tf_op_mapper.py 59.0 KB
Newer Older
S
SunAhong1993 已提交
1
# Copyright (c) 2020  PaddlePaddle Authors. All Rights Reserved.
S
SunAhong1993 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

S
SunAhong1993 已提交
15
from x2paddle.decoder.tf_decoder import TFGraph, TFGraphNode
S
release  
SunAhong1993 已提交
16
from x2paddle.core.program import PaddleGraph
S
SunAhong1993 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
from x2paddle.core.op_mapper import OpMapper
from x2paddle.core.util import *
import traceback
import math
import inspect
import numpy
import sys

name_counter = dict()


def gen_name(op_name, var_name):
    name = "{}_{}".format(op_name, var_name)
    if name not in name_counter:
        name_counter[name] = 0
    else:
        name_counter[name] += 1
    name = name + '_' + str(name_counter[name])
    return name


# compute padding size for SAME mode
def get_same_padding(in_size, kernel_size, stride):
    new_size = int(math.ceil(in_size * 1.0 / stride))
    pad_size = (new_size - 1) * stride + kernel_size - in_size
    if pad_size < 0:
        pad_size = 0
    pad0 = int(pad_size / 2)
    pad1 = pad_size - pad0
    return [pad0, pad1]


class TFOpMapper(OpMapper):
    directly_map_ops = {
        'Relu': ['paddle.nn.ReLU'],
        'Relu6': ['paddle.nn.ReLU6'],
        'Abs': ['paddle.abs'],
        'Sigmoid': ['paddle.nn.Sigmoid'],
        'Exp': ['paddle.exp'],
        'Rsqrt': ['paddle.rsqrt'],
        'Sqrt': ['paddle.sqrt'],
        'swish_f32': ['paddle.nn.Swish'],
        'Tanh': ['paddle.nn.Tanh'],
        'Softplus': ['paddle.nn.Softplus'],
S
release  
SunAhong1993 已提交
61
        'LeakyRelu': ['paddle.nn.LeakyReLU', dict(alpha='negative_slope')],
S
SunAhong1993 已提交
62
        'Softmax': ['paddle.nn.Softmax'],
S
SunAhong1993 已提交
63 64 65 66 67 68 69 70
        'Floor': ['paddle.floor'],
        'Erf': ['paddle.erf'],
        'Square': ['paddle.square']
    }
    elementwise_ops = {
        'Add': 'paddle.add',
        'AddV2': 'paddle.add',
        'RealDiv': 'paddle.divide',
S
SunAhong1993 已提交
71
        'DivNoNan': 'paddle.divide',
S
SunAhong1993 已提交
72
        'Sub': 'paddle.subtract',
S
SunAhong1993 已提交
73 74
        'Maximum': 'paddle.maximum',
        'Minimum': 'paddle.minimum',
S
SunAhong1993 已提交
75 76 77 78 79 80
        'Mul': 'paddle.multiply',
        'FloorDiv': 'paddle.floor_divide',
        'FloorMod': 'paddle.floor_mod',
        'LogicalAnd': 'logical_and',
    }
    bool_ops = {
S
SunAhong1993 已提交
81 82
        'LessEqual': 'paddle.less_equal',
        'GreaterEqual': 'paddle.greater_equal',
S
SunAhong1993 已提交
83 84 85
        'Greater': 'paddle.greater_than',
        'NotEqual': 'paddle.not_equal',
        'Equal': 'paddle.equal',
S
SunAhong1993 已提交
86 87 88 89 90 91
    }

    def __init__(self, decoder):
        super(TFOpMapper, self).__init__()
        self.decoder = decoder
        self.graph = decoder.tf_graph
S
SunAhong1993 已提交
92 93
        if not self.op_checker():
            raise Exception("Model is not supported yet.")
S
SunAhong1993 已提交
94 95 96 97
        self.params = dict()
        self.nn_name2id = dict()
        self.input_index = 0
        self.inputs_info = dict()
S
release  
SunAhong1993 已提交
98 99
        self.paddle_graph = PaddleGraph(
            parent_layer=None, graph_type="dygraph", source_type="tf")
S
SunAhong1993 已提交
100
        self.paddle_graph.outputs = self.graph.output_nodes
S
SunAhong1993 已提交
101 102 103 104 105 106 107 108 109 110 111

        not_placeholder = list()
        for name in self.graph.input_nodes:
            if self.graph.get_node(
                    name).layer_type != "Placeholder" and self.graph.get_node(
                        name
                    ).layer_type != "OneShotIterator" and self.graph.get_node(
                        name).layer_type != "IteratorV2":
                not_placeholder.append(name)
        for name in not_placeholder:
            idx = self.graph.input_nodes.index(name)
S
release  
SunAhong1993 已提交
112
            del self.graph.input_nodes[idx]
S
SunAhong1993 已提交
113 114 115 116 117 118 119

        print("Total nodes: {}".format(
            sum([
                isinstance(node, TFGraphNode)
                for name, node in self.graph.node_map.items()
            ])))
        print("Nodes converting ...")
S
SunAhong1993 已提交
120 121 122 123 124 125 126 127
        for i, node_name in enumerate(self.graph.topo_sort):
            sys.stderr.write("\rConverting node {} ...     ".format(i + 1))
            node = self.graph.get_node(node_name)
            op = node.layer_type
            if op in self.directly_map_ops:
                self.directly_map(node)
            elif op in self.elementwise_ops:
                self.elementwise_map(node)
S
SunAhong1993 已提交
128 129
            elif op in self.bool_ops:
                self.bool_map(node)
S
SunAhong1993 已提交
130 131
            elif hasattr(self, op):
                func = getattr(self, op)
S
SunAhong1993 已提交
132 133
                func(node)
        print("\nNodes converted.")
S
SunAhong1993 已提交
134 135 136
        self.paddle_graph.set_name(self.graph.graph_name)
        self.paddle_graph.set_parameters(self.params)
        self.paddle_graph.set_inputs_info(self.inputs_info)
S
release  
SunAhong1993 已提交
137

S
SunAhong1993 已提交
138 139 140 141 142 143 144
    def op_checker(self):
        unsupported_ops = set()
        for node_name in self.graph.topo_sort:
            node = self.graph.get_node(node_name)
            op = node.layer_type
            if not hasattr(self, op) and \
                op not in self.directly_map_ops and \
S
SunAhong1993 已提交
145 146
                op not in self.elementwise_ops and \
                op not in self.bool_ops:
S
SunAhong1993 已提交
147 148 149 150 151
                unsupported_ops.add(op)
        if len(unsupported_ops) == 0:
            return True
        else:
            if len(unsupported_ops) > 0:
S
release  
SunAhong1993 已提交
152 153
                print("\n========= {} OPs are not supported yet ===========".
                      format(len(unsupported_ops)))
S
SunAhong1993 已提交
154 155
            for op in unsupported_ops:
                print("========== {} ============".format(op))
S
release  
SunAhong1993 已提交
156
            return False
S
SunAhong1993 已提交
157 158

    def directly_map(self, node):
S
SunAhong1993 已提交
159 160
        inputs = node.layer.input
        assert len(inputs) == 1, 'directly_map error with multi inputs'
S
SunAhong1993 已提交
161
        op_info = self.directly_map_ops[node.layer_type]
S
SunAhong1993 已提交
162 163
        input = self.graph.get_input_node(node, 0)
        paddle_op = op_info[0]
S
SunAhong1993 已提交
164
        layer_attrs = dict()
S
SunAhong1993 已提交
165 166
        if len(op_info) > 1:
            attrs_name_map_dict = op_info[1]
S
fix  
SunAhong1993 已提交
167
            for tf_attr_name, pd_attr_name in attrs_name_map_dict.items():
S
SunAhong1993 已提交
168 169 170
                layer_attrs[pd_attr_name] = node.get_attr(tf_attr_name)
        if paddle_op.startswith("paddle.nn"):
            op_name = paddle_op[10:].lower()
S
SunAhong1993 已提交
171 172 173 174
            op_name = name_generator(op_name, self.nn_name2id)
            output_name = node.name
            layer_outputs = [op_name, output_name]
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
175
                kernel=paddle_op,
S
SunAhong1993 已提交
176 177 178 179 180
                inputs={"x": input.name},
                outputs=layer_outputs,
                **layer_attrs)
        else:
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
181
                kernel=paddle_op,
S
SunAhong1993 已提交
182 183 184 185
                inputs={"x": input.name},
                outputs=[node.name],
                **layer_attrs)

