tf_op_mapper.py 55.9 KB
Newer Older
S
SunAhong1993 已提交
1
# Copyright (c) 2020  PaddlePaddle Authors. All Rights Reserved.
S
SunAhong1993 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

S
SunAhong1993 已提交
15
from x2paddle.decoder.tf_decoder import TFGraph, TFGraphNode
S
release  
SunAhong1993 已提交
16
from x2paddle.core.program import PaddleGraph 
S
SunAhong1993 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
from x2paddle.core.op_mapper import OpMapper
from x2paddle.core.util import *
import traceback
import math
import inspect
import numpy
import sys

name_counter = dict()


def gen_name(op_name, var_name):
    name = "{}_{}".format(op_name, var_name)
    if name not in name_counter:
        name_counter[name] = 0
    else:
        name_counter[name] += 1
    name = name + '_' + str(name_counter[name])
    return name


# compute padding size for SAME mode
def get_same_padding(in_size, kernel_size, stride):
    new_size = int(math.ceil(in_size * 1.0 / stride))
    pad_size = (new_size - 1) * stride + kernel_size - in_size
    if pad_size < 0:
        pad_size = 0
    pad0 = int(pad_size / 2)
    pad1 = pad_size - pad0
    return [pad0, pad1]


class TFOpMapper(OpMapper):
    directly_map_ops = {
        'Relu': ['paddle.nn.ReLU'],
        'Relu6': ['paddle.nn.ReLU6'],
        'Abs': ['paddle.abs'],
        'Sigmoid': ['paddle.nn.Sigmoid'],
        'Exp': ['paddle.exp'],
        'Rsqrt': ['paddle.rsqrt'],
        'Sqrt': ['paddle.sqrt'],
        'swish_f32': ['paddle.nn.Swish'],
        'Tanh': ['paddle.nn.Tanh'],
        'Softplus': ['paddle.nn.Softplus'],
S
release  
SunAhong1993 已提交
61 62
        'LeakyRelu': ['paddle.nn.LeakyReLU', 
                      dict(alpha='negative_slope')],
S
SunAhong1993 已提交
63
        'Softmax': ['paddle.nn.Softmax'],
S
SunAhong1993 已提交
64 65 66 67 68 69 70 71
        'Floor': ['paddle.floor'],
        'Erf': ['paddle.erf'],
        'Square': ['paddle.square']
    }
    elementwise_ops = {
        'Add': 'paddle.add',
        'AddV2': 'paddle.add',
        'RealDiv': 'paddle.divide',
S
SunAhong1993 已提交
72
        'DivNoNan': 'paddle.divide',
S
SunAhong1993 已提交
73
        'Sub': 'paddle.subtract',
S
SunAhong1993 已提交
74 75
        'Maximum': 'paddle.maximum',
        'Minimum': 'paddle.minimum',
S
SunAhong1993 已提交
76 77 78 79 80 81
        'Mul': 'paddle.multiply',
        'FloorDiv': 'paddle.floor_divide',
        'FloorMod': 'paddle.floor_mod',
        'LogicalAnd': 'logical_and',
    }
    bool_ops = {
S
SunAhong1993 已提交
82 83
        'LessEqual': 'paddle.less_equal',
        'GreaterEqual': 'paddle.greater_equal',
S
SunAhong1993 已提交
84 85 86
        'Greater': 'paddle.greater_than',
        'NotEqual': 'paddle.not_equal',
        'Equal': 'paddle.equal',
S
SunAhong1993 已提交
87 88 89 90 91 92
    }

    def __init__(self, decoder):
        super(TFOpMapper, self).__init__()
        self.decoder = decoder
        self.graph = decoder.tf_graph
S
SunAhong1993 已提交
93 94
        if not self.op_checker():
            raise Exception("Model is not supported yet.")
S
SunAhong1993 已提交
95 96 97 98
        self.params = dict()
        self.nn_name2id = dict()
        self.input_index = 0
        self.inputs_info = dict()
S
release  
SunAhong1993 已提交
99
        self.paddle_graph = PaddleGraph(parent_layer=None, graph_type="dygraph", source_type="tf")
S
SunAhong1993 已提交
100
        self.paddle_graph.outputs = self.graph.output_nodes
S
SunAhong1993 已提交
101 102 103 104 105 106 107 108 109 110 111

        not_placeholder = list()
        for name in self.graph.input_nodes:
            if self.graph.get_node(
                    name).layer_type != "Placeholder" and self.graph.get_node(
                        name
                    ).layer_type != "OneShotIterator" and self.graph.get_node(
                        name).layer_type != "IteratorV2":
                not_placeholder.append(name)
        for name in not_placeholder:
            idx = self.graph.input_nodes.index(name)
S
release  
SunAhong1993 已提交
112
            del self.graph.input_nodes[idx]        
S
SunAhong1993 已提交
113 114 115 116 117 118 119

        print("Total nodes: {}".format(
            sum([
                isinstance(node, TFGraphNode)
                for name, node in self.graph.node_map.items()
            ])))
        print("Nodes converting ...")
S
SunAhong1993 已提交
120 121 122 123 124 125 126 127
        for i, node_name in enumerate(self.graph.topo_sort):
            sys.stderr.write("\rConverting node {} ...     ".format(i + 1))
            node = self.graph.get_node(node_name)
            op = node.layer_type
            if op in self.directly_map_ops:
                self.directly_map(node)
            elif op in self.elementwise_ops:
                self.elementwise_map(node)
S
SunAhong1993 已提交
128 129
            elif op in self.bool_ops:
                self.bool_map(node)
S
SunAhong1993 已提交
130 131
            elif hasattr(self, op):
                func = getattr(self, op)
S
SunAhong1993 已提交
132 133
                func(node)
        print("\nNodes converted.")
S
SunAhong1993 已提交
134 135 136
        self.paddle_graph.set_name(self.graph.graph_name)
        self.paddle_graph.set_parameters(self.params)
        self.paddle_graph.set_inputs_info(self.inputs_info)
S
release  
SunAhong1993 已提交
137
        
S
SunAhong1993 已提交
138 139 140 141 142 143 144
    def op_checker(self):
        unsupported_ops = set()
        for node_name in self.graph.topo_sort:
            node = self.graph.get_node(node_name)
            op = node.layer_type
            if not hasattr(self, op) and \
                op not in self.directly_map_ops and \
S
SunAhong1993 已提交
145 146
                op not in self.elementwise_ops and \
                op not in self.bool_ops:
S
SunAhong1993 已提交
147 148 149 150 151
                unsupported_ops.add(op)
        if len(unsupported_ops) == 0:
            return True
        else:
            if len(unsupported_ops) > 0:
S
release  
SunAhong1993 已提交
152 153
                print("\n========= {} OPs are not supported yet ===========".format(
                    len(unsupported_ops)))
S
SunAhong1993 已提交
154 155
            for op in unsupported_ops:
                print("========== {} ============".format(op))
S
release  
SunAhong1993 已提交
156
            return False 
S
SunAhong1993 已提交
157 158

    def directly_map(self, node):
S
SunAhong1993 已提交
159 160
        inputs = node.layer.input
        assert len(inputs) == 1, 'directly_map error with multi inputs'
S
SunAhong1993 已提交
161
        op_info = self.directly_map_ops[node.layer_type]
S
SunAhong1993 已提交
162 163
        input = self.graph.get_input_node(node, 0)
        paddle_op = op_info[0]
S
SunAhong1993 已提交
164
        layer_attrs = dict()
S
SunAhong1993 已提交
165 166
        if len(op_info) > 1:
            attrs_name_map_dict = op_info[1]
S
fix  
SunAhong1993 已提交
167
            for tf_attr_name, pd_attr_name in attrs_name_map_dict.items():
S
SunAhong1993 已提交
168 169 170
                layer_attrs[pd_attr_name] = node.get_attr(tf_attr_name)
        if paddle_op.startswith("paddle.nn"):
            op_name = paddle_op[10:].lower()
S
SunAhong1993 已提交
171 172 173 174
            op_name = name_generator(op_name, self.nn_name2id)
            output_name = node.name
            layer_outputs = [op_name, output_name]
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
175
                kernel=paddle_op,
S
SunAhong1993 已提交
176 177 178 179 180
                inputs={"x": input.name},
                outputs=layer_outputs,
                **layer_attrs)
        else:
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
181
                kernel=paddle_op,
S
SunAhong1993 已提交
182 183 184 185
                inputs={"x": input.name},
                outputs=[node.name],
                **layer_attrs)

