tf_op_mapper.py 55.0 KB
Newer Older
S
SunAhong1993 已提交
1
# Copyright (c) 2020  PaddlePaddle Authors. All Rights Reserved.
S
SunAhong1993 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

S
SunAhong1993 已提交
15
from x2paddle.decoder.tf_decoder import TFGraph, TFGraphNode
S
SunAhong1993 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
from x2paddle.core.program import PaddleGraph 
from x2paddle.core.op_mapper import OpMapper
from x2paddle.core.util import *
import traceback
import math
import inspect
import numpy
import sys

name_counter = dict()


def gen_name(op_name, var_name):
    name = "{}_{}".format(op_name, var_name)
    if name not in name_counter:
        name_counter[name] = 0
    else:
        name_counter[name] += 1
    name = name + '_' + str(name_counter[name])
    return name


# compute padding size for SAME mode
def get_same_padding(in_size, kernel_size, stride):
    new_size = int(math.ceil(in_size * 1.0 / stride))
    pad_size = (new_size - 1) * stride + kernel_size - in_size
    if pad_size < 0:
        pad_size = 0
    pad0 = int(pad_size / 2)
    pad1 = pad_size - pad0
    return [pad0, pad1]


class TFOpMapper(OpMapper):
    directly_map_ops = {
        'Relu': ['paddle.nn.ReLU'],
        'Relu6': ['paddle.nn.ReLU6'],
        'Abs': ['paddle.abs'],
        'Sigmoid': ['paddle.nn.Sigmoid'],
        'Exp': ['paddle.exp'],
        'Rsqrt': ['paddle.rsqrt'],
        'Sqrt': ['paddle.sqrt'],
        'swish_f32': ['paddle.nn.Swish'],
        'Tanh': ['paddle.nn.Tanh'],
        'Softplus': ['paddle.nn.Softplus'],
S
SunAhong1993 已提交
61 62 63
        'LeakyRelu': ['paddle.nn.LeakyReLU', 
                      dict(alpha='negative_slope')],
        'Softmax': ['paddle.nn.Softmax'],
S
SunAhong1993 已提交
64 65 66 67 68 69 70 71
        'Floor': ['paddle.floor'],
        'Erf': ['paddle.erf'],
        'Square': ['paddle.square']
    }
    elementwise_ops = {
        'Add': 'paddle.add',
        'AddV2': 'paddle.add',
        'RealDiv': 'paddle.divide',
S
SunAhong1993 已提交
72
        'DivNoNan': 'paddle.divide',
S
SunAhong1993 已提交
73
        'Sub': 'paddle.subtract',
S
SunAhong1993 已提交
74 75
        'Maximum': 'paddle.maximum',
        'Minimum': 'paddle.minimum',
S
SunAhong1993 已提交
76 77 78 79 80 81
        'Mul': 'paddle.multiply',
        'FloorDiv': 'paddle.floor_divide',
        'FloorMod': 'paddle.floor_mod',
        'LogicalAnd': 'logical_and',
    }
    bool_ops = {
S
SunAhong1993 已提交
82 83
        'LessEqual': 'paddle.less_equal',
        'GreaterEqual': 'paddle.greater_equal',
S
SunAhong1993 已提交
84 85 86
        'Greater': 'paddle.greater_than',
        'NotEqual': 'paddle.not_equal',
        'Equal': 'paddle.equal',
S
SunAhong1993 已提交
87 88 89 90 91 92
    }

    def __init__(self, decoder):
        super(TFOpMapper, self).__init__()
        self.decoder = decoder
        self.graph = decoder.tf_graph
S
SunAhong1993 已提交
93 94
        if not self.op_checker():
            raise Exception("Model is not supported yet.")
S
SunAhong1993 已提交
95 96 97 98
        self.params = dict()
        self.nn_name2id = dict()
        self.input_index = 0
        self.inputs_info = dict()
S
SunAhong1993 已提交
99 100
        self.paddle_graph = PaddleGraph(parent_layer=None, graph_type="dygraph", source_type="tf")
        self.paddle_graph.outputs = self.graph.output_nodes
S
SunAhong1993 已提交
101 102 103 104 105 106 107 108 109 110 111

        not_placeholder = list()
        for name in self.graph.input_nodes:
            if self.graph.get_node(
                    name).layer_type != "Placeholder" and self.graph.get_node(
                        name
                    ).layer_type != "OneShotIterator" and self.graph.get_node(
                        name).layer_type != "IteratorV2":
                not_placeholder.append(name)
        for name in not_placeholder:
            idx = self.graph.input_nodes.index(name)
S
SunAhong1993 已提交
112 113 114 115 116 117 118 119
            del self.graph.input_nodes[idx]        

        print("Total nodes: {}".format(
            sum([
                isinstance(node, TFGraphNode)
                for name, node in self.graph.node_map.items()
            ])))
        print("Nodes converting ...")
S
SunAhong1993 已提交
120 121 122 123 124 125 126 127
        for i, node_name in enumerate(self.graph.topo_sort):
            sys.stderr.write("\rConverting node {} ...     ".format(i + 1))
            node = self.graph.get_node(node_name)
            op = node.layer_type
            if op in self.directly_map_ops:
                self.directly_map(node)
            elif op in self.elementwise_ops:
                self.elementwise_map(node)
S
SunAhong1993 已提交
128 129
            elif op in self.bool_ops:
                self.bool_map(node)
S
SunAhong1993 已提交
130 131
            elif hasattr(self, op):
                func = getattr(self, op)
S
SunAhong1993 已提交
132 133
                func(node)
        print("\nNodes converted.")
S
SunAhong1993 已提交
134 135 136
        self.paddle_graph.set_name(self.graph.graph_name)
        self.paddle_graph.set_parameters(self.params)
        self.paddle_graph.set_inputs_info(self.inputs_info)
S
SunAhong1993 已提交
137 138 139 140 141 142 143 144
        