S
SunAhong1993 已提交
186 187 188 189
    def elementwise_map(self, node, op_type=None):
        if op_type is None:
            assert node.layer_type in self.elementwise_ops
            op_type = self.elementwise_ops[node.layer_type]
S
SunAhong1993 已提交
190 191
        x = self.graph.get_input_node(node, 0)
        y = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
192 193
        x_shape = x.out_shapes[0]
        y_shape = y.out_shapes[0]
S
SunAhong1993 已提交
194
        layer_id = self.paddle_graph.add_layer(
S
SunAhong1993 已提交
195 196 197 198
            kernel=op_type,
            inputs={"x": x.name,
                    "y": y.name},
            outputs=[node.name])
S
release  
SunAhong1993 已提交
199 200 201 202 203
        self.paddle_graph.layers[layer_id].input_shapes = {
            "x": x_shape,
            "y": y_shape
        }

S
SunAhong1993 已提交
204 205 206 207
    def bool_map(self, node):
        op_type = self.bool_ops[node.layer_type]
        self.elementwise_map(node, op_type)
        node.set_dtype("bool")
S
SunAhong1993 已提交
208 209 210 211 212 213

    def Placeholder(self, node):
        shape = node.out_shapes[0]
        assert len(shape) != 0, "Unknown shape of input nodes[{}].".format(
            node.layer_name)
        dtype = node.dtype
S
release  
SunAhong1993 已提交
214

S
SunAhong1993 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
        self.paddle_graph.add_layer(
            kernel="paddle.to_tensor",
            inputs={},
            outputs=[node.name],
            data="x{}".format(self.input_index))
        self.inputs_info["x{}".format(self.input_index)] = [shape, node.dtype]
        self.input_index += 1

    def Const(self, node):
        shape = node.out_shapes[0]
        dtype = node.dtype
        value = node.value
        if len(shape) == 0:
            assert value.size == 1, "Unexpected situation happend"
            if value == float('inf'):
                value = "float('inf')"
            self.paddle_graph.add_layer(
S
release  
SunAhong1993 已提交
232 233
                "paddle.full",
                inputs={},
S
SunAhong1993 已提交
234 235 236 237 238 239
                outputs=[node.name],
                dtype=string(dtype),
                shape=[1],
                fill_value=value)
            return
        self.params[node.name] = node.value
S
release  
SunAhong1993 已提交
240

S
SunAhong1993 已提交
241
        if 0 not in shape:
S
SunAhong1993 已提交
242
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
243 244 245 246
                "self.create_parameter",
                inputs={},
                outputs=[node.name],
                shape=shape,
S
SunAhong1993 已提交
247 248 249
                attr=string(node.name),
                dtype=string(dtype),
                default_initializer="paddle.nn.initializer.Constant(value=0.0)")
S
release  
SunAhong1993 已提交
250

S
SunAhong1993 已提交
251
    def Transpose(self, node):
S
SunAhong1993 已提交
252 253
        input = self.graph.get_input_node(node, 0)
        perm = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
254 255 256
        if perm.layer_type == "Const":
            perm = perm.value.tolist()
        else:
S
release  
SunAhong1993 已提交
257 258 259
            perm = self.decoder.infer_tensor(
                perm, use_diff_inputs=False).tolist()

S
SunAhong1993 已提交
260 261 262 263 264
        self.paddle_graph.add_layer(
            "paddle.transpose",
            inputs={"x": input.name},
            outputs=[node.name],
            perm=perm)
S
release  
SunAhong1993 已提交
265

S
SunAhong1993 已提交
266 267 268 269
    def Where(self, node):
        if len(node.layer.input) == 1:
            cond = self.graph.get_input_node(node, 0)
            self.paddle_graph.add_layer(
S
release  
SunAhong1993 已提交
270
                "paddle.nonzero", inputs={"x": cond.name}, outputs=[node.name])
S
SunAhong1993 已提交
271 272 273 274 275 276 277 278 279 280
        else:
            cond = self.graph.get_input_node(node, 0)
            x = self.graph.get_input_node(node, 1)
            y = self.graph.get_input_node(node, 2)
            self.paddle_graph.add_layer(
                "paddle.where",
                inputs={"condition": cond.name,
                        "x": x.name,
                        "y": y.name},
                outputs=[node.name])
S
release  
SunAhong1993 已提交
281

S
add beg  
SunAhong1993 已提交
282 283
    def Neg(self, node):
        input = self.graph.get_input_node(node, 0)
S
release  
SunAhong1993 已提交
284

S
add beg  
SunAhong1993 已提交
285 286 287 288 289
        self.paddle_graph.add_layer(
            "paddle.scale",
            inputs={"x": input.name},
            outputs=[node.name],
            scale=-1)
S
SunAhong1993 已提交
290 291

    def Fill(self, node):
S
SunAhong1993 已提交
292 293
        dims = self.graph.get_input_node(node, 0)
        input_value = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
294 295 296 297 298 299 300 301
        inputs = dict()
        layer_attrs = dict()
        assert input_value.layer_type == "Const", "Value of fill OP should be Const"
        if dims.layer_type == "Const":
            layer_attrs["shape"] = dims.value.tolist()
        else:
            inputs["shape"] = dims.name
        layer_attrs["dtype"] = string(input_value.dtype)
S
SunAhong1993 已提交
302
        layer_attrs["fill_value"] = input_value.value
S
SunAhong1993 已提交
303 304

        self.paddle_graph.add_layer(
S
release  
SunAhong1993 已提交
305
            "paddle.full", inputs=inputs, outputs=[node.name], **layer_attrs)
S
SunAhong1993 已提交
306 307

    def DepthToSpace(self, node):
S
SunAhong1993 已提交
308
        input = self.graph.get_input_node(node, 0)
S
SunAhong1993 已提交
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349

        block_size = node.get_attr("block_size")
        data_format = node.get_attr("data_format").decode()
        if data_format == "NHWC":
            n, h, w, c = input.out_shapes[0]
        else:
            n, c, h, w = input.out_shapes[0]

        input_name = input.name
        if data_format == "NHWC":
            transpose_name = gen_name("depth_to_space", "transpose")
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

        shape = [0, block_size * block_size, -1, h, w]
        reshape_name = gen_name("depth_to_space", "reshape")
        self.paddle_graph.add_layer(
            kernel="paddle.reshape",
            inputs={"x": input_name},
            outputs=[reshape_name],
            shape=shape)

        transpose_name = gen_name("depth_to_space", "transpose")
        self.paddle_graph.add_layer(
            kernel="paddle.transpose",
            inputs={"x": reshape_name},
            outputs=[transpose_name],
            perm=[0, 2, 1, 3, 4])

        reshape_name = gen_name("depth_to_space", "reshape")
        self.paddle_graph.add_layer(
            kernel="paddle.reshape",
            inputs={"x": transpose_name},
            outputs=[reshape_name],
            shape=[0, c, h, w])

        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
350
            kernel="paddle.nn.functional.pixel_shuffle",
S
SunAhong1993 已提交
351 352 353 354 355 356 357 358 359 360 361 362
            inputs={"x": reshape_name},
            outputs=[node.name],
            upscale_factor=block_size)

        if data_format == "NHWC":
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])

    def MaxPool(self, node):
S
SunAhong1993 已提交
363
        input = self.graph.get_input_node(node, 0)
S
SunAhong1993 已提交
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384

        k_size = node.get_attr("ksize")
        strides = node.get_attr("strides")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()

        input_name = input.name
        if data_format == "NHWC":
            transpose_name = gen_name("max_pool", "transpose")
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            strides = [strides[i] for i in [0, 3, 1, 2]]
            k_size = [k_size[i] for i in [0, 3, 1, 2]]
            input_name = transpose_name

        op_name = name_generator("pool", self.nn_name2id)
        output_name = node.name
        layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
385