S
SunAhong1993 已提交
186 187 188 189
    def elementwise_map(self, node, op_type=None):
        if op_type is None:
            assert node.layer_type in self.elementwise_ops
            op_type = self.elementwise_ops[node.layer_type]
S
SunAhong1993 已提交
190 191
        x = self.graph.get_input_node(node, 0)
        y = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
192 193
        x_shape = x.out_shapes[0]
        y_shape = y.out_shapes[0]
S
SunAhong1993 已提交
194
        layer_id = self.paddle_graph.add_layer(
S
SunAhong1993 已提交
195 196 197 198
            kernel=op_type,
            inputs={"x": x.name,
                    "y": y.name},
            outputs=[node.name])
S
release  
SunAhong1993 已提交
199 200
        self.paddle_graph.layers[layer_id].input_shapes = {"x": x_shape, "y": y_shape}
        
S
SunAhong1993 已提交
201 202 203 204
    def bool_map(self, node):
        op_type = self.bool_ops[node.layer_type]
        self.elementwise_map(node, op_type)
        node.set_dtype("bool")
S
SunAhong1993 已提交
205 206 207 208 209 210

    def Placeholder(self, node):
        shape = node.out_shapes[0]
        assert len(shape) != 0, "Unknown shape of input nodes[{}].".format(
            node.layer_name)
        dtype = node.dtype
S
release  
SunAhong1993 已提交
211
        
S
SunAhong1993 已提交
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
        self.paddle_graph.add_layer(
            kernel="paddle.to_tensor",
            inputs={},
            outputs=[node.name],
            data="x{}".format(self.input_index))
        self.inputs_info["x{}".format(self.input_index)] = [shape, node.dtype]
        self.input_index += 1

    def Const(self, node):
        shape = node.out_shapes[0]
        dtype = node.dtype
        value = node.value
        if len(shape) == 0:
            assert value.size == 1, "Unexpected situation happend"
            if value == float('inf'):
                value = "float('inf')"
            self.paddle_graph.add_layer(
S
release  
SunAhong1993 已提交
229 230
                "paddle.full", 
                inputs={}, 
S
SunAhong1993 已提交
231 232 233 234 235 236
                outputs=[node.name],
                dtype=string(dtype),
                shape=[1],
                fill_value=value)
            return
        self.params[node.name] = node.value
S
release  
SunAhong1993 已提交
237
        
S
SunAhong1993 已提交
238
        if 0 not in shape:
S
SunAhong1993 已提交
239
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
240 241 242 243
                "self.create_parameter",
                inputs={},
                outputs=[node.name],
                shape=shape,
S
SunAhong1993 已提交
244 245 246
                attr=string(node.name),
                dtype=string(dtype),
                default_initializer="paddle.nn.initializer.Constant(value=0.0)")
S
release  
SunAhong1993 已提交
247
      
S
SunAhong1993 已提交
248
    def Transpose(self, node):
S
SunAhong1993 已提交
249 250
        input = self.graph.get_input_node(node, 0)
        perm = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
251 252 253
        if perm.layer_type == "Const":
            perm = perm.value.tolist()
        else:
S
release  
SunAhong1993 已提交
254 255
            perm = self.decoder.infer_tensor(perm, use_diff_inputs=False).tolist()
        
S
SunAhong1993 已提交
256 257 258 259 260
        self.paddle_graph.add_layer(
            "paddle.transpose",
            inputs={"x": input.name},
            outputs=[node.name],
            perm=perm)
S
release  
SunAhong1993 已提交
261
        
S
SunAhong1993 已提交
262 263 264 265
    def Where(self, node):
        if len(node.layer.input) == 1:
            cond = self.graph.get_input_node(node, 0)
            self.paddle_graph.add_layer(
S
release  
SunAhong1993 已提交
266 267 268
                "paddle.nonzero",
                inputs={"x": cond.name},
                outputs=[node.name])
S
SunAhong1993 已提交
269 270 271 272 273 274 275 276 277 278
        else:
            cond = self.graph.get_input_node(node, 0)
            x = self.graph.get_input_node(node, 1)
            y = self.graph.get_input_node(node, 2)
            self.paddle_graph.add_layer(
                "paddle.where",
                inputs={"condition": cond.name,
                        "x": x.name,
                        "y": y.name},
                outputs=[node.name])
S
release  
SunAhong1993 已提交
279
        
S
add beg  
SunAhong1993 已提交
280 281
    def Neg(self, node):
        input = self.graph.get_input_node(node, 0)
S
release  
SunAhong1993 已提交
282
        
S
add beg  
SunAhong1993 已提交
283 284 285 286 287
        self.paddle_graph.add_layer(
            "paddle.scale",
            inputs={"x": input.name},
            outputs=[node.name],
            scale=-1)
S
SunAhong1993 已提交
288 289

    def Fill(self, node):
S
SunAhong1993 已提交
290 291
        dims = self.graph.get_input_node(node, 0)
        input_value = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
292 293 294 295 296 297 298 299
        inputs = dict()
        layer_attrs = dict()
        assert input_value.layer_type == "Const", "Value of fill OP should be Const"
        if dims.layer_type == "Const":
            layer_attrs["shape"] = dims.value.tolist()
        else:
            inputs["shape"] = dims.name
        layer_attrs["dtype"] = string(input_value.dtype)
S
SunAhong1993 已提交
300
        layer_attrs["fill_value"] = input_value.value
S
SunAhong1993 已提交
301 302

        self.paddle_graph.add_layer(
S
release  
SunAhong1993 已提交
303 304 305 306
            "paddle.full",
            inputs=inputs,
            outputs=[node.name],
            **layer_attrs)
S
SunAhong1993 已提交
307 308

    def DepthToSpace(self, node):
S
SunAhong1993 已提交
309
        input = self.graph.get_input_node(node, 0)
S
SunAhong1993 已提交
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350

        block_size = node.get_attr("block_size")
        data_format = node.get_attr("data_format").decode()
        if data_format == "NHWC":
            n, h, w, c = input.out_shapes[0]
        else:
            n, c, h, w = input.out_shapes[0]

        input_name = input.name
        if data_format == "NHWC":
            transpose_name = gen_name("depth_to_space", "transpose")
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

        shape = [0, block_size * block_size, -1, h, w]
        reshape_name = gen_name("depth_to_space", "reshape")
        self.paddle_graph.add_layer(
            kernel="paddle.reshape",
            inputs={"x": input_name},
            outputs=[reshape_name],
            shape=shape)

        transpose_name = gen_name("depth_to_space", "transpose")
        self.paddle_graph.add_layer(
            kernel="paddle.transpose",
            inputs={"x": reshape_name},
            outputs=[transpose_name],
            perm=[0, 2, 1, 3, 4])

        reshape_name = gen_name("depth_to_space", "reshape")
        self.paddle_graph.add_layer(
            kernel="paddle.reshape",
            inputs={"x": transpose_name},
            outputs=[reshape_name],
            shape=[0, c, h, w])

        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
351
            kernel="paddle.nn.functional.pixel_shuffle",
S
SunAhong1993 已提交
352 353 354 355 356 357 358 359 360 361 362 363
            inputs={"x": reshape_name},
            outputs=[node.name],
            upscale_factor=block_size)

        if data_format == "NHWC":
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])

    def MaxPool(self, node):
S
SunAhong1993 已提交
364
        input = self.graph.get_input_node(node, 0)
S
SunAhong1993 已提交
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385

        k_size = node.get_attr("ksize")
        strides = node.get_attr("strides")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()

        input_name = input.name
        if data_format == "NHWC":
            transpose_name = gen_name("max_pool", "transpose")
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            strides = [strides[i] for i in [0, 3, 1, 2]]
            k_size = [k_size[i] for i in [0, 3, 1, 2]]
            input_name = transpose_name

        op_name = name_generator("pool", self.nn_name2id)
        output_name = node.name
        layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
386