    def op_checker(self):
        unsupported_ops = set()
        for node_name in self.graph.topo_sort:
            node = self.graph.get_node(node_name)
            op = node.layer_type
            if not hasattr(self, op) and \
                op not in self.directly_map_ops and \
S
SunAhong1993 已提交
145 146
                op not in self.elementwise_ops and \
                op not in self.bool_ops:
S
SunAhong1993 已提交
147 148 149 150 151 152 153 154 155 156
                unsupported_ops.add(op)
        if len(unsupported_ops) == 0:
            return True
        else:
            if len(unsupported_ops) > 0:
                print("\n========= {} OPs are not supported yet ===========".format(
                    len(unsupported_ops)))
            for op in unsupported_ops:
                print("========== {} ============".format(op))
            return False 
S
SunAhong1993 已提交
157 158

    def directly_map(self, node):
S
SunAhong1993 已提交
159 160
        inputs = node.layer.input
        assert len(inputs) == 1, 'directly_map error with multi inputs'
S
SunAhong1993 已提交
161
        op_info = self.directly_map_ops[node.layer_type]
S
SunAhong1993 已提交
162 163
        input = self.graph.get_input_node(node, 0)
        paddle_op = op_info[0]
S
SunAhong1993 已提交
164
        layer_attrs = dict()
S
SunAhong1993 已提交
165 166
        if len(op_info) > 1:
            attrs_name_map_dict = op_info[1]
S
fix  
SunAhong1993 已提交
167
            for tf_attr_name, pd_attr_name in attrs_name_map_dict.items():
S
SunAhong1993 已提交
168 169 170
                layer_attrs[pd_attr_name] = node.get_attr(tf_attr_name)
        if paddle_op.startswith("paddle.nn"):
            op_name = paddle_op[10:].lower()
S
SunAhong1993 已提交
171 172 173 174
            op_name = name_generator(op_name, self.nn_name2id)
            output_name = node.name
            layer_outputs = [op_name, output_name]
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
175
                kernel=paddle_op,
S
SunAhong1993 已提交
176 177 178 179 180
                inputs={"x": input.name},
                outputs=layer_outputs,
                **layer_attrs)
        else:
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
181
                kernel=paddle_op,
S
SunAhong1993 已提交
182 183 184 185
                inputs={"x": input.name},
                outputs=[node.name],
                **layer_attrs)

S
SunAhong1993 已提交
186 187 188 189
    def elementwise_map(self, node, op_type=None):
        if op_type is None:
            assert node.layer_type in self.elementwise_ops
            op_type = self.elementwise_ops[node.layer_type]
S
SunAhong1993 已提交
190 191
        x = self.graph.get_input_node(node, 0)
        y = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
192 193
        x_shape = x.out_shapes[0]
        y_shape = y.out_shapes[0]
S
SunAhong1993 已提交
194
        layer_id = self.paddle_graph.add_layer(
S
SunAhong1993 已提交
195 196 197 198
            kernel=op_type,
            inputs={"x": x.name,
                    "y": y.name},
            outputs=[node.name])
S
SunAhong1993 已提交
199
        self.paddle_graph.layers[layer_id].input_shapes = {"x": x_shape, "y": y_shape}
S
SunAhong1993 已提交
200 201 202 203 204
        
    def bool_map(self, node):
        op_type = self.bool_ops[node.layer_type]
        self.elementwise_map(node, op_type)
        node.set_dtype("bool")
S
SunAhong1993 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237

    def Placeholder(self, node):
        shape = node.out_shapes[0]
        assert len(shape) != 0, "Unknown shape of input nodes[{}].".format(
            node.layer_name)
        dtype = node.dtype
        
        self.paddle_graph.add_layer(
            kernel="paddle.to_tensor",
            inputs={},
            outputs=[node.name],
            data="x{}".format(self.input_index))
        self.inputs_info["x{}".format(self.input_index)] = [shape, node.dtype]
        self.input_index += 1

    def Const(self, node):
        shape = node.out_shapes[0]
        dtype = node.dtype
        value = node.value
        if len(shape) == 0:
            assert value.size == 1, "Unexpected situation happend"
            if value == float('inf'):
                value = "float('inf')"
            self.paddle_graph.add_layer(
                "paddle.full", 
                inputs={}, 
                outputs=[node.name],
                dtype=string(dtype),
                shape=[1],
                fill_value=value)
            return
        self.params[node.name] = node.value
        
S
SunAhong1993 已提交
238
        if 0 not in shape:
S
SunAhong1993 已提交
239
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
240 241 242 243
                "self.create_parameter",
                inputs={},
                outputs=[node.name],
                shape=shape,
S
SunAhong1993 已提交
244 245 246
                attr=string(node.name),
                dtype=string(dtype),
                default_initializer="paddle.nn.initializer.Constant(value=0.0)")
S
SunAhong1993 已提交
247 248
      
    def Transpose(self, node):
S
SunAhong1993 已提交
249 250
        input = self.graph.get_input_node(node, 0)
        perm = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
251 252 253 254 255 256 257 258
        assert perm.layer_type == "Const", "Perm of transpose OP should be Const"
        perm = perm.value.tolist()
        
        self.paddle_graph.add_layer(
            "paddle.transpose",
            inputs={"x": input.name},
            outputs=[node.name],
            perm=perm)
S
add beg  
SunAhong1993 已提交
259
        
S
SunAhong1993 已提交
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
    def Where(self, node):
        if len(node.layer.input) == 1:
            cond = self.graph.get_input_node(node, 0)
            self.paddle_graph.add_layer(
                "paddle.nonzero",
                inputs={"x": cond.name},
                outputs=[node.name])
        else:
            cond = self.graph.get_input_node(node, 0)
            x = self.graph.get_input_node(node, 1)
            y = self.graph.get_input_node(node, 2)
            self.paddle_graph.add_layer(
                "paddle.where",
                inputs={"condition": cond.name,
                        "x": x.name,
                        "y": y.name},
                outputs=[node.name])
        