S
SunAhong1993 已提交
386
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
387
            kernel="paddle.nn.MaxPool2D",
S
SunAhong1993 已提交
388 389
            inputs={"input": input_name},
            outputs=layer_outputs,
S
SunAhong1993 已提交
390 391 392
            kernel_size=k_size[2:4],
            stride=strides[2:4],
            padding=string(pad_mode))
S
SunAhong1993 已提交
393 394 395 396 397 398 399 400 401 402 403 404

        if data_format == "NHWC":
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])

    def Conv2D(self, node):
        op_name = name_generator("conv", self.nn_name2id)
        output_name = node.name
        layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
405 406
        input = self.graph.get_input_node(node, 0)
        kernel = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
407 408 409 410 411 412 413 414 415 416 417 418 419 420

        k_size = kernel.out_shapes[0]
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
        if data_format == "NHWC":
            n, h, w, c = input.out_shapes[0]
        else:
            n, c, h, w = input.out_shapes[0]

        if kernel.layer_type == 'Const':
            kernel_value = kernel.value
        else:
S
release  
SunAhong1993 已提交
421 422
            kernel_value = self.decoder.infer_tensor(
                kernel, use_diff_inputs=False)
S
SunAhong1993 已提交
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
        kernel_weight_name = op_name + ".weight"
        self.params[kernel_weight_name] = numpy.transpose(kernel_value,
                                                          (3, 2, 0, 1))

        input_name = input.name
        if data_format == "NHWC":
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
            transpose_name = gen_name("conv2d", "transpose")
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

        if c == -1:
            attr = {"shape": [0, k_size[2], 0, 0]}
            self.paddle_graph.add_layer(
                kernel="paddle.reshape",
                inputs={"x": input_name},
                outputs=[input_name],
                shape=[0, k_size[2], 0, 0])

        self.paddle_graph.add_layer(
            kernel="paddle.nn.Conv2D",
            inputs={"input": input_name},
            outputs=layer_outputs,
            weight_attr=string(kernel_weight_name),
            bias_attr=False,
            in_channels=k_size[2],
            out_channels=k_size[3],
            kernel_size=k_size[0:2],
            stride=strides[2:4],
            dilation=dilations[2:4],
            padding=string(pad_mode))

        if data_format == "NHWC":
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
S
release  
SunAhong1993 已提交
466

S
SunAhong1993 已提交
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
    def Conv3D(self, node):
        op_name = name_generator("conv", self.nn_name2id)
        output_name = node.name
        layer_outputs = [op_name, output_name]
        input = self.graph.get_input_node(node, 0)
        kernel = self.graph.get_input_node(node, 1)

        k_size = kernel.out_shapes[0]
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
        if data_format == "NDHWC":
            n, d, h, w, c = input.out_shapes[0]
        else:
            n, c, d, h, w = input.out_shapes[0]

        if kernel.layer_type == 'Const':
            kernel_value = kernel.value
        else:
S
release  
SunAhong1993 已提交
487 488
            kernel_value = self.decoder.infer_tensor(
                kernel, use_diff_inputs=False)
S
SunAhong1993 已提交
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
        kernel_weight_name = op_name + ".weight"
        self.params[kernel_weight_name] = numpy.transpose(kernel_value,
                                                          (4, 3, 0, 1, 2))

        input_name = input.name
        if data_format == "NDHWC":
            strides = [strides[i] for i in [0, 4, 1, 2, 3]]
            dilations = [dilations[i] for i in [0, 4, 1, 2, 3]]
            transpose_name = gen_name("conv3d", "transpose")
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 4, 1, 2, 3])
            input_name = transpose_name

        if c == -1:
            attr = {"shape": [0, k_size[2], 0, 0, 0]}
            self.paddle_graph.add_layer(
                kernel="paddle.reshape",
                inputs={"x": input_name},
                outputs=[input_name],
                shape=[0, k_size[2], 0, 0, 0])

        self.paddle_graph.add_layer(
            kernel="paddle.nn.Conv3D",
            inputs={"input": input_name},
            outputs=layer_outputs,
            weight_attr=string(kernel_weight_name),
            bias_attr=False,
            in_channels=k_size[3],
            out_channels=k_size[4],
            kernel_size=k_size[0:3],
            stride=strides[2:5],
            dilation=dilations[2:5],
            padding=string(pad_mode))

        if data_format == "NDHWC":
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 4, 1])
S
SunAhong1993 已提交
532 533

    def BiasAdd(self, node):
S
SunAhong1993 已提交
534 535
        input = self.graph.get_input_node(node, 0)
        bias = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
536 537 538 539 540 541 542 543 544 545
        self.paddle_graph.add_layer(
            kernel="paddle.add",
            inputs={"x": input.name,
                    "y": bias.name},
            outputs=[node.name])

    def FusedBatchNorm(self, node):
        op_name = name_generator("bn", self.nn_name2id)
        output_name = node.name
        layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
546
        input = self.graph.get_input_node(node, 0)
S
SunAhong1993 已提交
547

S
SunAhong1993 已提交
548 549 550 551
        gamma = self.graph.get_input_node(node, 1)
        beta = self.graph.get_input_node(node, 2)
        moving_mean = self.graph.get_input_node(node, 3)
        moving_var = self.graph.get_input_node(node, 4)
S
SunAhong1993 已提交
552 553 554 555 556 557 558
        data_format = node.get_attr("data_format").decode()

        assert gamma.layer_type == "Const"
        assert beta.layer_type == "Const"
        assert moving_mean.layer_type == "Const"
        assert moving_var.layer_type == "Const"

S
release  
SunAhong1993 已提交
559
        input_name = input.name
S
SunAhong1993 已提交
560 561 562 563 564 565 566 567
        if data_format == "NHWC":
            transpose_name = gen_name("batch_norm", "transpose")
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name
S
SunAhong1993 已提交
568 569
            n, h, w, c = input.out_shapes[0]
        else:
S
release  
SunAhong1993 已提交
570
            n, c, h, w = input.out_shapes[0]
S
SunAhong1993 已提交
571

S
release  
SunAhong1993 已提交
572 573 574 575 576 577 578 579
        self.params["{}_{}".format(node.name, gamma.name)] = self.params[
            gamma.name]
        self.params["{}_{}".format(node.name, beta.name)] = self.params[
            beta.name]
        self.params["{}_{}".format(node.name, moving_mean.name)] = self.params[
            moving_mean.name]
        self.params["{}_{}".format(node.name, moving_var.name)] = self.params[
            moving_var.name]
S
SunAhong1993 已提交
580 581 582 583
        self.paddle_graph.add_layer(
            kernel="paddle.nn.BatchNorm",
            inputs={"input": input_name},
            outputs=layer_outputs,
S
SunAhong1993 已提交
584
            num_channels=c,
S
SunAhong1993 已提交
585
            epsilon=node.get_attr("epsilon"),
S
SunAhong1993 已提交
586 587
            param_attr=string("{}_{}".format(node.name, gamma.name)),
            bias_attr=string("{}_{}".format(node.name, beta.name)),
S
release  
SunAhong1993 已提交
588 589 590 591
            moving_mean_name=string("{}_{}".format(node.name,
                                                   moving_mean.name)),
            moving_variance_name=string("{}_{}".format(node.name,
                                                       moving_var.name)),
S
SunAhong1993 已提交
592 593 594 595 596 597 598 599
            is_test=True)

        if data_format == "NHWC":
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
S
release  
SunAhong1993 已提交
600

S
SunAhong1993 已提交
601 602
    def FusedBatchNormV3(self, node):
        self.FusedBatchNorm(node)
S
SunAhong1993 已提交
603 604

    def Mean(self, node):
S
SunAhong1993 已提交
605 606
        input = self.graph.get_input_node(node, 0)
        reduce_idx = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
607 608 609 610 611 612 613 614 615 616 617 618
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        dims = reduce_idx.value.tolist()
        keep_dims = node.get_attr("keep_dims")

        self.paddle_graph.add_layer(
            kernel="paddle.mean",
            inputs={"x": input.name},
            outputs=[node.name],
            axis=dims,
            keepdim=keep_dims)

    def Reshape(self, node):
S
SunAhong1993 已提交
619 620
        input = self.graph.get_input_node(node, 0)
        param = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647

        input_name = input.name

        if param.layer_type == "Const":
            shape = param.value.tolist()
            self.paddle_graph.add_layer(
                kernel="paddle.reshape",
                inputs={"x": input_name},
                outputs=[node.name],
                shape=shape)
        else:
            self.paddle_graph.add_layer(
                kernel="paddle.reshape",
                inputs={"x": input_name,
                        "shape": param.name},
                outputs=[node.name])
        if param.layer_type != "Const":
            out_shape = numpy.array(node.out_shapes[0])
            if (out_shape > 0).any():
                out_shape[out_shape < 0] = 0
                self.paddle_graph.add_layer(
                    kernel="paddle.reshape",
                    inputs={"x": node.name},
                    outputs=[node.name],
                    shape=out_shape.tolist())