S
SunAhong1993 已提交
387
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
388
            kernel="paddle.nn.MaxPool2D",
S
SunAhong1993 已提交
389 390
            inputs={"input": input_name},
            outputs=layer_outputs,
S
SunAhong1993 已提交
391 392 393
            kernel_size=k_size[2:4],
            stride=strides[2:4],
            padding=string(pad_mode))
S
SunAhong1993 已提交
394 395 396 397 398 399 400 401 402 403 404 405

        if data_format == "NHWC":
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])

    def Conv2D(self, node):
        op_name = name_generator("conv", self.nn_name2id)
        output_name = node.name
        layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
406 407
        input = self.graph.get_input_node(node, 0)
        kernel = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
408 409 410 411 412 413 414 415 416 417 418 419 420 421

        k_size = kernel.out_shapes[0]
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
        if data_format == "NHWC":
            n, h, w, c = input.out_shapes[0]
        else:
            n, c, h, w = input.out_shapes[0]

        if kernel.layer_type == 'Const':
            kernel_value = kernel.value
        else:
S
release  
SunAhong1993 已提交
422
            kernel_value = self.decoder.infer_tensor(kernel, use_diff_inputs=False)
S
SunAhong1993 已提交
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
        kernel_weight_name = op_name + ".weight"
        self.params[kernel_weight_name] = numpy.transpose(kernel_value,
                                                          (3, 2, 0, 1))

        input_name = input.name
        if data_format == "NHWC":
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
            transpose_name = gen_name("conv2d", "transpose")
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

        if c == -1:
            attr = {"shape": [0, k_size[2], 0, 0]}
            self.paddle_graph.add_layer(
                kernel="paddle.reshape",
                inputs={"x": input_name},
                outputs=[input_name],
                shape=[0, k_size[2], 0, 0])

S
release  
SunAhong1993 已提交
447
        
S
SunAhong1993 已提交
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
        self.paddle_graph.add_layer(
            kernel="paddle.nn.Conv2D",
            inputs={"input": input_name},
            outputs=layer_outputs,
            weight_attr=string(kernel_weight_name),
            bias_attr=False,
            in_channels=k_size[2],
            out_channels=k_size[3],
            kernel_size=k_size[0:2],
            stride=strides[2:4],
            dilation=dilations[2:4],
            padding=string(pad_mode))

        if data_format == "NHWC":
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
S
release  
SunAhong1993 已提交
467
            
S
SunAhong1993 已提交
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
    def Conv3D(self, node):
        op_name = name_generator("conv", self.nn_name2id)
        output_name = node.name
        layer_outputs = [op_name, output_name]
        input = self.graph.get_input_node(node, 0)
        kernel = self.graph.get_input_node(node, 1)

        k_size = kernel.out_shapes[0]
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
        if data_format == "NDHWC":
            n, d, h, w, c = input.out_shapes[0]
        else:
            n, c, d, h, w = input.out_shapes[0]

        if kernel.layer_type == 'Const':
            kernel_value = kernel.value
        else:
S
release  
SunAhong1993 已提交
488
            kernel_value = self.decoder.infer_tensor(kernel, use_diff_inputs=False)
S
SunAhong1993 已提交
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
        kernel_weight_name = op_name + ".weight"
        self.params[kernel_weight_name] = numpy.transpose(kernel_value,
                                                          (4, 3, 0, 1, 2))

        input_name = input.name
        if data_format == "NDHWC":
            strides = [strides[i] for i in [0, 4, 1, 2, 3]]
            dilations = [dilations[i] for i in [0, 4, 1, 2, 3]]
            transpose_name = gen_name("conv3d", "transpose")
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 4, 1, 2, 3])
            input_name = transpose_name

        if c == -1:
            attr = {"shape": [0, k_size[2], 0, 0, 0]}
            self.paddle_graph.add_layer(
                kernel="paddle.reshape",
                inputs={"x": input_name},
                outputs=[input_name],
                shape=[0, k_size[2], 0, 0, 0])

        self.paddle_graph.add_layer(
            kernel="paddle.nn.Conv3D",
            inputs={"input": input_name},
            outputs=layer_outputs,
            weight_attr=string(kernel_weight_name),
            bias_attr=False,
            in_channels=k_size[3],
            out_channels=k_size[4],
            kernel_size=k_size[0:3],
            stride=strides[2:5],
            dilation=dilations[2:5],
            padding=string(pad_mode))

        if data_format == "NDHWC":
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 4, 1])
S
SunAhong1993 已提交
532 533

    def BiasAdd(self, node):
S
SunAhong1993 已提交
534 535
        input = self.graph.get_input_node(node, 0)
        bias = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
536 537 538 539 540 541 542 543 544 545
        self.paddle_graph.add_layer(
            kernel="paddle.add",
            inputs={"x": input.name,
                    "y": bias.name},
            outputs=[node.name])

    def FusedBatchNorm(self, node):
        op_name = name_generator("bn", self.nn_name2id)
        output_name = node.name
        layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
546
        input = self.graph.get_input_node(node, 0)
S
SunAhong1993 已提交
547

S
SunAhong1993 已提交
548 549 550 551
        gamma = self.graph.get_input_node(node, 1)
        beta = self.graph.get_input_node(node, 2)
        moving_mean = self.graph.get_input_node(node, 3)
        moving_var = self.graph.get_input_node(node, 4)
S
SunAhong1993 已提交
552 553 554 555 556 557 558
        data_format = node.get_attr("data_format").decode()

        assert gamma.layer_type == "Const"
        assert beta.layer_type == "Const"
        assert moving_mean.layer_type == "Const"
        assert moving_var.layer_type == "Const"

S
release  
SunAhong1993 已提交
559
        input_name = input.name 
S
SunAhong1993 已提交
560 561 562 563 564 565 566 567
        if data_format == "NHWC":
            transpose_name = gen_name("batch_norm", "transpose")
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name
S
SunAhong1993 已提交
568 569
            n, h, w, c = input.out_shapes[0]
        else:
S
release  
SunAhong1993 已提交
570
             n, c, h, w = input.out_shapes[0]
S
SunAhong1993 已提交
571

S
release  
SunAhong1993 已提交
572 573 574 575
        self.params["{}_{}".format(node.name, gamma.name)] = self.params[gamma.name]
        self.params["{}_{}".format(node.name, beta.name)] = self.params[beta.name]
        self.params["{}_{}".format(node.name, moving_mean.name)] = self.params[moving_mean.name]
        self.params["{}_{}".format(node.name, moving_var.name)] = self.params[moving_var.name]
S
SunAhong1993 已提交
576 577 578 579
        self.paddle_graph.add_layer(
            kernel="paddle.nn.BatchNorm",
            inputs={"input": input_name},
            outputs=layer_outputs,
S
SunAhong1993 已提交
580
            num_channels=c,
S
SunAhong1993 已提交
581
            epsilon=node.get_attr("epsilon"),
S
SunAhong1993 已提交
582 583
            param_attr=string("{}_{}".format(node.name, gamma.name)),
            bias_attr=string("{}_{}".format(node.name, beta.name)),
S
release  
SunAhong1993 已提交
584 585
            moving_mean_name=string("{}_{}".format(node.name, moving_mean.name)),
            moving_variance_name=string("{}_{}".format(node.name, moving_var.name)),
S
SunAhong1993 已提交
586 587 588 589 590 591 592 593
            is_test=True)

        if data_format == "NHWC":
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
S
release  
SunAhong1993 已提交
594
            