S
add beg  
SunAhong1993 已提交
278 279 280 281 282 283 284 285
    def Neg(self, node):
        input = self.graph.get_input_node(node, 0)
        
        self.paddle_graph.add_layer(
            "paddle.scale",
            inputs={"x": input.name},
            outputs=[node.name],
            scale=-1)
S
SunAhong1993 已提交
286 287

    def Fill(self, node):
S
SunAhong1993 已提交
288 289
        dims = self.graph.get_input_node(node, 0)
        input_value = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
290 291 292 293 294 295 296 297
        inputs = dict()
        layer_attrs = dict()
        assert input_value.layer_type == "Const", "Value of fill OP should be Const"
        if dims.layer_type == "Const":
            layer_attrs["shape"] = dims.value.tolist()
        else:
            inputs["shape"] = dims.name
        layer_attrs["dtype"] = string(input_value.dtype)
S
SunAhong1993 已提交
298
        layer_attrs["fill_value"] = input_value.value
S
SunAhong1993 已提交
299 300 301 302 303 304 305 306

        self.paddle_graph.add_layer(
            "paddle.full",
            inputs=inputs,
            outputs=[node.name],
            **layer_attrs)

    def DepthToSpace(self, node):
S
SunAhong1993 已提交
307
        input = self.graph.get_input_node(node, 0)
S
SunAhong1993 已提交
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348

        block_size = node.get_attr("block_size")
        data_format = node.get_attr("data_format").decode()
        if data_format == "NHWC":
            n, h, w, c = input.out_shapes[0]
        else:
            n, c, h, w = input.out_shapes[0]

        input_name = input.name
        if data_format == "NHWC":
            transpose_name = gen_name("depth_to_space", "transpose")
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

        shape = [0, block_size * block_size, -1, h, w]
        reshape_name = gen_name("depth_to_space", "reshape")
        self.paddle_graph.add_layer(
            kernel="paddle.reshape",
            inputs={"x": input_name},
            outputs=[reshape_name],
            shape=shape)

        transpose_name = gen_name("depth_to_space", "transpose")
        self.paddle_graph.add_layer(
            kernel="paddle.transpose",
            inputs={"x": reshape_name},
            outputs=[transpose_name],
            perm=[0, 2, 1, 3, 4])

        reshape_name = gen_name("depth_to_space", "reshape")
        self.paddle_graph.add_layer(
            kernel="paddle.reshape",
            inputs={"x": transpose_name},
            outputs=[reshape_name],
            shape=[0, c, h, w])

        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
349
            kernel="paddle.nn.functional.pixel_shuffle",
S
SunAhong1993 已提交
350 351 352 353 354 355 356 357 358 359 360 361
            inputs={"x": reshape_name},
            outputs=[node.name],
            upscale_factor=block_size)

        if data_format == "NHWC":
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])

    def MaxPool(self, node):
S
SunAhong1993 已提交
362
        input = self.graph.get_input_node(node, 0)
S
SunAhong1993 已提交
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383

        k_size = node.get_attr("ksize")
        strides = node.get_attr("strides")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()

        input_name = input.name
        if data_format == "NHWC":
            transpose_name = gen_name("max_pool", "transpose")
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            strides = [strides[i] for i in [0, 3, 1, 2]]
            k_size = [k_size[i] for i in [0, 3, 1, 2]]
            input_name = transpose_name

        op_name = name_generator("pool", self.nn_name2id)
        output_name = node.name
        layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
384

S
SunAhong1993 已提交
385
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
386
            kernel="paddle.nn.MaxPool2D",
S
SunAhong1993 已提交
387 388
            inputs={"input": input_name},
            outputs=layer_outputs,
S
SunAhong1993 已提交
389 390 391
            kernel_size=k_size[2:4],
            stride=strides[2:4],
            padding=string(pad_mode))
S
SunAhong1993 已提交
392 393 394 395 396 397 398 399 400 401 402 403

        if data_format == "NHWC":
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])

    def Conv2D(self, node):
        op_name = name_generator("conv", self.nn_name2id)
        output_name = node.name
        layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
404 405
        input = self.graph.get_input_node(node, 0)
        kernel = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
406 407 408 409 410 411 412 413 414 415 416 417 418 419

        k_size = kernel.out_shapes[0]
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
        if data_format == "NHWC":
            n, h, w, c = input.out_shapes[0]
        else:
            n, c, h, w = input.out_shapes[0]

        if kernel.layer_type == 'Const':
            kernel_value = kernel.value
        else:
S
SunAhong1993 已提交
420
            kernel_value = self.decoder.infer_tensor(kernel, use_diff_inputs=False)
S
SunAhong1993 已提交
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
        kernel_weight_name = op_name + ".weight"
        self.params[kernel_weight_name] = numpy.transpose(kernel_value,
                                                          (3, 2, 0, 1))

        input_name = input.name
        if data_format == "NHWC":
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
            transpose_name = gen_name("conv2d", "transpose")
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

        if c == -1:
            attr = {"shape": [0, k_size[2], 0, 0]}
            self.paddle_graph.add_layer(
                kernel="paddle.reshape",
                inputs={"x": input_name},
                outputs=[input_name],
                shape=[0, k_size[2], 0, 0])

        
        self.paddle_graph.add_layer(
            kernel="paddle.nn.Conv2D",
            inputs={"input": input_name},
            outputs=layer_outputs,
            weight_attr=string(kernel_weight_name),
            bias_attr=False,
            in_channels=k_size[2],
            out_channels=k_size[3],
            kernel_size=k_size[0:2],
            stride=strides[2:4],
            dilation=dilations[2:4],
            padding=string(pad_mode))

        if data_format == "NHWC":
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
S
SunAhong1993 已提交
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
            
    def Conv3D(self, node):
        op_name = name_generator("conv", self.nn_name2id)
        output_name = node.name
        layer_outputs = [op_name, output_name]
        input = self.graph.get_input_node(node, 0)
        kernel = self.graph.get_input_node(node, 1)