    def Pad(self, node):
S
SunAhong1993 已提交
648 649
        input = self.graph.get_input_node(node, 0)
        paddings = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
650 651
        assert paddings.layer_type == "Const", "Padding should be Const"
        paddings = paddings.value.flatten().tolist()
S
SunAhong1993 已提交
652 653 654 655 656
        constant_values = 0
        if len(node.layer.input) > 2:
            constant_values = self.graph.get_input_node(node, 2)
            assert constant_values.layer_type == "Const", "Padding should be Const"
            constant_values = constant_values.value
S
SunAhong1993 已提交
657 658 659

        self.paddle_graph.add_layer(
            kernel="paddle.nn.functional.pad",
S
SunAhong1993 已提交
660
            inputs={"x": input.name},
S
SunAhong1993 已提交
661
            outputs=[node.name],
S
SunAhong1993 已提交
662 663
            pad=paddings,
            value=constant_values)
S
release  
SunAhong1993 已提交
664

S
SunAhong1993 已提交
665
    def MirrorPad(self, node):
S
SunAhong1993 已提交
666
        self.Pad(node)
S
release  
SunAhong1993 已提交
667

S
SunAhong1993 已提交
668 669
    def PadV2(self, node):
        self.Pad(node)
S
SunAhong1993 已提交
670 671

    def Squeeze(self, node):
S
SunAhong1993 已提交
672
        input = self.graph.get_input_node(node, 0)
S
SunAhong1993 已提交
673 674 675 676 677 678 679 680
        squeeze_dims = node.get_attr('squeeze_dims')
        self.paddle_graph.add_layer(
            kernel="paddle.squeeze",
            inputs={"x": input.name},
            outputs=[node.name],
            axis=squeeze_dims)

    def Shape(self, node):
S
SunAhong1993 已提交
681
        input = self.graph.get_input_node(node, 0)
S
SunAhong1993 已提交
682 683 684 685 686
        input_name = input.name
        self.paddle_graph.add_layer(
            kernel="paddle.shape",
            inputs={"input": input_name},
            outputs=[node.name])
S
release  
SunAhong1993 已提交
687

S
SunAhong1993 已提交
688 689 690 691 692 693 694 695
    def Size(self, node):
        input = self.graph.get_input_node(node, 0)
        input_name = input.name
        self.paddle_graph.add_layer(
            kernel="paddle.shape",
            inputs={"input": input_name},
            outputs=[node.name])
        self.paddle_graph.add_layer(
S
release  
SunAhong1993 已提交
696 697
            kernel="paddle.prod", inputs={"x": node.name}, outputs=[node.name])

S
SunAhong1993 已提交
698 699 700
    def Ceil(self, node):
        input = self.graph.get_input_node(node, 0)
        self.paddle_graph.add_layer(
S
release  
SunAhong1993 已提交
701
            kernel="paddle.ceil", inputs={"x": input.name},
S
SunAhong1993 已提交
702
            outputs=[node.name])
S
SunAhong1993 已提交
703 704

    def ArgMax(self, node):
S
SunAhong1993 已提交
705 706
        input = self.graph.get_input_node(node, 0)
        axis = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
707 708 709 710 711 712 713
        assert axis.layer_type == "Const", "ArgMax only support Const parameter"
        axis = axis.value
        self.paddle_graph.add_layer(
            kernel="paddle.argmax",
            inputs={"x": input.name},
            outputs=[node.name],
            axis=axis)
S
release  
SunAhong1993 已提交
714

S
SunAhong1993 已提交
715 716 717 718 719 720 721 722 723 724 725 726
    def TopKV2(self, node):
        input = self.graph.get_input_node(node, 0)
        k = self.graph.get_input_node(node, 1)
        assert k.layer_type == "Const", "ArgMax only support Const parameter"
        k = k.value
        sort = node.get_attr('sorted')
        self.paddle_graph.add_layer(
            kernel="paddle.topk",
            inputs={"x": input.name},
            outputs=[node.name],
            k=k,
            sorted=sort)
S
SunAhong1993 已提交
727 728

    def MatMul(self, node):
S
SunAhong1993 已提交
729 730
        x = self.graph.get_input_node(node, 0)
        y = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
        transpose_a = node.get_attr('transpose_a')
        transpose_b = node.get_attr('transpose_b')
        if transpose_a is None:
            transpose_a = node.get_attr('adj_x')
        if transpose_b is None:
            transpose_b = node.get_attr('adj_y')
        self.paddle_graph.add_layer(
            kernel="paddle.matmul",
            inputs={"x": x.name,
                    "y": y.name},
            outputs=[node.name],
            transpose_x=transpose_a,
            transpose_y=transpose_b)

    def BatchMatMul(self, node):
        return self.MatMul(node)

    def BatchMatMulV2(self, node):
        return self.MatMul(node)

    def DepthwiseConv2dNative(self, node):
        op_name = name_generator("conv", self.nn_name2id)
        output_name = node.name
        layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
755 756
        input = self.graph.get_input_node(node, 0)
        kernel = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
        assert kernel.layer_type == "Const", "Kernel of DepthwiseConv2DNative should be Const"

        in_shape = input.out_shapes[0]
        k_size = kernel.out_shapes[0]
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()

        kernel_weight_name = op_name + ".weight"
        self.params[kernel_weight_name] = numpy.transpose(kernel.value,
                                                          (2, 3, 0, 1))

        input_name = input.name
        if data_format == "NHWC":
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
            transpose_name = gen_name('depthwise_conv2d', 'transpose')
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

        self.paddle_graph.add_layer(
            kernel="paddle.nn.Conv2D",
            inputs={"input": input_name},
            outputs=layer_outputs,
            weight_attr=string(kernel_weight_name),
            bias_attr=False,
            in_channels=in_shape[1],
            out_channels=k_size[2],
            kernel_size=k_size[0:2],
            stride=strides[2:4],
            dilation=dilations[2:4],
            groups=k_size[3] * in_shape[1],
            padding=string(pad_mode))

        if data_format == "NHWC":
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])

    def AvgPool(self, node):
S
SunAhong1993 已提交
805
        input = self.graph.get_input_node(node, 0)
S
SunAhong1993 已提交
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826

        k_size = node.get_attr("ksize")
        strides = node.get_attr("strides")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()

        input_name = input.name
        if data_format == "NHWC":
            transpose_name = gen_name("avg_pool", "transpose")
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            strides = [strides[i] for i in [0, 3, 1, 2]]
            k_size = [k_size[i] for i in [0, 3, 1, 2]]
            input_name = transpose_name

        op_name = name_generator("pool", self.nn_name2id)
        output_name = node.name
        layer_outputs = [op_name, output_name]
S
release  
SunAhong1993 已提交
827

S
SunAhong1993 已提交
828
        # TODO(syf): The op has diff.
S
SunAhong1993 已提交
829
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
830
            kernel="paddle.nn.AvgPool2D",
S
SunAhong1993 已提交
831
            inputs={"input": input_name},
S
SunAhong1993 已提交
832 833 834 835 836
            outputs=layer_outputs,
            kernel_size=k_size[2:4],
            stride=strides[2:4],
            padding=string(pad_mode))