S
SunAhong1993 已提交
595 596
    def FusedBatchNormV3(self, node):
        self.FusedBatchNorm(node)
S
SunAhong1993 已提交
597 598

    def Mean(self, node):
S
SunAhong1993 已提交
599 600
        input = self.graph.get_input_node(node, 0)
        reduce_idx = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
601 602 603 604 605 606 607 608 609 610 611 612
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        dims = reduce_idx.value.tolist()
        keep_dims = node.get_attr("keep_dims")

        self.paddle_graph.add_layer(
            kernel="paddle.mean",
            inputs={"x": input.name},
            outputs=[node.name],
            axis=dims,
            keepdim=keep_dims)

    def Reshape(self, node):
S
SunAhong1993 已提交
613 614
        input = self.graph.get_input_node(node, 0)
        param = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641

        input_name = input.name

        if param.layer_type == "Const":
            shape = param.value.tolist()
            self.paddle_graph.add_layer(
                kernel="paddle.reshape",
                inputs={"x": input_name},
                outputs=[node.name],
                shape=shape)
        else:
            self.paddle_graph.add_layer(
                kernel="paddle.reshape",
                inputs={"x": input_name,
                        "shape": param.name},
                outputs=[node.name])
        if param.layer_type != "Const":
            out_shape = numpy.array(node.out_shapes[0])
            if (out_shape > 0).any():
                out_shape[out_shape < 0] = 0
                self.paddle_graph.add_layer(
                    kernel="paddle.reshape",
                    inputs={"x": node.name},
                    outputs=[node.name],
                    shape=out_shape.tolist())

    def Pad(self, node):
S
SunAhong1993 已提交
642 643
        input = self.graph.get_input_node(node, 0)
        paddings = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
644 645
        assert paddings.layer_type == "Const", "Padding should be Const"
        paddings = paddings.value.flatten().tolist()
S
SunAhong1993 已提交
646 647 648 649 650
        constant_values = 0
        if len(node.layer.input) > 2:
            constant_values = self.graph.get_input_node(node, 2)
            assert constant_values.layer_type == "Const", "Padding should be Const"
            constant_values = constant_values.value
S
SunAhong1993 已提交
651 652 653

        self.paddle_graph.add_layer(
            kernel="paddle.nn.functional.pad",
S
SunAhong1993 已提交
654
            inputs={"x": input.name},
S
SunAhong1993 已提交
655
            outputs=[node.name],
S
SunAhong1993 已提交
656 657
            pad=paddings,
            value=constant_values)
S
release  
SunAhong1993 已提交
658
        
S
SunAhong1993 已提交
659
    def MirrorPad(self, node):
S
SunAhong1993 已提交
660
        self.Pad(node)
S
release  
SunAhong1993 已提交
661 662
        
        
S
SunAhong1993 已提交
663 664
    def PadV2(self, node):
        self.Pad(node)
S
SunAhong1993 已提交
665 666

    def Squeeze(self, node):
S
SunAhong1993 已提交
667
        input = self.graph.get_input_node(node, 0)
S
SunAhong1993 已提交
668 669 670 671 672 673 674 675
        squeeze_dims = node.get_attr('squeeze_dims')
        self.paddle_graph.add_layer(
            kernel="paddle.squeeze",
            inputs={"x": input.name},
            outputs=[node.name],
            axis=squeeze_dims)

    def Shape(self, node):
S
SunAhong1993 已提交
676
        input = self.graph.get_input_node(node, 0)
S
SunAhong1993 已提交
677 678 679 680 681
        input_name = input.name
        self.paddle_graph.add_layer(
            kernel="paddle.shape",
            inputs={"input": input_name},
            outputs=[node.name])
S
release  
SunAhong1993 已提交
682
        
S
SunAhong1993 已提交
683 684 685 686 687 688 689 690
    def Size(self, node):
        input = self.graph.get_input_node(node, 0)
        input_name = input.name
        self.paddle_graph.add_layer(
            kernel="paddle.shape",
            inputs={"input": input_name},
            outputs=[node.name])
        self.paddle_graph.add_layer(
S
release  
SunAhong1993 已提交
691 692 693 694
            kernel="paddle.prod",
            inputs={"x": node.name},
            outputs=[node.name])
        
S
SunAhong1993 已提交
695 696 697
    def Ceil(self, node):
        input = self.graph.get_input_node(node, 0)
        self.paddle_graph.add_layer(
S
release  
SunAhong1993 已提交
698 699
            kernel="paddle.ceil",
            inputs={"x": input.name},
S
SunAhong1993 已提交
700
            outputs=[node.name])
S
SunAhong1993 已提交
701 702

    def ArgMax(self, node):
S
SunAhong1993 已提交
703 704
        input = self.graph.get_input_node(node, 0)
        axis = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
705 706 707 708 709 710 711
        assert axis.layer_type == "Const", "ArgMax only support Const parameter"
        axis = axis.value
        self.paddle_graph.add_layer(
            kernel="paddle.argmax",
            inputs={"x": input.name},
            outputs=[node.name],
            axis=axis)
S
release  
SunAhong1993 已提交
712
        
S
SunAhong1993 已提交
713 714 715 716 717 718 719 720 721 722 723 724
    def TopKV2(self, node):
        input = self.graph.get_input_node(node, 0)
        k = self.graph.get_input_node(node, 1)
        assert k.layer_type == "Const", "ArgMax only support Const parameter"
        k = k.value
        sort = node.get_attr('sorted')
        self.paddle_graph.add_layer(
            kernel="paddle.topk",
            inputs={"x": input.name},
            outputs=[node.name],
            k=k,
            sorted=sort)
S
SunAhong1993 已提交
725 726

    def MatMul(self, node):
S
SunAhong1993 已提交
727 728
        x = self.graph.get_input_node(node, 0)
        y = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
        transpose_a = node.get_attr('transpose_a')
        transpose_b = node.get_attr('transpose_b')
        if transpose_a is None:
            transpose_a = node.get_attr('adj_x')
        if transpose_b is None:
            transpose_b = node.get_attr('adj_y')
        self.paddle_graph.add_layer(
            kernel="paddle.matmul",
            inputs={"x": x.name,
                    "y": y.name},
            outputs=[node.name],
            transpose_x=transpose_a,
            transpose_y=transpose_b)

    def BatchMatMul(self, node):
        return self.MatMul(node)

    def BatchMatMulV2(self, node):
        return self.MatMul(node)

    def DepthwiseConv2dNative(self, node):
        op_name = name_generator("conv", self.nn_name2id)
        output_name = node.name
        layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
753 754
        input = self.graph.get_input_node(node, 0)
        kernel = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
755 756 757 758 759 760 761 762 763 764 765 766 767
        assert kernel.layer_type == "Const", "Kernel of DepthwiseConv2DNative should be Const"

        in_shape = input.out_shapes[0]
        k_size = kernel.out_shapes[0]
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()

        kernel_weight_name = op_name + ".weight"
        self.params[kernel_weight_name] = numpy.transpose(kernel.value,
                                                          (2, 3, 0, 1))

S
release  
SunAhong1993 已提交
768

S
SunAhong1993 已提交
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
        input_name = input.name
        if data_format == "NHWC":
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
            transpose_name = gen_name('depthwise_conv2d', 'transpose')
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

        self.paddle_graph.add_layer(
            kernel="paddle.nn.Conv2D",
            inputs={"input": input_name},
            outputs=layer_outputs,
            weight_attr=string(kernel_weight_name),
            bias_attr=False,
            in_channels=in_shape[1],
            out_channels=k_size[2],
            kernel_size=k_size[0:2],
            stride=strides[2:4],
            dilation=dilations[2:4],
            groups=k_size[3] * in_shape[1],
            padding=string(pad_mode))

        if data_format == "NHWC":
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])

    def AvgPool(self, node):
S
SunAhong1993 已提交
804
        input = self.graph.get_input_node(node, 0)
S
SunAhong1993 已提交
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825

        k_size = node.get_attr("ksize")
        strides = node.get_attr("strides")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()

        input_name = input.name
        if data_format == "NHWC":
            transpose_name = gen_name("avg_pool", "transpose")
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            strides = [strides[i] for i in [0, 3, 1, 2]]
            k_size = [k_size[i] for i in [0, 3, 1, 2]]
            input_name = transpose_name

        op_name = name_generator("pool", self.nn_name2id)
        output_name = node.name
        layer_outputs = [op_name, output_name]
S
release  
SunAhong1993 已提交
826
        