        k_size = kernel.out_shapes[0]
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
        if data_format == "NDHWC":
            n, d, h, w, c = input.out_shapes[0]
        else:
            n, c, d, h, w = input.out_shapes[0]

        if kernel.layer_type == 'Const':
            kernel_value = kernel.value
        else:
            kernel_value = self.decoder.infer_tensor(kernel, use_diff_inputs=False)
        kernel_weight_name = op_name + ".weight"
        self.params[kernel_weight_name] = numpy.transpose(kernel_value,
                                                          (4, 3, 0, 1, 2))

        input_name = input.name
        if data_format == "NDHWC":
            strides = [strides[i] for i in [0, 4, 1, 2, 3]]
            dilations = [dilations[i] for i in [0, 4, 1, 2, 3]]
            transpose_name = gen_name("conv3d", "transpose")
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 4, 1, 2, 3])
            input_name = transpose_name

        if c == -1:
            attr = {"shape": [0, k_size[2], 0, 0, 0]}
            self.paddle_graph.add_layer(
                kernel="paddle.reshape",
                inputs={"x": input_name},
                outputs=[input_name],
                shape=[0, k_size[2], 0, 0, 0])

        self.paddle_graph.add_layer(
            kernel="paddle.nn.Conv3D",
            inputs={"input": input_name},
            outputs=layer_outputs,
            weight_attr=string(kernel_weight_name),
            bias_attr=False,
            in_channels=k_size[3],
            out_channels=k_size[4],
            kernel_size=k_size[0:3],
            stride=strides[2:5],
            dilation=dilations[2:5],
            padding=string(pad_mode))

        if data_format == "NDHWC":
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 4, 1])
S
SunAhong1993 已提交
530 531

    def BiasAdd(self, node):
S
SunAhong1993 已提交
532 533
        input = self.graph.get_input_node(node, 0)
        bias = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
534 535 536 537 538 539 540 541 542 543
        self.paddle_graph.add_layer(
            kernel="paddle.add",
            inputs={"x": input.name,
                    "y": bias.name},
            outputs=[node.name])

    def FusedBatchNorm(self, node):
        op_name = name_generator("bn", self.nn_name2id)
        output_name = node.name
        layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
544
        input = self.graph.get_input_node(node, 0)
S
SunAhong1993 已提交
545

S
SunAhong1993 已提交
546 547 548 549
        gamma = self.graph.get_input_node(node, 1)
        beta = self.graph.get_input_node(node, 2)
        moving_mean = self.graph.get_input_node(node, 3)
        moving_var = self.graph.get_input_node(node, 4)
S
SunAhong1993 已提交
550 551 552 553 554 555 556
        data_format = node.get_attr("data_format").decode()

        assert gamma.layer_type == "Const"
        assert beta.layer_type == "Const"
        assert moving_mean.layer_type == "Const"
        assert moving_var.layer_type == "Const"

S
SunAhong1993 已提交
557
        input_name = input.name 
S
SunAhong1993 已提交
558 559 560 561 562 563 564 565
        if data_format == "NHWC":
            transpose_name = gen_name("batch_norm", "transpose")
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name
S
SunAhong1993 已提交
566 567 568
            n, h, w, c = input.out_shapes[0]
        else:
             n, c, h, w = input.out_shapes[0]
S
SunAhong1993 已提交
569

S
SunAhong1993 已提交
570 571 572 573
        self.params["{}_{}".format(node.name, gamma.name)] = self.params[gamma.name]
        self.params["{}_{}".format(node.name, beta.name)] = self.params[beta.name]
        self.params["{}_{}".format(node.name, moving_mean.name)] = self.params[moving_mean.name]
        self.params["{}_{}".format(node.name, moving_var.name)] = self.params[moving_var.name]
S
SunAhong1993 已提交
574 575 576 577
        self.paddle_graph.add_layer(
            kernel="paddle.nn.BatchNorm",
            inputs={"input": input_name},
            outputs=layer_outputs,
S
SunAhong1993 已提交
578
            num_channels=c,
S
SunAhong1993 已提交
579
            epsilon=node.get_attr("epsilon"),
S
SunAhong1993 已提交
580 581 582 583
            param_attr=string("{}_{}".format(node.name, gamma.name)),
            bias_attr=string("{}_{}".format(node.name, beta.name)),
            moving_mean_name=string("{}_{}".format(node.name, moving_mean.name)),
            moving_variance_name=string("{}_{}".format(node.name, moving_var.name)),
S
SunAhong1993 已提交
584 585 586 587 588 589 590 591
            is_test=True)

        if data_format == "NHWC":
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
S
SunAhong1993 已提交
592 593 594
            
    def FusedBatchNormV3(self, node):
        self.FusedBatchNorm(node)
S
SunAhong1993 已提交
595 596

    def Mean(self, node):
S
SunAhong1993 已提交
597 598
        input = self.graph.get_input_node(node, 0)
        reduce_idx = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
599 600 601 602 603 604 605 606 607 608 609 610
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        dims = reduce_idx.value.tolist()
        keep_dims = node.get_attr("keep_dims")

        self.paddle_graph.add_layer(
            kernel="paddle.mean",
            inputs={"x": input.name},
            outputs=[node.name],
            axis=dims,
            keepdim=keep_dims)

    def Reshape(self, node):
S
SunAhong1993 已提交
611 612
        input = self.graph.get_input_node(node, 0)
        param = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639

        input_name = input.name

        if param.layer_type == "Const":
            shape = param.value.tolist()
            self.paddle_graph.add_layer(
                kernel="paddle.reshape",
                inputs={"x": input_name},
                outputs=[node.name],
                shape=shape)
        else:
            self.paddle_graph.add_layer(
                kernel="paddle.reshape",
                inputs={"x": input_name,
                        "shape": param.name},
                outputs=[node.name])
        if param.layer_type != "Const":
            out_shape = numpy.array(node.out_shapes[0])
            if (out_shape > 0).any():
                out_shape[out_shape < 0] = 0
                self.paddle_graph.add_layer(
                    kernel="paddle.reshape",
                    inputs={"x": node.name},
                    outputs=[node.name],
                    shape=out_shape.tolist())