S
SunAhong1993 已提交
837 838 839 840 841 842 843 844
        if data_format == "NHWC":
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])

    def Pack(self, node):
S
SunAhong1993 已提交
845 846 847 848
        inputs_list = list()
        for i in range(len(node.inputs)):
            inputs_list.append(self.graph.get_input_node(node, i))
        input_names = [i.name for i in inputs_list]
S
SunAhong1993 已提交
849 850 851 852 853 854 855 856 857 858 859 860 861 862
        axis = node.get_attr("axis")
        self.paddle_graph.add_layer(
            kernel="paddle.stack",
            inputs={"x": input_names},
            outputs=[node.name],
            axis=axis)
        if len(node.out_shapes[0]) == 1:
            self.paddle_graph.add_layer(
                kernel="paddle.reshape",
                inputs={"x": node.name},
                outputs=[node.name],
                shape=[-1])

    def Unpack(self, node):
S
SunAhong1993 已提交
863
        input = self.graph.get_input_node(node, 0)
S
SunAhong1993 已提交
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
        axis = node.get_attr("axis")
        num = node.get_attr("num")
        shape = input.out_shapes[0]
        input_name = input.name
        if len(shape) == 1:
            if shape[0] > 0 and num == shape[0]:
                self.paddle_graph.add_layer(
                    kernel="paddle.unsqueeze",
                    inputs={"x": input.name},
                    outputs=[node.name],
                    axis=[0])
                input_name = node.name
                axis = 1
            else:
                raise Exception("Unexpected situation happend in Unpack OP")
S
release  
SunAhong1993 已提交
879 880 881
        layer_outputs = [
            "{}_p{}".format(node.layer_name, i) for i in range(num)
        ]
S
SunAhong1993 已提交
882 883
        if len(layer_outputs) == 1:
            layer_outputs[0] = "[{}]".format(node.layer_name)
S
SunAhong1993 已提交
884 885 886
        self.paddle_graph.add_layer(
            kernel="paddle.unstack",
            inputs={"x": input_name},
S
SunAhong1993 已提交
887
            outputs=layer_outputs,
S
SunAhong1993 已提交
888 889 890 891
            axis=axis,
            num=num)

    def ConcatV2(self, node):
S
SunAhong1993 已提交
892 893 894 895
        inputs_list = list()
        for i in range(len(node.inputs) - 1):
            inputs_list.append(self.graph.get_input_node(node, i))
        axis = self.graph.get_input_node(node, -1)
S
SunAhong1993 已提交
896 897 898
        assert axis.layer_type == "Const", "axis for ConcatV2 must be type Const"
        axis = axis.value
        if axis < 0:
S
fix  
SunAhong1993 已提交
899
            axis += len(inputs_list[0].out_shapes[0])
S
SunAhong1993 已提交
900

S
SunAhong1993 已提交
901
        input_names = [i.name for i in inputs_list]
S
SunAhong1993 已提交
902 903
        self.paddle_graph.add_layer(
            kernel="paddle.concat",
S
SunAhong1993 已提交
904
            inputs={"x": input_names},
S
SunAhong1993 已提交
905 906
            outputs=[node.name],
            axis=axis)
S
release  
SunAhong1993 已提交
907

S
SunAhong1993 已提交
908 909 910 911 912 913 914 915 916
    def Concat(self, node):
        inputs_list = list()
        for i in range(1, len(node.inputs)):
            inputs_list.append(self.graph.get_input_node(node, i))
        axis = self.graph.get_input_node(node, 0)
        assert axis.layer_type == "Const", "axis for ConcatV2 must be type Const"
        axis = axis.value
        if axis < 0:
            axis += len(inputs_list[0].out_shapes[0])
S
release  
SunAhong1993 已提交
917

S
SunAhong1993 已提交
918 919 920 921 922 923
        input_names = [i.name for i in inputs_list]
        self.paddle_graph.add_layer(
            kernel="paddle.concat",
            inputs={"x": input_names},
            outputs=[node.name],
            axis=axis)
S
release  
SunAhong1993 已提交
924

S
SunAhong1993 已提交
925 926 927 928 929 930 931 932 933 934
    def AddN(self, node):
        inputs_list = list()
        for i in range(len(node.inputs) - 1):
            inputs_list.append(self.graph.get_input_node(node, i))

        input_names = [i.name for i in inputs_list]
        self.paddle_graph.add_layer(
            kernel="paddle.add_n",
            inputs={"inputs": input_names},
            outputs=[node.name])
S
SunAhong1993 已提交
935 936

    def StridedSlice(self, node):
S
SunAhong1993 已提交
937 938 939 940
        input = self.graph.get_input_node(node, 0)
        begin = self.graph.get_input_node(node, 1)
        end = self.graph.get_input_node(node, 2)
        strides = self.graph.get_input_node(node, 3)
S
SunAhong1993 已提交
941 942 943 944

        if strides.layer_type == "Const":
            strides = strides.value.tolist()
        else:
S
SunAhong1993 已提交
945
            strides = self.decoder.infer_tensor(strides)
S
SunAhong1993 已提交
946 947 948
        if begin.layer_type == "Const":
            begin = begin.value.tolist()
        else:
S
SunAhong1993 已提交
949
            begin = self.decoder.infer_tensor(begin)
S
SunAhong1993 已提交
950 951 952
        if end.layer_type == "Const":
            end = end.value.tolist()
        else:
S
SunAhong1993 已提交
953
            end = self.decoder.infer_tensor(end)
S
SunAhong1993 已提交
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001

        assert len(set(strides)) == 1 and strides[
            0] == 1, "Only support strides be 1 in StridedSlice OP"

        if len(begin) < len(input.out_shapes[0]):
            begin = begin + [0] * (len(input.out_shapes[0]) - len(begin))
        if len(end) < len(input.out_shapes[0]):
            end = end + [0] * (len(input.out_shapes[0]) - len(end))
        for i in range(len(end)):
            if end[i] == 0:
                end[i] = 999999

        begin_mask = node.get_attr('begin_mask')
        end_mask = node.get_attr('end_mask')
        ellipsis_mask = node.get_attr('ellipsis_mask')
        new_axis_mask = node.get_attr('new_axis_mask')
        shrink_axis_mask = node.get_attr('shrink_axis_mask')

        assert ellipsis_mask == 0, "(OP:{} Name:{})Only support ellipsis_mask be 0[now: {}] n StridedSlice OP".format(
            node.layer_type, node.layer.name, ellipsis_mask)

        # TODO codes without validation
        # Use it carefully
        new_begin = list()
        new_end = list()
        new_axes = list()
        shrink_axes = list()
        for i, item in enumerate(begin):
            mask = (new_axis_mask >> i) & 1
            if mask != 0:
                new_axes.append(i)
                continue

            mask = (shrink_axis_mask >> i) & 1
            if mask != 0:
                shrink_axes.append(i)

            mask = (begin_mask >> i) & 1
            if mask != 0:
                new_begin.append(0)
            else:
                new_begin.append(item)

            mask = (end_mask >> i) & 1
            if mask != 0:
                new_end.append(999999)
            else:
                new_end.append(end[i])
S
release  
SunAhong1993 已提交
1002

S
fix  
SunAhong1993 已提交
1003 1004 1005 1006 1007 1008
        if input.dtype == "bool":
            self.paddle_graph.add_layer(
                "paddle.cast",
                inputs={"x": input.name},
                outputs=[input.name],
                dtype=string("int32"))
S
SunAhong1993 已提交
1009 1010 1011 1012 1013 1014 1015 1016

        self.paddle_graph.add_layer(
            kernel="paddle.slice",
            inputs={"input": input.name},
            outputs=[node.name],
            axes=[i for i in range(len(new_begin))],
            starts=new_begin,
            ends=new_end)
S
release  
SunAhong1993 已提交
1017

S
fix  
SunAhong1993 已提交
1018 1019 1020 1021 1022 1023 1024
        if input.dtype == "bool":
            self.paddle_graph.add_layer(
                "paddle.cast",
                inputs={"x": node.name},
                outputs=[node.name],
                dtype=string("bool"))

S
SunAhong1993 已提交
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
        if len(new_axes) > 0:
            self.paddle_graph.add_layer(
                kernel="paddle.unsqueeze",
                inputs={"x": node.name},
                outputs=[node.name],
                axis=new_axes)
        if len(shrink_axes) > 0:
            if len(input.out_shapes[0]) + len(new_axes) <= 1:
                pass
            else:
                self.paddle_graph.add_layer(
                    kernel="paddle.squeeze",
                    inputs={"x": node.name},
                    outputs=[node.name],
                    axis=shrink_axes)
S
release  
SunAhong1993 已提交
1040