S
SunAhong1993 已提交
827
        # TODO(syf): The op has diff.
S
SunAhong1993 已提交
828
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
829
            kernel="paddle.nn.AvgPool2D",
S
SunAhong1993 已提交
830
            inputs={"input": input_name},
S
SunAhong1993 已提交
831 832 833 834 835
            outputs=layer_outputs,
            kernel_size=k_size[2:4],
            stride=strides[2:4],
            padding=string(pad_mode))

S
release  
SunAhong1993 已提交
836 837 838 839 840 841 842 843 844
#         self.paddle_graph.add_layer(
#             kernel="fluid.layers.pool2d",
#             inputs={"input": input_name},
#             outputs=[node.name],
#             pool_size=k_size[2:4],
#             pool_type=string("avg"),
#             pool_stride=strides[2:4],
#             pool_padding=string(pad_mode))

S
SunAhong1993 已提交
845 846 847 848 849 850 851 852
        if data_format == "NHWC":
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])

    def Pack(self, node):
S
SunAhong1993 已提交
853 854 855 856
        inputs_list = list()
        for i in range(len(node.inputs)):
            inputs_list.append(self.graph.get_input_node(node, i))
        input_names = [i.name for i in inputs_list]
S
SunAhong1993 已提交
857 858 859 860 861 862 863 864 865 866 867 868 869 870
        axis = node.get_attr("axis")
        self.paddle_graph.add_layer(
            kernel="paddle.stack",
            inputs={"x": input_names},
            outputs=[node.name],
            axis=axis)
        if len(node.out_shapes[0]) == 1:
            self.paddle_graph.add_layer(
                kernel="paddle.reshape",
                inputs={"x": node.name},
                outputs=[node.name],
                shape=[-1])

    def Unpack(self, node):
S
SunAhong1993 已提交
871
        input = self.graph.get_input_node(node, 0)
S
SunAhong1993 已提交
872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
        axis = node.get_attr("axis")
        num = node.get_attr("num")
        shape = input.out_shapes[0]
        input_name = input.name
        if len(shape) == 1:
            if shape[0] > 0 and num == shape[0]:
                self.paddle_graph.add_layer(
                    kernel="paddle.unsqueeze",
                    inputs={"x": input.name},
                    outputs=[node.name],
                    axis=[0])
                input_name = node.name
                axis = 1
            else:
                raise Exception("Unexpected situation happend in Unpack OP")
S
release  
SunAhong1993 已提交
887
        layer_outputs = ["{}_p{}".format(node.layer_name, i) for i in range(num)]
S
SunAhong1993 已提交
888 889
        if len(layer_outputs) == 1:
            layer_outputs[0] = "[{}]".format(node.layer_name)
S
SunAhong1993 已提交
890 891 892
        self.paddle_graph.add_layer(
            kernel="paddle.unstack",
            inputs={"x": input_name},
S
SunAhong1993 已提交
893
            outputs=layer_outputs,
S
SunAhong1993 已提交
894 895 896 897
            axis=axis,
            num=num)

    def ConcatV2(self, node):
S
SunAhong1993 已提交
898 899 900 901
        inputs_list = list()
        for i in range(len(node.inputs) - 1):
            inputs_list.append(self.graph.get_input_node(node, i))
        axis = self.graph.get_input_node(node, -1)
S
SunAhong1993 已提交
902 903 904
        assert axis.layer_type == "Const", "axis for ConcatV2 must be type Const"
        axis = axis.value
        if axis < 0:
S
fix  
SunAhong1993 已提交
905
            axis += len(inputs_list[0].out_shapes[0])
S
SunAhong1993 已提交
906

S
SunAhong1993 已提交
907
        input_names = [i.name for i in inputs_list]
S
SunAhong1993 已提交
908 909
        self.paddle_graph.add_layer(
            kernel="paddle.concat",
S
SunAhong1993 已提交
910
            inputs={"x": input_names},
S
SunAhong1993 已提交
911 912
            outputs=[node.name],
            axis=axis)
S
release  
SunAhong1993 已提交
913
        
S
SunAhong1993 已提交
914 915 916 917 918 919 920 921 922
    def Concat(self, node):
        inputs_list = list()
        for i in range(1, len(node.inputs)):
            inputs_list.append(self.graph.get_input_node(node, i))
        axis = self.graph.get_input_node(node, 0)
        assert axis.layer_type == "Const", "axis for ConcatV2 must be type Const"
        axis = axis.value
        if axis < 0:
            axis += len(inputs_list[0].out_shapes[0])
S
release  
SunAhong1993 已提交
923
            
S
SunAhong1993 已提交
924 925 926 927 928 929
        input_names = [i.name for i in inputs_list]
        self.paddle_graph.add_layer(
            kernel="paddle.concat",
            inputs={"x": input_names},
            outputs=[node.name],
            axis=axis)
S
release  
SunAhong1993 已提交
930
        
S
SunAhong1993 已提交
931 932 933 934 935 936 937 938 939 940
    def AddN(self, node):
        inputs_list = list()
        for i in range(len(node.inputs) - 1):
            inputs_list.append(self.graph.get_input_node(node, i))

        input_names = [i.name for i in inputs_list]
        self.paddle_graph.add_layer(
            kernel="paddle.add_n",
            inputs={"inputs": input_names},
            outputs=[node.name])
S
SunAhong1993 已提交
941 942

    def StridedSlice(self, node):
S
SunAhong1993 已提交
943 944 945 946
        input = self.graph.get_input_node(node, 0)
        begin = self.graph.get_input_node(node, 1)
        end = self.graph.get_input_node(node, 2)
        strides = self.graph.get_input_node(node, 3)
S
SunAhong1993 已提交
947 948 949 950

        if strides.layer_type == "Const":
            strides = strides.value.tolist()
        else:
S
SunAhong1993 已提交
951
            strides = self.decoder.infer_tensor(strides)
S
SunAhong1993 已提交
952 953 954
        if begin.layer_type == "Const":
            begin = begin.value.tolist()
        else:
S
SunAhong1993 已提交
955
            begin = self.decoder.infer_tensor(begin)
S
SunAhong1993 已提交
956 957 958
        if end.layer_type == "Const":
            end = end.value.tolist()
        else:
S
SunAhong1993 已提交
959
            end = self.decoder.infer_tensor(end)
S
SunAhong1993 已提交
960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007

        assert len(set(strides)) == 1 and strides[
            0] == 1, "Only support strides be 1 in StridedSlice OP"

        if len(begin) < len(input.out_shapes[0]):
            begin = begin + [0] * (len(input.out_shapes[0]) - len(begin))
        if len(end) < len(input.out_shapes[0]):
            end = end + [0] * (len(input.out_shapes[0]) - len(end))
        for i in range(len(end)):
            if end[i] == 0:
                end[i] = 999999

        begin_mask = node.get_attr('begin_mask')
        end_mask = node.get_attr('end_mask')
        ellipsis_mask = node.get_attr('ellipsis_mask')
        new_axis_mask = node.get_attr('new_axis_mask')
        shrink_axis_mask = node.get_attr('shrink_axis_mask')

        assert ellipsis_mask == 0, "(OP:{} Name:{})Only support ellipsis_mask be 0[now: {}] n StridedSlice OP".format(
            node.layer_type, node.layer.name, ellipsis_mask)