    def Pad(self, node):
S
SunAhong1993 已提交
640 641
        input = self.graph.get_input_node(node, 0)
        paddings = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
642 643 644 645 646
        assert paddings.layer_type == "Const", "Padding should be Const"
        paddings = paddings.value.flatten().tolist()

        self.paddle_graph.add_layer(
            kernel="paddle.nn.functional.pad",
S
SunAhong1993 已提交
647
            inputs={"x": input.name},
S
SunAhong1993 已提交
648 649
            outputs=[node.name],
            pad=paddings)
S
SunAhong1993 已提交
650 651
        
    def MirrorPad(self, node):
S
SunAhong1993 已提交
652 653
        self.Pad(node)
        
S
SunAhong1993 已提交
654
        
S
SunAhong1993 已提交
655 656
    def PadV2(self, node):
        self.Pad(node)
S
SunAhong1993 已提交
657 658

    def Squeeze(self, node):
S
SunAhong1993 已提交
659
        input = self.graph.get_input_node(node, 0)
S
SunAhong1993 已提交
660 661 662 663 664 665 666 667
        squeeze_dims = node.get_attr('squeeze_dims')
        self.paddle_graph.add_layer(
            kernel="paddle.squeeze",
            inputs={"x": input.name},
            outputs=[node.name],
            axis=squeeze_dims)

    def Shape(self, node):
S
SunAhong1993 已提交
668
        input = self.graph.get_input_node(node, 0)
S
SunAhong1993 已提交
669 670 671 672 673
        input_name = input.name
        self.paddle_graph.add_layer(
            kernel="paddle.shape",
            inputs={"input": input_name},
            outputs=[node.name])
S
SunAhong1993 已提交
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
        
    def Size(self, node):
        input = self.graph.get_input_node(node, 0)
        input_name = input.name
        self.paddle_graph.add_layer(
            kernel="paddle.shape",
            inputs={"input": input_name},
            outputs=[node.name])
        self.paddle_graph.add_layer(
            kernel="paddle.prod",
            inputs={"x": node.name},
            outputs=[node.name])
        
    def Ceil(self, node):
        input = self.graph.get_input_node(node, 0)
        self.paddle_graph.add_layer(
            kernel="paddle.ceil",
            inputs={"x": input.name},
            outputs=[node.name])
S
SunAhong1993 已提交
693 694

    def ArgMax(self, node):
S
SunAhong1993 已提交
695 696
        input = self.graph.get_input_node(node, 0)
        axis = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
697 698 699 700 701 702 703
        assert axis.layer_type == "Const", "ArgMax only support Const parameter"
        axis = axis.value
        self.paddle_graph.add_layer(
            kernel="paddle.argmax",
            inputs={"x": input.name},
            outputs=[node.name],
            axis=axis)
S
SunAhong1993 已提交
704 705 706 707 708 709 710 711 712 713 714 715 716
        
    def TopKV2(self, node):
        input = self.graph.get_input_node(node, 0)
        k = self.graph.get_input_node(node, 1)
        assert k.layer_type == "Const", "ArgMax only support Const parameter"
        k = k.value
        sort = node.get_attr('sorted')
        self.paddle_graph.add_layer(
            kernel="paddle.topk",
            inputs={"x": input.name},
            outputs=[node.name],
            k=k,
            sorted=sort)
S
SunAhong1993 已提交
717 718

    def MatMul(self, node):
S
SunAhong1993 已提交
719 720
        x = self.graph.get_input_node(node, 0)
        y = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
        transpose_a = node.get_attr('transpose_a')
        transpose_b = node.get_attr('transpose_b')
        if transpose_a is None:
            transpose_a = node.get_attr('adj_x')
        if transpose_b is None:
            transpose_b = node.get_attr('adj_y')
        self.paddle_graph.add_layer(
            kernel="paddle.matmul",
            inputs={"x": x.name,
                    "y": y.name},
            outputs=[node.name],
            transpose_x=transpose_a,
            transpose_y=transpose_b)

    def BatchMatMul(self, node):
        return self.MatMul(node)

    def BatchMatMulV2(self, node):
        return self.MatMul(node)

    def DepthwiseConv2dNative(self, node):
        op_name = name_generator("conv", self.nn_name2id)
        output_name = node.name
        layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
745 746
        input = self.graph.get_input_node(node, 0)
        kernel = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
        assert kernel.layer_type == "Const", "Kernel of DepthwiseConv2DNative should be Const"

        in_shape = input.out_shapes[0]
        k_size = kernel.out_shapes[0]
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()

        kernel_weight_name = op_name + ".weight"
        self.params[kernel_weight_name] = numpy.transpose(kernel.value,
                                                          (2, 3, 0, 1))


        input_name = input.name
        if data_format == "NHWC":
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
            transpose_name = gen_name('depthwise_conv2d', 'transpose')
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

        self.paddle_graph.add_layer(
            kernel="paddle.nn.Conv2D",
            inputs={"input": input_name},
            outputs=layer_outputs,
            weight_attr=string(kernel_weight_name),
            bias_attr=False,
            in_channels=in_shape[1],
            out_channels=k_size[2],
            kernel_size=k_size[0:2],
            stride=strides[2:4],
            dilation=dilations[2:4],
            groups=k_size[3] * in_shape[1],
            padding=string(pad_mode))

        if data_format == "NHWC":
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])

    def AvgPool(self, node):
S
SunAhong1993 已提交
796
        input = self.graph.get_input_node(node, 0)
S
SunAhong1993 已提交
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817

        k_size = node.get_attr("ksize")
        strides = node.get_attr("strides")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()

        input_name = input.name
        if data_format == "NHWC":
            transpose_name = gen_name("avg_pool", "transpose")
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            strides = [strides[i] for i in [0, 3, 1, 2]]
            k_size = [k_size[i] for i in [0, 3, 1, 2]]
            input_name = transpose_name

        op_name = name_generator("pool", self.nn_name2id)
        output_name = node.name
        layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
818 819
        