S
SunAhong1993 已提交
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
    def Prod(self, node):
        input = self.graph.get_input_node(node, 0)
        reduction_indices = self.graph.get_input_node(node, 1)
        assert reduction_indices.layer_type == "Const"
        keep_dims = node.get_attr('keep_dims')
        axis = reduction_indices.value

        self.paddle_graph.add_layer(
            kernel="paddle.prod",
            inputs={"x": input.name},
            outputs=[node.layer_name],
            keepdim=keep_dims,
            axis=axis)
S
SunAhong1993 已提交
1054 1055

    def Split(self, node):
S
SunAhong1993 已提交
1056 1057
        dim = self.graph.get_input_node(node, 0)
        input = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
1058 1059 1060 1061 1062 1063
        assert dim.layer_type == "Const"
        num_split = node.get_attr('num_split')
        dim = dim.value

        self.paddle_graph.add_layer(
            kernel="paddle.split",
S
SunAhong1993 已提交
1064
            inputs={"x": input.name},
S
SunAhong1993 已提交
1065 1066 1067 1068
            outputs=[
                "{}_p{}".format(node.layer_name, i) for i in range(num_split)
            ],
            num_or_sections=num_split,
S
SunAhong1993 已提交
1069
            axis=dim)
S
release  
SunAhong1993 已提交
1070

S
SunAhong1993 已提交
1071 1072 1073 1074 1075 1076 1077 1078
    def SplitV(self, node):
        input = self.graph.get_input_node(node, 0)
        size_splits = self.graph.get_input_node(node, 1)
        assert size_splits.layer_type == "Const", "size_splits of SplitV OP should be Const"
        size_splits = size_splits.value.tolist()
        dim = self.graph.get_input_node(node, 2)
        assert dim.layer_type == "Const", "dim of SplitV OP should be Const"
        dim = dim.value
S
release  
SunAhong1993 已提交
1079

S
SunAhong1993 已提交
1080 1081 1082 1083
        self.paddle_graph.add_layer(
            kernel="paddle.split",
            inputs={"x": input.name},
            outputs=[
S
release  
SunAhong1993 已提交
1084 1085
                "{}_p{}".format(node.layer_name, i)
                for i in range(len(size_splits))
S
SunAhong1993 已提交
1086 1087 1088
            ],
            num_or_sections=size_splits,
            axis=dim)
S
SunAhong1993 已提交
1089 1090

    def Slice(self, node):
S
SunAhong1993 已提交
1091 1092 1093
        input = self.graph.get_input_node(node, 0)
        begin = self.graph.get_input_node(node, 1)
        size = self.graph.get_input_node(node, 2)
S
SunAhong1993 已提交
1094 1095 1096 1097 1098 1099 1100

        inputs = {"x": input.name}
        attrs = {}
        if begin.layer_type == "Const":
            begin = begin.value.tolist()
            attrs['offsets'] = begin
        else:
S
release  
SunAhong1993 已提交
1101 1102
            begin = self.decoder.infer_tensor(
                begin, use_diff_inputs=False).tolist()
S
SunAhong1993 已提交
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
            attrs['offsets'] = begin
        if size.layer_type == "Const":
            size = size.value.tolist()
            attrs['shape'] = size
        else:
            shape = size.out_shapes[0]
            reshape_name = gen_name("slice", "reshape")
            self.paddle_graph.add_layer(
                kernel="paddle.reshape",
                inputs={"x": size.name},
                outputs=[reshape_name],
                shape=shape)
            inputs['shape'] = reshape_name
        self.paddle_graph.add_layer(
S
release  
SunAhong1993 已提交
1117
            kernel="paddle.crop", inputs=inputs, outputs=[node.name], **attrs)
S
SunAhong1993 已提交
1118 1119

    def ResizeNearestNeighbor(self, node):
S
SunAhong1993 已提交
1120 1121
        input = self.graph.get_input_node(node, 0)
        resize_shape = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
1122
        data_format = "NHWC"
S
SunAhong1993 已提交
1123
        inputs = {"x": input.name}
S
release  
SunAhong1993 已提交
1124 1125 1126 1127 1128
        attrs = {
            "align_corners": node.get_attr("align_corners"),
            "mode": string("nearest"),
            "align_mode": 1
        }
S
SunAhong1993 已提交
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140

        if resize_shape.layer_type == "Const":
            resize_shape = resize_shape.value.tolist()
            attrs["size"] = resize_shape
        else:
            shape = resize_shape.out_shapes[0]
            reshape_name = gen_name("resize_nearest", "reshape")
            self.paddle_graph.add_layer(
                kernel="paddle.reshape",
                inputs={"x": resize_shape.name},
                outputs=[reshape_name],
                shape=shape)
S
SunAhong1993 已提交
1141
            inputs["size"] = reshape_name
S
SunAhong1993 已提交
1142 1143 1144 1145 1146 1147 1148 1149

        if data_format == "NHWC":
            transpose_name = gen_name("resize_nearest", "reshape")
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
S
SunAhong1993 已提交
1150
            inputs["x"] = transpose_name
S
SunAhong1993 已提交
1151 1152

        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1153
            kernel="paddle.nn.functional.interpolate",
S
SunAhong1993 已提交
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
            inputs=inputs,
            outputs=[node.name],
            **attrs)

        if data_format == "NHWC":
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
S
release  
SunAhong1993 已提交
1164

S
SunAhong1993 已提交
1165
    def ResizeBilinear(self, node):
S
SunAhong1993 已提交
1166 1167
        input = self.graph.get_input_node(node, 0)
        resize_shape = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
1168
        data_format = "NHWC"
S
SunAhong1993 已提交
1169
        inputs = {"x": input.name}
S
release  
SunAhong1993 已提交
1170 1171 1172 1173 1174
        attrs = {
            "align_corners": node.get_attr("align_corners"),
            "mode": string("bilinear"),
            "align_mode": 1
        }
S
SunAhong1993 已提交
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186

        if resize_shape.layer_type == "Const":
            resize_shape = resize_shape.value.tolist()
            attrs["size"] = resize_shape
        else:
            shape = resize_shape.out_shapes[0]
            reshape_name = gen_name("resize_bilinear", "reshape")
            self.paddle_graph.add_layer(
                kernel="paddle.reshape",
                inputs={"x": resize_shape.name},
                outputs=[reshape_name],
                shape=shape)
S
SunAhong1993 已提交
1187
            inputs["size"] = reshape_name
S
SunAhong1993 已提交
1188 1189 1190 1191 1192 1193 1194 1195

        if data_format == "NHWC":
            transpose_name = gen_name("resize_bilinear", "reshape")
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
S
SunAhong1993 已提交
1196
            inputs["x"] = transpose_name
S
SunAhong1993 已提交
1197 1198

        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1199
            kernel="paddle.nn.functional.interpolate",
S
SunAhong1993 已提交
1200 1201 1202 1203 1204 1205
            inputs=inputs,
            outputs=[node.name],
            **attrs)

        if data_format == "NHWC":
            self.paddle_graph.add_layer(
S
rename  
SunAhong1993 已提交
1206
                kernel="paddle.transpose",
S
SunAhong1993 已提交
1207 1208 1209 1210 1211
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])

    def Cast(self, node):
S
SunAhong1993 已提交
1212
        input = self.graph.get_input_node(node, 0)
S
SunAhong1993 已提交
1213 1214 1215 1216 1217 1218 1219 1220
        dtype = node.dtype
        self.paddle_graph.add_layer(
            kernel="paddle.cast",
            inputs={"x": input.name},
            outputs=[node.name],
            dtype=string(dtype))

    def Sum(self, node):
S
SunAhong1993 已提交
1221 1222
        input = self.graph.get_input_node(node, 0)
        reduce_idx = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
1223 1224 1225 1226 1227 1228
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        keep_dims = node.get_attr("keep_dims")
        dim = reduce_idx.value.tolist()

        self.paddle_graph.add_layer(
            kernel="paddle.sum",
S
SunAhong1993 已提交
1229
            inputs={"x": input.name},
S
SunAhong1993 已提交
1230 1231 1232 1233 1234
            outputs=[node.name],
            axis=dim,
            keepdim=keep_dims)

    def Max(self, node):
S
SunAhong1993 已提交
1235 1236
        input = self.graph.get_input_node(node, 0)
        reduce_idx = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
1237 1238 1239 1240 1241
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        keep_dims = node.get_attr("keep_dims")
        dim = reduce_idx.value.tolist()
        self.paddle_graph.add_layer(
            kernel="paddle.max",
S
SunAhong1993 已提交
1242
            inputs={"x": input.name},
S
SunAhong1993 已提交
1243 1244 1245 1246 1247
            outputs=[node.name],
            axis=dim,
            keepdim=keep_dims)

