.nn.functional.one_hot",
            inputs={"x": input.name},
            outputs=[node.name],
            num_classes=depth.value)

    def Pow(self, node):
S
SunAhong1993 已提交
1448 1449
        x = self.graph.get_input_node(node, 0)
        factor = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
        inputs = {"x": x.name}
        attr = dict()
        if factor.layer_type == 'Const':
            attr["y"] = factor.value.tolist()
        else:
            inputs["y"] = factor.name
        self.paddle_graph.add_layer(
            "paddle.pow", inputs=inputs, outputs=[node.name], **attr)

    def All(self, node):
S
SunAhong1993 已提交
1460 1461
        input = self.graph.get_input_node(node, 0)
        reduce_idx = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        attr = dict()
        attr["axis"] = reduce_idx.value.tolist()
        attr["keepdim"] = node.get_attr("keep_dims")

        input_name = input.name
        if input.dtype != "bool":
            input_name = gen_name("all", "cast")
            self.paddle_graph.add_layer(
                "paddle.cast",
                inputs={"x": input.name},
                outputs=[input_name],
                dtype=string("bool"))
        self.paddle_graph.add_layer(
S
release  
SunAhong1993 已提交
1476
            "paddle.all", inputs={"x": input_name}, outputs=[node.name], **attr)
S
SunAhong1993 已提交
1477 1478 1479 1480

        node.layer.attr['dtype'].type = 10

    def GatherV2(self, node):
S
SunAhong1993 已提交
1481 1482 1483
        embeddings = self.graph.get_input_node(node, 0)
        index = self.graph.get_input_node(node, 1)
        axis = self.graph.get_input_node(node, 2)
S
SunAhong1993 已提交
1484
        assert axis.layer_type == 'Const', "Only support Const parameter[axis]"
S
SunAhong1993 已提交
1485
        axis = axis.value
S
SunAhong1993 已提交
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
        index_name = index.name
        if len(index.out_shapes[0]) != 1:
            reshape_name = gen_name("gather", "reshape")
            index_name = reshape_name
            self.paddle_graph.add_layer(
                "paddle.reshape",
                inputs={"x": index.name},
                outputs=[reshape_name],
                shape=[-1])
        inputs = {'x': embeddings.name, 'index': index_name}
        self.paddle_graph.add_layer(
S
release  
SunAhong1993 已提交
1497
            "paddle.gather", inputs=inputs, outputs=[node.name], axis=axis)
S
SunAhong1993 已提交
1498 1499 1500 1501 1502 1503 1504
        if len(index.out_shapes[0]) != 1:
            out_shape = node.out_shapes[0]
            self.paddle_graph.add_layer(
                kernel="paddle.reshape",
                inputs={"x": node.name},
                outputs=[node.name],
                shape=out_shape)
S
release  
SunAhong1993 已提交
1505

S
SunAhong1993 已提交
1506 1507 1508 1509 1510
    def GatherNd(self, node):
        x = self.graph.get_input_node(node, 0)
        index = self.graph.get_input_node(node, 1)
        inputs = {'x': x.name, 'index': index.name}
        self.paddle_graph.add_layer(
S
release  
SunAhong1993 已提交
1511
            "paddle.gather_nd", inputs=inputs, outputs=[node.name])
S
SunAhong1993 已提交
1512 1513

    def ExpandDims(self, node):
S
SunAhong1993 已提交
1514 1515
        x = self.graph.get_input_node(node, 0, copy=True)
        y = self.graph.get_input_node(node, 1, copy=True)
S
SunAhong1993 已提交
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
        inputs = {"x": x.name}
        attr = dict()
        if y.layer_type == 'Const':
            dim = y.value.tolist()
            if not isinstance(dim, list):
                dim = [dim]
            attr['axis'] = dim
        else:
            inputs['axis'] = y.name
        self.paddle_graph.add_layer(
S
release  
SunAhong1993 已提交
1526 1527
            "paddle.unsqueeze", inputs=inputs, outputs=[node.name], **attr)