        # TODO(syf): The op has diff.
S
SunAhong1993 已提交
820
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
821
            kernel="paddle.nn.AvgPool2D",
S
SunAhong1993 已提交
822
            inputs={"input": input_name},
S
SunAhong1993 已提交
823 824 825 826 827 828 829 830 831 832 833 834 835
            outputs=layer_outputs,
            kernel_size=k_size[2:4],
            stride=strides[2:4],
            padding=string(pad_mode))

#         self.paddle_graph.add_layer(
#             kernel="fluid.layers.pool2d",
#             inputs={"input": input_name},
#             outputs=[node.name],
#             pool_size=k_size[2:4],
#             pool_type=string("avg"),
#             pool_stride=strides[2:4],
#             pool_padding=string(pad_mode))
S
SunAhong1993 已提交
836 837 838 839 840 841 842 843 844

        if data_format == "NHWC":
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])

    def Pack(self, node):
S
SunAhong1993 已提交
845 846 847 848
        inputs_list = list()
        for i in range(len(node.inputs)):
            inputs_list.append(self.graph.get_input_node(node, i))
        input_names = [i.name for i in inputs_list]
S
SunAhong1993 已提交
849 850 851 852 853 854 855 856 857 858 859 860 861 862
        axis = node.get_attr("axis")
        self.paddle_graph.add_layer(
            kernel="paddle.stack",
            inputs={"x": input_names},
            outputs=[node.name],
            axis=axis)
        if len(node.out_shapes[0]) == 1:
            self.paddle_graph.add_layer(
                kernel="paddle.reshape",
                inputs={"x": node.name},
                outputs=[node.name],
                shape=[-1])

    def Unpack(self, node):
S
SunAhong1993 已提交
863
        input = self.graph.get_input_node(node, 0)
S
SunAhong1993 已提交
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
        axis = node.get_attr("axis")
        num = node.get_attr("num")
        shape = input.out_shapes[0]
        input_name = input.name
        if len(shape) == 1:
            if shape[0] > 0 and num == shape[0]:
                self.paddle_graph.add_layer(
                    kernel="paddle.unsqueeze",
                    inputs={"x": input.name},
                    outputs=[node.name],
                    axis=[0])
                input_name = node.name
                axis = 1
            else:
                raise Exception("Unexpected situation happend in Unpack OP")
S
SunAhong1993 已提交
879 880 881
        layer_outputs = ["{}_p{}".format(node.layer_name, i) for i in range(num)]
        if len(layer_outputs) == 1:
            layer_outputs[0] = "[{}]".format(node.layer_name)
S
SunAhong1993 已提交
882 883 884
        self.paddle_graph.add_layer(
            kernel="paddle.unstack",
            inputs={"x": input_name},
S
SunAhong1993 已提交
885
            outputs=layer_outputs,
S
SunAhong1993 已提交
886 887 888 889
            axis=axis,
            num=num)

    def ConcatV2(self, node):
S
SunAhong1993 已提交
890 891 892 893
        inputs_list = list()
        for i in range(len(node.inputs) - 1):
            inputs_list.append(self.graph.get_input_node(node, i))
        axis = self.graph.get_input_node(node, -1)
S
SunAhong1993 已提交
894 895 896
        assert axis.layer_type == "Const", "axis for ConcatV2 must be type Const"
        axis = axis.value
        if axis < 0:
S
fix  
SunAhong1993 已提交
897
            axis += len(inputs_list[0].out_shapes[0])
S
SunAhong1993 已提交
898

S
SunAhong1993 已提交
899
        input_names = [i.name for i in inputs_list]
S
SunAhong1993 已提交
900 901
        self.paddle_graph.add_layer(
            kernel="paddle.concat",
S
SunAhong1993 已提交
902
            inputs={"x": input_names},
S
SunAhong1993 已提交
903 904
            outputs=[node.name],
            axis=axis)
S
SunAhong1993 已提交
905
        
S
SunAhong1993 已提交
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
    def Concat(self, node):
        inputs_list = list()
        for i in range(1, len(node.inputs)):
            inputs_list.append(self.graph.get_input_node(node, i))
        axis = self.graph.get_input_node(node, 0)
        assert axis.layer_type == "Const", "axis for ConcatV2 must be type Const"
        axis = axis.value
        if axis < 0:
            axis += len(inputs_list[0].out_shapes[0])
            
        input_names = [i.name for i in inputs_list]
        self.paddle_graph.add_layer(
            kernel="paddle.concat",
            inputs={"x": input_names},
            outputs=[node.name],
            axis=axis)
        
S
SunAhong1993 已提交
923 924 925 926 927 928 929 930 931 932
    def AddN(self, node):
        inputs_list = list()
        for i in range(len(node.inputs) - 1):
            inputs_list.append(self.graph.get_input_node(node, i))

        input_names = [i.name for i in inputs_list]
        self.paddle_graph.add_layer(
            kernel="paddle.add_n",
            inputs={"inputs": input_names},
            outputs=[node.name])
S
SunAhong1993 已提交
933 934

    def StridedSlice(self, node):
S
SunAhong1993 已提交
935 936 937 938
        input = self.graph.get_input_node(node, 0)
        begin = self.graph.get_input_node(node, 1)
        end = self.graph.get_input_node(node, 2)
        strides = self.graph.get_input_node(node, 3)
S
SunAhong1993 已提交
939 940 941 942