        # TODO codes without validation
        # Use it carefully
        new_begin = list()
        new_end = list()
        new_axes = list()
        shrink_axes = list()
        for i, item in enumerate(begin):
            mask = (new_axis_mask >> i) & 1
            if mask != 0:
                new_axes.append(i)
                continue

            mask = (shrink_axis_mask >> i) & 1
            if mask != 0:
                shrink_axes.append(i)

            mask = (begin_mask >> i) & 1
            if mask != 0:
                new_begin.append(0)
            else:
                new_begin.append(item)

            mask = (end_mask >> i) & 1
            if mask != 0:
                new_end.append(999999)
            else:
                new_end.append(end[i])
S
release  
SunAhong1993 已提交
1008
            
S
fix  
SunAhong1993 已提交
1009 1010 1011 1012 1013 1014
        if input.dtype == "bool":
            self.paddle_graph.add_layer(
                "paddle.cast",
                inputs={"x": input.name},
                outputs=[input.name],
                dtype=string("int32"))
S
SunAhong1993 已提交
1015 1016 1017 1018 1019 1020 1021 1022

        self.paddle_graph.add_layer(
            kernel="paddle.slice",
            inputs={"input": input.name},
            outputs=[node.name],
            axes=[i for i in range(len(new_begin))],
            starts=new_begin,
            ends=new_end)
S
release  
SunAhong1993 已提交
1023
        
S
fix  
SunAhong1993 已提交
1024 1025 1026 1027 1028 1029 1030
        if input.dtype == "bool":
            self.paddle_graph.add_layer(
                "paddle.cast",
                inputs={"x": node.name},
                outputs=[node.name],
                dtype=string("bool"))

S
SunAhong1993 已提交
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
        if len(new_axes) > 0:
            self.paddle_graph.add_layer(
                kernel="paddle.unsqueeze",
                inputs={"x": node.name},
                outputs=[node.name],
                axis=new_axes)
        if len(shrink_axes) > 0:
            if len(input.out_shapes[0]) + len(new_axes) <= 1:
                pass
            else:
                self.paddle_graph.add_layer(
                    kernel="paddle.squeeze",
                    inputs={"x": node.name},
                    outputs=[node.name],
                    axis=shrink_axes)
S
release  
SunAhong1993 已提交
1046
                
S
SunAhong1993 已提交
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
    def Prod(self, node):
        input = self.graph.get_input_node(node, 0)
        reduction_indices = self.graph.get_input_node(node, 1)
        assert reduction_indices.layer_type == "Const"
        keep_dims = node.get_attr('keep_dims')
        axis = reduction_indices.value

        self.paddle_graph.add_layer(
            kernel="paddle.prod",
            inputs={"x": input.name},
            outputs=[node.layer_name],
            keepdim=keep_dims,
            axis=axis)
S
SunAhong1993 已提交
1060 1061

    def Split(self, node):
S
SunAhong1993 已提交
1062 1063
        dim = self.graph.get_input_node(node, 0)
        input = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
1064 1065 1066 1067 1068 1069
        assert dim.layer_type == "Const"
        num_split = node.get_attr('num_split')
        dim = dim.value

        self.paddle_graph.add_layer(
            kernel="paddle.split",
S
SunAhong1993 已提交
1070
            inputs={"x": input.name},
S
SunAhong1993 已提交
1071 1072 1073 1074
            outputs=[
                "{}_p{}".format(node.layer_name, i) for i in range(num_split)
            ],
            num_or_sections=num_split,
S
SunAhong1993 已提交
1075
            axis=dim)
S
release  
SunAhong1993 已提交
1076
        
S
SunAhong1993 已提交
1077 1078 1079 1080 1081 1082 1083 1084
    def SplitV(self, node):
        input = self.graph.get_input_node(node, 0)
        size_splits = self.graph.get_input_node(node, 1)
        assert size_splits.layer_type == "Const", "size_splits of SplitV OP should be Const"
        size_splits = size_splits.value.tolist()
        dim = self.graph.get_input_node(node, 2)
        assert dim.layer_type == "Const", "dim of SplitV OP should be Const"
        dim = dim.value
S
release  
SunAhong1993 已提交
1085
        
S
SunAhong1993 已提交
1086 1087 1088 1089
        self.paddle_graph.add_layer(
            kernel="paddle.split",
            inputs={"x": input.name},
            outputs=[
S
release  
SunAhong1993 已提交
1090
                "{}_p{}".format(node.layer_name, i) for i in range(len(size_splits))
S
SunAhong1993 已提交
1091 1092 1093
            ],
            num_or_sections=size_splits,
            axis=dim)
S
SunAhong1993 已提交
1094 1095

    def Slice(self, node):
S
SunAhong1993 已提交
1096 1097 1098
        input = self.graph.get_input_node(node, 0)
        begin = self.graph.get_input_node(node, 1)
        size = self.graph.get_input_node(node, 2)
S
SunAhong1993 已提交
1099 1100 1101 1102 1103 1104 1105

        inputs = {"x": input.name}
        attrs = {}
        if begin.layer_type == "Const":
            begin = begin.value.tolist()
            attrs['offsets'] = begin
        else:
S
release  
SunAhong1993 已提交
1106
            begin = self.decoder.infer_tensor(begin, use_diff_inputs=False).tolist()
S
SunAhong1993 已提交
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
            attrs['offsets'] = begin
        if size.layer_type == "Const":
            size = size.value.tolist()
            attrs['shape'] = size
        else:
            shape = size.out_shapes[0]
            reshape_name = gen_name("slice", "reshape")
            self.paddle_graph.add_layer(
                kernel="paddle.reshape",
                inputs={"x": size.name},
                outputs=[reshape_name],
                shape=shape)
            inputs['shape'] = reshape_name
        self.paddle_graph.add_layer(
S
release  
SunAhong1993 已提交
1121 1122 1123 1124
            kernel="paddle.crop",
            inputs=inputs,
            outputs=[node.name],
            **attrs)
S
SunAhong1993 已提交
1125 1126

    def ResizeNearestNeighbor(self, node):
S
SunAhong1993 已提交
1127 1128
        input = self.graph.get_input_node(node, 0)
        resize_shape = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
1129
        data_format = "NHWC"
S
SunAhong1993 已提交
1130
        inputs = {"x": input.name}
S
release  
SunAhong1993 已提交
1131 1132 1133
        attrs = {"align_corners": node.get_attr("align_corners"),
                 "mode": string("nearest"),
                 "align_mode": 1}
S
SunAhong1993 已提交
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145

        if resize_shape.layer_type == "Const":
            resize_shape = resize_shape.value.tolist()
            attrs["size"] = resize_shape
        else:
            shape = resize_shape.out_shapes[0]
            reshape_name = gen_name("resize_nearest", "reshape")
            self.paddle_graph.add_layer(
                kernel="paddle.reshape",
                inputs={"x": resize_shape.name},
                outputs=[reshape_name],
                shape=shape)
S
SunAhong1993 已提交
1146
            inputs["size"] = reshape_name
S
SunAhong1993 已提交
1147 1148 1149 1150 1151 1152 1153 1154

        if data_format == "NHWC":
            transpose_name = gen_name("resize_nearest", "reshape")
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
S
SunAhong1993 已提交
1155
            inputs["x"] = transpose_name
S
SunAhong1993 已提交
1156 1157

        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1158
            kernel="paddle.nn.functional.interpolate",
S
SunAhong1993 已提交
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
            inputs=inputs,
            outputs=[node.name],
            **attrs)

        if data_format == "NHWC":
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
S
release  
SunAhong1993 已提交
1169
            
S
SunAhong1993 已提交
1170
    def ResizeBilinear(self, node):
S
SunAhong1993 已提交
1171 1172
        input = self.graph.get_input_node(node, 0)
        resize_shape = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
1173
        data_format = "NHWC"
S
SunAhong1993 已提交
1174
        inputs = {"x": input.name}
S
release  
SunAhong1993 已提交
1175 1176 1177
        attrs = {"align_corners": node.get_attr("align_corners"),
                 "mode": string("bilinear"),
                 "align_mode": 1}
S
SunAhong1993 已提交
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189

        if resize_shape.layer_type == "Const":
            resize_shape = resize_shape.value.tolist()
            attrs["size"] = resize_shape
        else:
            shape = resize_shape.out_shapes[0]
            reshape_name = gen_name("resize_bilinear", "reshape")
            self.paddle_graph.add_layer(
                kernel="paddle.reshape",
                inputs={"x": resize_shape.name},
                outputs=[reshape_name],
                shape=shape)
S
SunAhong1993 已提交
1190
            inputs["size"] = reshape_name
S
SunAhong1993 已提交
1191 1192 1193 1194 1195 1196 1197 1198

        if data_format == "NHWC":
            transpose_name = gen_name("resize_bilinear", "reshape")
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
S
SunAhong1993 已提交
1199
            inputs["x"] = transpose_name
S
SunAhong1993 已提交
1200 1201