    def RandomUniform(self, node):
S
SunAhong1993 已提交
1248
        shape = self.graph.get_input_node(node, 0)
S
SunAhong1993 已提交
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
        if shape.layer_type == "Const":
            shape = shape.value.tolist()
            self.paddle_graph.add_layer(
                kernel="paddle.uniform",
                inputs={},
                outputs=[node.name],
                shape=shape,
                min=0.0,
                max=0.9999)
        else:
            self.paddle_graph.add_layer(
                kernel="paddle.uniform",
                inputs={'shape': shape.name},
                outputs=[node.name],
                min=0.0,
                max=0.9999)

    def Conv2DBackpropInput(self, node):
        op_name = name_generator("conv", self.nn_name2id)
        output_name = node.name
        layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
1270 1271 1272
        out_shape = self.graph.get_input_node(node, 0)
        kernel = self.graph.get_input_node(node, 1)
        input = self.graph.get_input_node(node, 2)
S
SunAhong1993 已提交
1273 1274 1275 1276 1277 1278

        assert kernel.layer_type == "Const", "Kernel of Conv2DBackpropInput should be Const"

        if out_shape.layer_type == "Const":
            out_shape = out_shape.value.tolist()
        else:
S
release  
SunAhong1993 已提交
1279 1280
            out_shape = self.decoder.infer_tensor(
                out_shape, out_shape=node.out_shapes[0])
S
SunAhong1993 已提交
1281 1282 1283

        in_shape = input.out_shapes[0]
        if in_shape.count(-1) > 2:
S
release  
SunAhong1993 已提交
1284 1285
            in_shape = self.decoder.infer_tensor(
                input, use_diff_inputs=False).shape
S
SunAhong1993 已提交
1286 1287
        k_size = kernel.out_shapes[0]
        if k_size.count(-1) > 2:
S
release  
SunAhong1993 已提交
1288 1289
            k_size = self.decoder.infer_tensor(
                kernel, use_diff_inputs=False).shape
S
SunAhong1993 已提交
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312

        pad_mode = node.get_attr("padding").decode()
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()

        kernel_name = op_name + ".weight"
        self.params[kernel_name] = numpy.transpose(kernel.value, (3, 2, 0, 1))

        input_name = input.name
        if data_format == "NHWC":
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
            transpose_name = gen_name("conv2dbackpropinput", "transpose")
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1313 1314 1315 1316 1317
            "self.create_parameter",
            inputs={},
            outputs=["{}_{}".format(node.name, kernel_name).replace(".", "_")],
            shape=self.params[kernel_name].shape,
            attr=string(kernel_name))
S
release  
SunAhong1993 已提交
1318

S
SunAhong1993 已提交
1319 1320
        self.paddle_graph.add_layer(
            kernel="paddle.nn.functional.conv2d_transpose",
S
release  
SunAhong1993 已提交
1321 1322 1323 1324 1325
            inputs={
                "x": input_name,
                "weight":
                "{}_{}".format(node.name, kernel_name).replace(".", "_")
            },
S
SunAhong1993 已提交
1326 1327
            outputs=[node.name],
            bias=None,
S
SunAhong1993 已提交
1328 1329
            stride=strides[2:4],
            dilation=dilations[2:4],
S
SunAhong1993 已提交
1330 1331
            padding=string(pad_mode),
            output_size=out_shape[1:3])
S
SunAhong1993 已提交
1332 1333 1334 1335 1336 1337 1338 1339 1340

        if data_format == "NHWC":
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])

    def Tile(self, node):
S
SunAhong1993 已提交
1341
        input = self.graph.get_input_node(node, 0)
S
SunAhong1993 已提交
1342
        repeat_times = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
1343 1344 1345
        inputs = {"x": input.name}
        attr = dict()
        in_shape = input.out_shapes[0]
S
SunAhong1993 已提交
1346 1347 1348
        if repeat_times.layer_type == "Const":
            repeat_times = repeat_times.value.tolist()
            attr["repeat_times"] = repeat_times
S
SunAhong1993 已提交
1349
        else:
S
SunAhong1993 已提交
1350
            inputs["repeat_times"] = repeat_times.name
S
SunAhong1993 已提交
1351 1352

        self.paddle_graph.add_layer(
S
release  
SunAhong1993 已提交
1353
            kernel="paddle.tile", inputs=inputs, outputs=[node.name], **attr)
S
SunAhong1993 已提交
1354 1355

    def Range(self, node):
S
SunAhong1993 已提交
1356 1357 1358
        start = self.graph.get_input_node(node, 0)
        limit = self.graph.get_input_node(node, 1)
        delta = self.graph.get_input_node(node, 2)
S
SunAhong1993 已提交
1359 1360 1361 1362 1363 1364 1365 1366 1367
        inputs = dict()
        attr = dict()

        dtype = 'int32'
        if start.dtype.startswith('float'):
            dtype = start.dtype
        if start.layer_type == "Const":
            attr["start"] = start.value
        else:
S
release  
SunAhong1993 已提交
1368

S
SunAhong1993 已提交
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
            inputs["start"] = start.name
        if limit.dtype.startswith('float'):
            dtype = limit.dtype
        if limit.layer_type == "Const":
            attr["end"] = limit.value
        else:
            inputs["end"] = limit.name
        if delta.dtype.startswith('float'):
            dtype = delta.dtype
        if delta.layer_type == "Const":
            attr["step"] = delta.value
        else:
            inputs["step"] = delta.name
        node.set_dtype(dtype)
        attr["dtype"] = string(node.dtype)

        self.paddle_graph.add_layer(
S
release  
SunAhong1993 已提交
1386
            kernel="paddle.arange", inputs=inputs, outputs=[node.name], **attr)
S
SunAhong1993 已提交
1387 1388

    def SquaredDifference(self, node):
S
SunAhong1993 已提交
1389 1390
        x = self.graph.get_input_node(node, 0)
        y = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
1391 1392 1393
        inputs = {"x": x.name, "y": y.name}
        x_shape = x.out_shapes[0]
        y_shape = y.out_shapes[0]
S
SunAhong1993 已提交
1394
        # TODO(syf)
S
SunAhong1993 已提交
1395
        layer_id = self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1396
            "paddle.subtract", inputs=inputs, outputs=[node.name])
S
release  
SunAhong1993 已提交
1397 1398 1399 1400
        self.paddle_graph.layers[layer_id].input_shapes = {
            "x": x_shape,
            "y": y_shape
        }
S
SunAhong1993 已提交
1401 1402 1403 1404 1405 1406

        inputs = {"x": node.name, "y": node.name}
        x_shape = node.out_shapes[0]
        y_shape = node.out_shapes[0]
        layer_id = self.paddle_graph.add_layer(
            "paddle.multiply", inputs=inputs, outputs=[node.name])
S
release  
SunAhong1993 已提交
1407 1408 1409 1410
        self.paddle_graph.layers[layer_id].input_shapes = {
            "x": x_shape,
            "y": y_shape
        }
S
SunAhong1993 已提交
1411 1412

    def OneHot(self, node):
S
SunAhong1993 已提交
1413 1414 1415 1416
        input = self.graph.get_input_node(node, 0)
        depth = self.graph.get_input_node(node, 1)
        on_value = self.graph.get_input_node(node, 2)
        off_value = self.graph.get_input_node(node, 3)
S
SunAhong1993 已提交
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
        assert depth.layer_type == 'Const', 'Parameter depth should be Const in OneHot'
        assert on_value.layer_type == 'Const', 'Parameter on_value should be Const in OneHot'
        assert off_value.layer_type == 'Const', 'Parameter off_value should be Const in OneHot'

        attr = {'depth': depth.value}
        on_value = on_value.value
        off_value = off_value.value
        assert math.fabs(on_value -
                         1.0) < 1e-06, "on_value should be 1 in OneHot"
        assert math.fabs(off_value -
                         0.0) < 1e-06, "off_value should be 0 in OneHot"

        self.paddle_graph.add_layer(
            "paddle.nn.functional.one_hot",
            inputs={"x": input.name},
            outputs=[node.name],
            num_classes=depth.value)

    def Pow(self, node):
S
SunAhong1993 已提交
1436 1437
        x = self.graph.get_input_node(node, 0)
        factor = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
        inputs = {"x": x.name}
        attr = dict()
        if factor.layer_type == 'Const':
            attr["y"] = factor.value.tolist()
        else:
            inputs["y"] = factor.name
        self.paddle_graph.add_layer(
            "paddle.pow", inputs=inputs, outputs=[node.name], **attr)