        if strides.layer_type == "Const":
            strides = strides.value.tolist()
        else:
S
SunAhong1993 已提交
943
            strides = self.decoder.infer_tensor(strides)
S
SunAhong1993 已提交
944 945 946
        if begin.layer_type == "Const":
            begin = begin.value.tolist()
        else:
S
SunAhong1993 已提交
947
            begin = self.decoder.infer_tensor(begin)
S
SunAhong1993 已提交
948 949 950
        if end.layer_type == "Const":
            end = end.value.tolist()
        else:
S
SunAhong1993 已提交
951
            end = self.decoder.infer_tensor(end)
S
SunAhong1993 已提交
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999

        assert len(set(strides)) == 1 and strides[
            0] == 1, "Only support strides be 1 in StridedSlice OP"

        if len(begin) < len(input.out_shapes[0]):
            begin = begin + [0] * (len(input.out_shapes[0]) - len(begin))
        if len(end) < len(input.out_shapes[0]):
            end = end + [0] * (len(input.out_shapes[0]) - len(end))
        for i in range(len(end)):
            if end[i] == 0:
                end[i] = 999999

        begin_mask = node.get_attr('begin_mask')
        end_mask = node.get_attr('end_mask')
        ellipsis_mask = node.get_attr('ellipsis_mask')
        new_axis_mask = node.get_attr('new_axis_mask')
        shrink_axis_mask = node.get_attr('shrink_axis_mask')

        assert ellipsis_mask == 0, "(OP:{} Name:{})Only support ellipsis_mask be 0[now: {}] n StridedSlice OP".format(
            node.layer_type, node.layer.name, ellipsis_mask)

        # TODO codes without validation
        # Use it carefully
        new_begin = list()
        new_end = list()
        new_axes = list()
        shrink_axes = list()
        for i, item in enumerate(begin):
            mask = (new_axis_mask >> i) & 1
            if mask != 0:
                new_axes.append(i)
                continue

            mask = (shrink_axis_mask >> i) & 1
            if mask != 0:
                shrink_axes.append(i)

            mask = (begin_mask >> i) & 1
            if mask != 0:
                new_begin.append(0)
            else:
                new_begin.append(item)

            mask = (end_mask >> i) & 1
            if mask != 0:
                new_end.append(999999)
            else:
                new_end.append(end[i])
S
fix  
SunAhong1993 已提交
1000 1001 1002 1003 1004 1005 1006
            
        if input.dtype == "bool":
            self.paddle_graph.add_layer(
                "paddle.cast",
                inputs={"x": input.name},
                outputs=[input.name],
                dtype=string("int32"))
S
SunAhong1993 已提交
1007 1008 1009 1010 1011 1012 1013 1014

        self.paddle_graph.add_layer(
            kernel="paddle.slice",
            inputs={"input": input.name},
            outputs=[node.name],
            axes=[i for i in range(len(new_begin))],
            starts=new_begin,
            ends=new_end)
S
fix  
SunAhong1993 已提交
1015 1016 1017 1018 1019 1020 1021 1022
        
        if input.dtype == "bool":
            self.paddle_graph.add_layer(
                "paddle.cast",
                inputs={"x": node.name},
                outputs=[node.name],
                dtype=string("bool"))

S
SunAhong1993 已提交
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
        if len(new_axes) > 0:
            self.paddle_graph.add_layer(
                kernel="paddle.unsqueeze",
                inputs={"x": node.name},
                outputs=[node.name],
                axis=new_axes)
        if len(shrink_axes) > 0:
            if len(input.out_shapes[0]) + len(new_axes) <= 1:
                pass
            else:
                self.paddle_graph.add_layer(
                    kernel="paddle.squeeze",
                    inputs={"x": node.name},
                    outputs=[node.name],
                    axis=shrink_axes)
S
SunAhong1993 已提交
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
                
    def Prod(self, node):
        input = self.graph.get_input_node(node, 0)
        reduction_indices = self.graph.get_input_node(node, 1)
        assert reduction_indices.layer_type == "Const"
        keep_dims = node.get_attr('keep_dims')
        axis = reduction_indices.value

        self.paddle_graph.add_layer(
            kernel="paddle.prod",
            inputs={"x": input.name},
            outputs=[node.layer_name],
            keepdim=keep_dims,
            axis=axis)
S
SunAhong1993 已提交
1052 1053

    def Split(self, node):
S
SunAhong1993 已提交
1054 1055
        dim = self.graph.get_input_node(node, 0)
        input = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
1056 1057 1058 1059 1060 1061
        assert dim.layer_type == "Const"
        num_split = node.get_attr('num_split')
        dim = dim.value

        self.paddle_graph.add_layer(
            kernel="paddle.split",
S
SunAhong1993 已提交
1062
            inputs={"x": input.name},
S
SunAhong1993 已提交
1063 1064 1065 1066
            outputs=[
                "{}_p{}".format(node.layer_name, i) for i in range(num_split)
            ],
            num_or_sections=num_split,
S
SunAhong1993 已提交
1067
            axis=dim)
S
SunAhong1993 已提交
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
        
    def SplitV(self, node):
        input = self.graph.get_input_node(node, 0)
        size_splits = self.graph.get_input_node(node, 1)
        assert size_splits.layer_type == "Const", "size_splits of SplitV OP should be Const"
        size_splits = size_splits.value.tolist()
        dim = self.graph.get_input_node(node, 2)
        assert dim.layer_type == "Const", "dim of SplitV OP should be Const"
        dim = dim.value
        
        self.paddle_graph.add_layer(
            kernel="paddle.split",
            inputs={"x": input.name},
            outputs=[
                "{}_p{}".format(node.layer_name, i) for i in range(len(size_splits))
            ],
            num_or_sections=size_splits,
            axis=dim)
S
SunAhong1993 已提交
1086 1087

    def Slice(self, node):
S
SunAhong1993 已提交
1088 1089 1090
        input = self.graph.get_input_node(node, 0)
        begin = self.graph.get_input_node(node, 1)
        size = self.graph.get_input_node(node, 2)
S
SunAhong1993 已提交
1091 1092 1093 1094 1095 1096 1097