S
SunAhong1993 已提交
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
    def ReverseV2(self, node):
        x = self.graph.get_input_node(node, 0)
        axis = self.graph.get_input_node(node, 1)
        inputs = {"x": x.name}
        attr = dict()
        if axis.layer_type == 'Const':
            axis = axis.value.tolist()
            if not isinstance(axis, list):
                axis = [axis]
            attr['axis'] = axis
        else:
            inputs['axis'] = axis.name
        self.paddle_graph.add_layer(
S
release  
SunAhong1993 已提交
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
            "paddle.flip", inputs=inputs, outputs=[node.name], **attr)

    def BatchToSpaceND(self, node):
        '''
        reshape->transpose->reshape->crop
        '''
        x = self.graph.get_input_node(node, 0)
        block_shape = self.graph.get_input_node(node, 1)
        crops = self.graph.get_input_node(node, 2)
        if block_shape.layer_type == "Const":
            block_shape = block_shape.value.tolist()
        if crops.layer_type == "Const":
            crops = crops.value.tolist()
        data_format = x.get_attr("data_format").decode()
        if data_format == "NHWC":
            n, h, w, c = x.out_shapes[0]
        else:
            n, c, h, w = x.out_shapes[0]
        input_name = x.name
        #reshape
        shape = block_shape + [-1, h, w, c]
        reshape_name = gen_name("batch_to_space", "reshape")
        self.paddle_graph.add_layer(
            kernel="paddle.reshape",
            inputs={"x": input_name},
            outputs=[reshape_name],
            shape=shape)
        #transpose
        perm = [len(block_shape)] + list(j for i in range(len(block_shape)) for j in (i + len(block_shape) + 1, i)) +\
                                    list(i + 2*len(block_shape) + 1 for i in range(len(x.out_shapes[0]) - len(block_shape) - 1))
        transpose_name = gen_name("batch_to_space", "transpose")
        self.paddle_graph.add_layer(
            kernel="paddle.transpose",
            inputs={"x": reshape_name},
            outputs=[transpose_name],
            perm=perm)
        #reshape
        shape = [-1] + list(i * j
                            for i, j in zip(block_shape, x.out_shapes[0][
                                1:])) + x.out_shapes[0][1 + len(block_shape):]
        reshape_name = gen_name("batch_to_space", "reshape")
        self.paddle_graph.add_layer(
            kernel="paddle.reshape",
            inputs={"x": transpose_name},
            outputs=[reshape_name],
            shape=shape)
        #crop
        attrs = {}
        crop_shape = shape
        crop_offsets = [0] * len(shape)
        for i in range(len(crops)):
            crop_shape[i + 1] = crop_shape[i + 1] - crops[i][0] - crops[i][1]
            crop_offsets[i + 1] = crops[i][0]
        attrs['shape'] = crop_shape
        attrs['offsets'] = crop_offsets
        self.paddle_graph.add_layer(
            kernel="paddle.crop",
            inputs={"x": reshape_name},
            outputs=[node.name],
            **attrs)

    def SpaceToBatchND(self, node):
        '''
        zero-pad->reshape->transpose->reshape
        '''
        x = self.graph.get_input_node(node, 0)
        block_shape = self.graph.get_input_node(node, 1)
        paddings = self.graph.get_input_node(node, 2)
        if block_shape.layer_type == "Const":
            block_shape = block_shape.value.tolist()
        if paddings.layer_type == "Const":
            paddings = paddings.value.flatten().tolist()
        input_name = x.name
        #zero-pad
        constant_values = 0
        pad_name = gen_name("space_to_batch", "pad")
        paddings = [0, 0] + paddings + [0, 0]
        self.paddle_graph.add_layer(
            kernel="paddle.nn.functional.pad",
            inputs={"x": input_name},
            outputs=[pad_name],
            pad=paddings,
            value=constant_values)
        #reshape
        n, h, w, c = x.out_shapes[0]
        h = h + paddings[2] + paddings[3]
        w = w + paddings[4] + paddings[5]
        shape = [
            n, h // block_shape[0], block_shape[0], w // block_shape[1],
            block_shape[1], c
        ]
        reshape_name = gen_name("space_to_batch", "reshape")
        self.paddle_graph.add_layer(
            kernel="paddle.reshape",
            inputs={"x": pad_name},
            outputs=[reshape_name],
            shape=shape)
        #transpose
        transpose_name = gen_name("space_to_batch", "transpose")
        self.paddle_graph.add_layer(
            kernel="paddle.transpose",
            inputs={"x": reshape_name},
            outputs=[transpose_name],
            perm=[2, 4, 0, 1, 3, 5])
        #reshape
        shape = [-1, h // block_shape[0], w // block_shape[1], c]
        self.paddle_graph.add_layer(
            kernel="paddle.reshape",
            inputs={"x": transpose_name},
S
SunAhong1993 已提交
1650
            outputs=[node.name],
S
release  
SunAhong1993 已提交
1651
            shape=shape)