    def All(self, node):
S
SunAhong1993 已提交
1448 1449
        input = self.graph.get_input_node(node, 0)
        reduce_idx = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        attr = dict()
        attr["axis"] = reduce_idx.value.tolist()
        attr["keepdim"] = node.get_attr("keep_dims")

        input_name = input.name
        if input.dtype != "bool":
            input_name = gen_name("all", "cast")
            self.paddle_graph.add_layer(
                "paddle.cast",
                inputs={"x": input.name},
                outputs=[input_name],
                dtype=string("bool"))
        self.paddle_graph.add_layer(
S
release  
SunAhong1993 已提交
1464
            "paddle.all", inputs={"x": input_name}, outputs=[node.name], **attr)
S
SunAhong1993 已提交
1465 1466 1467 1468

        node.layer.attr['dtype'].type = 10

    def GatherV2(self, node):
S
SunAhong1993 已提交
1469 1470 1471
        embeddings = self.graph.get_input_node(node, 0)
        index = self.graph.get_input_node(node, 1)
        axis = self.graph.get_input_node(node, 2)
S
SunAhong1993 已提交
1472
        assert axis.layer_type == 'Const', "Only support Const parameter[axis]"
S
SunAhong1993 已提交
1473
        axis = axis.value
S
SunAhong1993 已提交
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
        index_name = index.name
        if len(index.out_shapes[0]) != 1:
            reshape_name = gen_name("gather", "reshape")
            index_name = reshape_name
            self.paddle_graph.add_layer(
                "paddle.reshape",
                inputs={"x": index.name},
                outputs=[reshape_name],
                shape=[-1])
        inputs = {'x': embeddings.name, 'index': index_name}
        self.paddle_graph.add_layer(
S
release  
SunAhong1993 已提交
1485
            "paddle.gather", inputs=inputs, outputs=[node.name], axis=axis)
S
SunAhong1993 已提交
1486 1487 1488 1489 1490 1491 1492
        if len(index.out_shapes[0]) != 1:
            out_shape = node.out_shapes[0]
            self.paddle_graph.add_layer(
                kernel="paddle.reshape",
                inputs={"x": node.name},
                outputs=[node.name],
                shape=out_shape)
S
release  
SunAhong1993 已提交
1493

S
SunAhong1993 已提交
1494 1495 1496 1497 1498
    def GatherNd(self, node):
        x = self.graph.get_input_node(node, 0)
        index = self.graph.get_input_node(node, 1)
        inputs = {'x': x.name, 'index': index.name}
        self.paddle_graph.add_layer(
S
release  
SunAhong1993 已提交
1499
            "paddle.gather_nd", inputs=inputs, outputs=[node.name])
S
SunAhong1993 已提交
1500 1501

    def ExpandDims(self, node):
S
SunAhong1993 已提交
1502 1503
        x = self.graph.get_input_node(node, 0, copy=True)
        y = self.graph.get_input_node(node, 1, copy=True)
S
SunAhong1993 已提交
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
        inputs = {"x": x.name}
        attr = dict()
        if y.layer_type == 'Const':
            dim = y.value.tolist()
            if not isinstance(dim, list):
                dim = [dim]
            attr['axis'] = dim
        else:
            inputs['axis'] = y.name
        self.paddle_graph.add_layer(
S
release  
SunAhong1993 已提交
1514 1515
            "paddle.unsqueeze", inputs=inputs, outputs=[node.name], **attr)

S
SunAhong1993 已提交
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
    def ReverseV2(self, node):
        x = self.graph.get_input_node(node, 0)
        axis = self.graph.get_input_node(node, 1)
        inputs = {"x": x.name}
        attr = dict()
        if axis.layer_type == 'Const':
            axis = axis.value.tolist()
            if not isinstance(axis, list):
                axis = [axis]
            attr['axis'] = axis
        else:
            inputs['axis'] = axis.name
        self.paddle_graph.add_layer(
S
release  
SunAhong1993 已提交
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
            "paddle.flip", inputs=inputs, outputs=[node.name], **attr)

    def BatchToSpaceND(self, node):
        '''
        reshape->transpose->reshape->crop
        '''
        x = self.graph.get_input_node(node, 0)
        block_shape = self.graph.get_input_node(node, 1)
        crops = self.graph.get_input_node(node, 2)
        if block_shape.layer_type == "Const":
            block_shape = block_shape.value.tolist()
        if crops.layer_type == "Const":
            crops = crops.value.tolist()
        data_format = x.get_attr("data_format").decode()
        if data_format == "NHWC":
            n, h, w, c = x.out_shapes[0]
        else:
            n, c, h, w = x.out_shapes[0]
        input_name = x.name
        #reshape
        shape = block_shape + [-1, h, w, c]
        reshape_name = gen_name("batch_to_space", "reshape")
        self.paddle_graph.add_layer(
            kernel="paddle.reshape",
            inputs={"x": input_name},
            outputs=[reshape_name],
            shape=shape)
        #transpose
        perm = [len(block_shape)] + list(j for i in range(len(block_shape)) for j in (i + len(block_shape) + 1, i)) +\
                                    list(i + 2*len(block_shape) + 1 for i in range(len(x.out_shapes[0]) - len(block_shape) - 1))
        transpose_name = gen_name("batch_to_space", "transpose")
        self.paddle_graph.add_layer(
            kernel="paddle.transpose",
            inputs={"x": reshape_name},
            outputs=[transpose_name],
            perm=perm)
        #reshape
        shape = [-1] + list(i * j
                            for i, j in zip(block_shape, x.out_shapes[0][
                                1:])) + x.out_shapes[0][1 + len(block_shape):]
        reshape_name = gen_name("batch_to_space", "reshape")
        self.paddle_graph.add_layer(
            kernel="paddle.reshape",
            inputs={"x": transpose_name},
            outputs=[reshape_name],
            shape=shape)
        #crop
        attrs = {}
        crop_shape = shape
        crop_offsets = [0] * len(shape)
        for i in range(len(crops)):
            crop_shape[i + 1] = crop_shape[i + 1] - crops[i][0] - crops[i][1]
            crop_offsets[i + 1] = crops[i][0]
        attrs['shape'] = crop_shape
        attrs['offsets'] = crop_offsets
        self.paddle_graph.add_layer(
            kernel="paddle.crop",
            inputs={"x": reshape_name},
            outputs=[node.name],
            **attrs)

    def SpaceToBatchND(self, node):
        '''
        zero-pad->reshape->transpose->reshape
        '''
        x = self.graph.get_input_node(node, 0)
        block_shape = self.graph.get_input_node(node, 1)
        paddings = self.graph.get_input_node(node, 2)
        if block_shape.layer_type == "Const":
            block_shape = block_shape.value.tolist()
        if paddings.layer_type == "Const":
            paddings = paddings.value.flatten().tolist()
        input_name = x.name
        #zero-pad
        constant_values = 0
        pad_name = gen_name("space_to_batch", "pad")
        paddings = [0, 0] + paddings + [0, 0]
        self.paddle_graph.add_layer(
            kernel="paddle.nn.functional.pad",
            inputs={"x": input_name},
            outputs=[pad_name],
            pad=paddings,
            value=constant_values)
        #reshape
        n, h, w, c = x.out_shapes[0]
        h = h + paddings[2] + paddings[3]
        w = w + paddings[4] + paddings[5]
        shape = [
            n, h // block_shape[0], block_shape[0], w // block_shape[1],
            block_shape[1], c
        ]
        reshape_name = gen_name("space_to_batch", "reshape")
        self.paddle_graph.add_layer(
            kernel="paddle.reshape",
            inputs={"x": pad_name},
            outputs=[reshape_name],
            shape=shape)
        #transpose
        transpose_name = gen_name("space_to_batch", "transpose")
        self.paddle_graph.add_layer(
            kernel="paddle.transpose",
            inputs={"x": reshape_name},
            outputs=[transpose_name],
            perm=[2, 4, 0, 1, 3, 5])
        #reshape
        shape = [-1, h // block_shape[0], w // block_shape[1], c]
        self.paddle_graph.add_layer(
            kernel="paddle.reshape",
            inputs={"x": transpose_name},
S
SunAhong1993 已提交
1638
            outputs=[node.name],
S
release  
SunAhong1993 已提交
1639
            shape=shape)