        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1202
            kernel="paddle.nn.functional.interpolate",
S
SunAhong1993 已提交
1203 1204 1205 1206 1207 1208
            inputs=inputs,
            outputs=[node.name],
            **attrs)

        if data_format == "NHWC":
            self.paddle_graph.add_layer(
S
rename  
SunAhong1993 已提交
1209
                kernel="paddle.transpose",
S
SunAhong1993 已提交
1210 1211 1212 1213 1214
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])

    def Cast(self, node):
S
SunAhong1993 已提交
1215
        input = self.graph.get_input_node(node, 0)
S
SunAhong1993 已提交
1216 1217 1218 1219 1220 1221 1222 1223
        dtype = node.dtype
        self.paddle_graph.add_layer(
            kernel="paddle.cast",
            inputs={"x": input.name},
            outputs=[node.name],
            dtype=string(dtype))

    def Sum(self, node):
S
SunAhong1993 已提交
1224 1225
        input = self.graph.get_input_node(node, 0)
        reduce_idx = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
1226 1227 1228 1229 1230 1231
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        keep_dims = node.get_attr("keep_dims")
        dim = reduce_idx.value.tolist()

        self.paddle_graph.add_layer(
            kernel="paddle.sum",
S
SunAhong1993 已提交
1232
            inputs={"x": input.name},
S
SunAhong1993 已提交
1233 1234 1235 1236 1237
            outputs=[node.name],
            axis=dim,
            keepdim=keep_dims)

    def Max(self, node):
S
SunAhong1993 已提交
1238 1239
        input = self.graph.get_input_node(node, 0)
        reduce_idx = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
1240 1241 1242 1243 1244
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        keep_dims = node.get_attr("keep_dims")
        dim = reduce_idx.value.tolist()
        self.paddle_graph.add_layer(
            kernel="paddle.max",
S
SunAhong1993 已提交
1245
            inputs={"x": input.name},
S
SunAhong1993 已提交
1246 1247 1248 1249 1250
            outputs=[node.name],
            axis=dim,
            keepdim=keep_dims)

    def RandomUniform(self, node):
S
SunAhong1993 已提交
1251
        shape = self.graph.get_input_node(node, 0)
S
SunAhong1993 已提交
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
        if shape.layer_type == "Const":
            shape = shape.value.tolist()
            self.paddle_graph.add_layer(
                kernel="paddle.uniform",
                inputs={},
                outputs=[node.name],
                shape=shape,
                min=0.0,
                max=0.9999)
        else:
            self.paddle_graph.add_layer(
                kernel="paddle.uniform",
                inputs={'shape': shape.name},
                outputs=[node.name],
                min=0.0,
                max=0.9999)

    def Conv2DBackpropInput(self, node):
        op_name = name_generator("conv", self.nn_name2id)
        output_name = node.name
        layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
1273 1274 1275
        out_shape = self.graph.get_input_node(node, 0)
        kernel = self.graph.get_input_node(node, 1)
        input = self.graph.get_input_node(node, 2)
S
SunAhong1993 已提交
1276 1277 1278 1279 1280 1281

        assert kernel.layer_type == "Const", "Kernel of Conv2DBackpropInput should be Const"

        if out_shape.layer_type == "Const":
            out_shape = out_shape.value.tolist()
        else:
S
release  
SunAhong1993 已提交
1282 1283
            out_shape = self.decoder.infer_tensor(out_shape,
                                                  out_shape=node.out_shapes[0])
S
SunAhong1993 已提交
1284 1285 1286

        in_shape = input.out_shapes[0]
        if in_shape.count(-1) > 2:
S
release  
SunAhong1993 已提交
1287
            in_shape = self.decoder.infer_tensor(input, use_diff_inputs=False).shape
S
SunAhong1993 已提交
1288 1289
        k_size = kernel.out_shapes[0]
        if k_size.count(-1) > 2:
S
release  
SunAhong1993 已提交
1290
            k_size = self.decoder.infer_tensor(kernel, use_diff_inputs=False).shape
S
SunAhong1993 已提交
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312

        pad_mode = node.get_attr("padding").decode()
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()

        kernel_name = op_name + ".weight"
        self.params[kernel_name] = numpy.transpose(kernel.value, (3, 2, 0, 1))

        input_name = input.name
        if data_format == "NHWC":
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
            transpose_name = gen_name("conv2dbackpropinput", "transpose")
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

S
release  
SunAhong1993 已提交
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
        # TODO(syf): The output_size is not set.
#         self.paddle_graph.add_layer(
#             kernel="paddle.nn.Conv2DTranspose",
#             inputs={"input": input_name},
#             outputs=layer_outputs,
#             weight_attr=string(kernel_name),
#             bias_attr=False,
#             in_channels=k_size[3],
#             out_channels=k_size[2],
#             kernel_size=k_size[0:2],
#             stride=strides[2:4],
#             dilation=dilations[2:4],
#             padding=string(pad_mode))
S
SunAhong1993 已提交
1326
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1327 1328 1329 1330 1331
            "self.create_parameter",
            inputs={},
            outputs=["{}_{}".format(node.name, kernel_name).replace(".", "_")],
            shape=self.params[kernel_name].shape,
            attr=string(kernel_name))
S
release  
SunAhong1993 已提交
1332
    
S
SunAhong1993 已提交
1333 1334
        self.paddle_graph.add_layer(
            kernel="paddle.nn.functional.conv2d_transpose",
S
release  
SunAhong1993 已提交
1335 1336
            inputs={"x": input_name,
                    "weight": "{}_{}".format(node.name, kernel_name).replace(".", "_")},
S
SunAhong1993 已提交
1337 1338
            outputs=[node.name],
            bias=None,
S
SunAhong1993 已提交
1339 1340
            stride=strides[2:4],
            dilation=dilations[2:4],
S
SunAhong1993 已提交
1341 1342
            padding=string(pad_mode),
            output_size=out_shape[1:3])
S
SunAhong1993 已提交
1343 1344 1345 1346 1347 1348 1349 1350 1351

        if data_format == "NHWC":
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])

    def Tile(self, node):
S
SunAhong1993 已提交
1352
        input = self.graph.get_input_node(node, 0)
S
SunAhong1993 已提交
1353
        repeat_times = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
1354 1355 1356
        inputs = {"x": input.name}
        attr = dict()
        in_shape = input.out_shapes[0]
S
SunAhong1993 已提交
1357 1358 1359
        if repeat_times.layer_type == "Const":
            repeat_times = repeat_times.value.tolist()
            attr["repeat_times"] = repeat_times
S
SunAhong1993 已提交
1360
        else:
S
SunAhong1993 已提交
1361
            inputs["repeat_times"] = repeat_times.name
S
SunAhong1993 已提交
1362 1363

        self.paddle_graph.add_layer(
S
release  
SunAhong1993 已提交
1364 1365 1366 1367
            kernel="paddle.tile",
            inputs=inputs,
            outputs=[node.name],
            **attr)
S
SunAhong1993 已提交
1368 1369

    def Range(self, node):
S
SunAhong1993 已提交
1370 1371 1372
        start = self.graph.get_input_node(node, 0)
        limit = self.graph.get_input_node(node, 1)
        delta = self.graph.get_input_node(node, 2)
S
SunAhong1993 已提交
1373 1374 1375 1376 1377 1378 1379 1380 1381
        inputs = dict()
        attr = dict()

        dtype = 'int32'
        if start.dtype.startswith('float'):
            dtype = start.dtype
        if start.layer_type == "Const":
            attr["start"] = start.value
        else:
S
release  
SunAhong1993 已提交
1382
            
S
SunAhong1993 已提交
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
            inputs["start"] = start.name
        if limit.dtype.startswith('float'):
            dtype = limit.dtype
        if limit.layer_type == "Const":
            attr["end"] = limit.value
        else:
            inputs["end"] = limit.name
        if delta.dtype.startswith('float'):
            dtype = delta.dtype
        if delta.layer_type == "Const":
            attr["step"] = delta.value
        else:
            inputs["step"] = delta.name
        node.set_dtype(dtype)
        attr["dtype"] = string(node.dtype)

        self.paddle_graph.add_layer(
S
release  
SunAhong1993 已提交
1400 1401 1402 1403
            kernel="paddle.arange",
            inputs=inputs,
            outputs=[node.name],
            **attr)
S
SunAhong1993 已提交
1404 1405

    def SquaredDifference(self, node):
S
SunAhong1993 已提交
1406 1407
        x = self.graph.get_input_node(node, 0)
        y = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
1408 1409 1410
        inputs = {"x": x.name, "y": y.name}
        x_shape = x.out_shapes[0]
        y_shape = y.out_shapes[0]
S
SunAhong1993 已提交
1411
        # TODO(syf)
S
SunAhong1993 已提交
1412
        layer_id = self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1413
            "paddle.subtract", inputs=inputs, outputs=[node.name])
S
release  
SunAhong1993 已提交
1414
        self.paddle_graph.layers[layer_id].input_shapes = {"x": x_shape, "y": y_shape}
S
SunAhong1993 已提交
1415 1416 1417 1418 1419 1420

        inputs = {"x": node.name, "y": node.name}
        x_shape = node.out_shapes[0]
        y_shape = node.out_shapes[0]
        layer_id = self.paddle_graph.add_layer(
            "paddle.multiply", inputs=inputs, outputs=[node.name])
S
release  
SunAhong1993 已提交
1421
        self.paddle_graph.layers[layer_id].input_shapes = {"x": x_shape, "y": y_shape}
S
SunAhong1993 已提交
1422 1423

    def OneHot(self, node):
S
SunAhong1993 已提交
1424 1425 1426 1427
        input = self.graph.get_input_node(node, 0)
        depth = self.graph.get_input_node(node, 1)
        on_value = self.graph.get_input_node(node, 2)
        off_value = self.graph.get_input_node(node, 3)
S
SunAhong1993 已提交
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
        assert depth.layer_type == 'Const', 'Parameter depth should be Const in OneHot'
        assert on_value.layer_type == 'Const', 'Parameter on_value should be Const in OneHot'
        assert off_value.layer_type == 'Const', 'Parameter off_value should be Const in OneHot'

        attr = {'depth': depth.value}
        on_value = on_value.value
        off_value = off_value.value
        assert math.fabs(on_value -
                         1.0) < 1e-06, "on_value should be 1 in OneHot"
        assert math.fabs(off_value -
                         0.0) < 1e-06, "off_value should be 0 in OneHot"

        self.paddle_graph.add_layer(
            "paddle.nn.functional.one_hot",
            inputs={"x": input.name},
            outputs=[node.name],
            num_classes=depth.value)

    def Pow(self, node):
S
SunAhong1993 已提交
1447 1448
        x = self.graph.get_input_node(node, 0)
        factor = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
        inputs = {"x": x.name}
        attr = dict()
        if factor.layer_type == 'Const':
            attr["y"] = factor.value.tolist()
        else:
            inputs["y"] = factor.name
        self.paddle_graph.add_layer(
            "paddle.pow", inputs=inputs, outputs=[node.name], **attr)

    def All(self, node):
S
SunAhong1993 已提交
1459 1460
        input = self.graph.get_input_node(node, 0)
        reduce_idx = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        attr = dict()
        attr["axis"] = reduce_idx.value.tolist()
        attr["keepdim"] = node.get_attr("keep_dims")

        input_name = input.name
        if input.dtype != "bool":
            input_name = gen_name("all", "cast")
            self.paddle_graph.add_layer(
                "paddle.cast",
                inputs={"x": input.name},
                outputs=[input_name],
                dtype=string("bool"))
        self.paddle_graph.add_layer(
S
release  
SunAhong1993 已提交
1475 1476 1477 1478
            "paddle.all",
            inputs={"x": input_name},
            outputs=[node.name],
            **attr)
S
SunAhong1993 已提交
1479 1480 1481 1482

        node.layer.attr['dtype'].type = 10

    def GatherV2(self, node):
S
SunAhong1993 已提交
1483 1484 1485
        embeddings = self.graph.get_input_node(node, 0)
        index = self.graph.get_input_node(node, 1)
        axis = self.graph.get_input_node(node, 2)
S
SunAhong1993 已提交
1486
        assert axis.layer_type == 'Const', "Only support Const parameter[axis]"
S
SunAhong1993 已提交
1487
        axis = axis.value
S
SunAhong1993 已提交
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
        index_name = index.name
        if len(index.out_shapes[0]) != 1:
            reshape_name = gen_name("gather", "reshape")
            index_name = reshape_name
            self.paddle_graph.add_layer(
                "paddle.reshape",
                inputs={"x": index.name},
                outputs=[reshape_name],
                shape=[-1])
        inputs = {'x': embeddings.name, 'index': index_name}
        self.paddle_graph.add_layer(
S
release  
SunAhong1993 已提交
1499 1500 1501 1502
            "paddle.gather",
            inputs=inputs,
            outputs=[node.name],
            axis=axis)
S
SunAhong1993 已提交
1503 1504 1505 1506 1507 1508 1509
        if len(index.out_shapes[0]) != 1:
            out_shape = node.out_shapes[0]
            self.paddle_graph.add_layer(
                kernel="paddle.reshape",
                inputs={"x": node.name},
                outputs=[node.name],
                shape=out_shape)
S
release  
SunAhong1993 已提交
1510
            
S
SunAhong1993 已提交
1511 1512 1513 1514 1515
    def GatherNd(self, node):
        x = self.graph.get_input_node(node, 0)
        index = self.graph.get_input_node(node, 1)
        inputs = {'x': x.name, 'index': index.name}
        self.paddle_graph.add_layer(
S
release  
SunAhong1993 已提交
1516 1517 1518
            "paddle.gather_nd",
            inputs=inputs,
            outputs=[node.name])
S
SunAhong1993 已提交
1519 1520

    def ExpandDims(self, node):
S
SunAhong1993 已提交
1521 1522
        x = self.graph.get_input_node(node, 0, copy=True)
        y = self.graph.get_input_node(node, 1, copy=True)
S
SunAhong1993 已提交
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
        inputs = {"x": x.name}
        attr = dict()
        if y.layer_type == 'Const':
            dim = y.value.tolist()
            if not isinstance(dim, list):
                dim = [dim]
            attr['axis'] = dim
        else:
            inputs['axis'] = y.name
        self.paddle_graph.add_layer(
S
release  
SunAhong1993 已提交
1533 1534 1535 1536 1537
            "paddle.unsqueeze",
            inputs=inputs,
            outputs=[node.name],
            **attr)
        
S
SunAhong1993 已提交
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
    def ReverseV2(self, node):
        x = self.graph.get_input_node(node, 0)
        axis = self.graph.get_input_node(node, 1)
        inputs = {"x": x.name}
        attr = dict()
        if axis.layer_type == 'Const':
            axis = axis.value.tolist()
            if not isinstance(axis, list):
                axis = [axis]
            attr['axis'] = axis
        else:
            inputs['axis'] = axis.name
        self.paddle_graph.add_layer(
S
release  
SunAhong1993 已提交
1551 1552
            "paddle.flip",
            inputs=inputs,
S
SunAhong1993 已提交
1553
            outputs=[node.name],
S
release  
SunAhong1993 已提交
1554
            **attr)