        inputs = {"x": input.name}
        attrs = {}
        if begin.layer_type == "Const":
            begin = begin.value.tolist()
            attrs['offsets'] = begin
        else:
S
SunAhong1993 已提交
1098
            begin = self.decoder.infer_tensor(begin, use_diff_inputs=False).tolist()
S
SunAhong1993 已提交
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
            attrs['offsets'] = begin
        if size.layer_type == "Const":
            size = size.value.tolist()
            attrs['shape'] = size
        else:
            shape = size.out_shapes[0]
            reshape_name = gen_name("slice", "reshape")
            self.paddle_graph.add_layer(
                kernel="paddle.reshape",
                inputs={"x": size.name},
                outputs=[reshape_name],
                shape=shape)
            inputs['shape'] = reshape_name
        self.paddle_graph.add_layer(
            kernel="paddle.crop",
            inputs=inputs,
            outputs=[node.name],
            **attrs)

    def ResizeNearestNeighbor(self, node):
S
SunAhong1993 已提交
1119 1120
        input = self.graph.get_input_node(node, 0)
        resize_shape = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
1121
        data_format = "NHWC"
S
SunAhong1993 已提交
1122 1123 1124 1125
        inputs = {"x": input.name}
        attrs = {"align_corners": node.get_attr("align_corners"),
                 "mode": string("nearest"),
                 "align_mode": 1}
S
SunAhong1993 已提交
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137

        if resize_shape.layer_type == "Const":
            resize_shape = resize_shape.value.tolist()
            attrs["size"] = resize_shape
        else:
            shape = resize_shape.out_shapes[0]
            reshape_name = gen_name("resize_nearest", "reshape")
            self.paddle_graph.add_layer(
                kernel="paddle.reshape",
                inputs={"x": resize_shape.name},
                outputs=[reshape_name],
                shape=shape)
S
SunAhong1993 已提交
1138
            inputs["size"] = reshape_name
S
SunAhong1993 已提交
1139 1140 1141 1142 1143 1144 1145 1146

        if data_format == "NHWC":
            transpose_name = gen_name("resize_nearest", "reshape")
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
S
SunAhong1993 已提交
1147
            inputs["x"] = transpose_name
S
SunAhong1993 已提交
1148 1149

        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1150
            kernel="paddle.nn.functional.interpolate",
S
SunAhong1993 已提交
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
            inputs=inputs,
            outputs=[node.name],
            **attrs)

        if data_format == "NHWC":
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
S
SunAhong1993 已提交
1161
            
S
SunAhong1993 已提交
1162
    def ResizeBilinear(self, node):
S
SunAhong1993 已提交
1163 1164
        input = self.graph.get_input_node(node, 0)
        resize_shape = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
1165
        data_format = "NHWC"
S
SunAhong1993 已提交
1166
        inputs = {"x": input.name}
S
SunAhong1993 已提交
1167
        attrs = {"align_corners": node.get_attr("align_corners"),
S
SunAhong1993 已提交
1168 1169
                 "mode": string("bilinear"),
                 "align_mode": 1}
S
SunAhong1993 已提交
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181

        if resize_shape.layer_type == "Const":
            resize_shape = resize_shape.value.tolist()
            attrs["size"] = resize_shape
        else:
            shape = resize_shape.out_shapes[0]
            reshape_name = gen_name("resize_bilinear", "reshape")
            self.paddle_graph.add_layer(
                kernel="paddle.reshape",
                inputs={"x": resize_shape.name},
                outputs=[reshape_name],
                shape=shape)
S
SunAhong1993 已提交
1182
            inputs["size"] = reshape_name
S
SunAhong1993 已提交
1183 1184 1185 1186 1187 1188 1189 1190

        if data_format == "NHWC":
            transpose_name = gen_name("resize_bilinear", "reshape")
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
S
SunAhong1993 已提交
1191
            inputs["x"] = transpose_name
S
SunAhong1993 已提交
1192 1193

        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1194
            kernel="paddle.nn.functional.interpolate",
S
SunAhong1993 已提交
1195 1196 1197 1198 1199 1200
            inputs=inputs,
            outputs=[node.name],
            **attrs)

        if data_format == "NHWC":
            self.paddle_graph.add_layer(
S
rename  
SunAhong1993 已提交
1201
                kernel="paddle.transpose",
S
SunAhong1993 已提交
1202 1203 1204 1205 1206
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])

    def Cast(self, node):
S
SunAhong1993 已提交
1207
        input = self.graph.get_input_node(node, 0)
S
SunAhong1993 已提交
1208 1209 1210 1211 1212 1213 1214 1215
        dtype = node.dtype
        self.paddle_graph.add_layer(
            kernel="paddle.cast",
            inputs={"x": input.name},
            outputs=[node.name],
            dtype=string(dtype))

    def Sum(self, node):
S
SunAhong1993 已提交
1216 1217
        input = self.graph.get_input_node(node, 0)
        reduce_idx = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
1218 1219 1220 1221 1222 1223
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        keep_dims = node.get_attr("keep_dims")
        dim = reduce_idx.value.tolist()

        self.paddle_graph.add_layer(
            kernel="paddle.sum",
S
SunAhong1993 已提交
1224
            inputs={"x": input.name},
S
SunAhong1993 已提交
1225 1226 1227 1228 1229
            outputs=[node.name],
            axis=dim,
            keepdim=keep_dims)

    def Max(self, node):
S
SunAhong1993 已提交
1230 1231
        input = self.graph.get_input_node(node, 0)
        reduce_idx = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
1232 1233 1234 1235 1236
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        keep_dims = node.get_attr("keep_dims")
        dim = reduce_idx.value.tolist()
        self.paddle_graph.add_layer(
            kernel="paddle.max",
S
SunAhong1993 已提交
1237
            inputs={"x": input.name},
S
SunAhong1993 已提交
1238 1239 1240 1241 1242
            outputs=[node.name],
            axis=dim,
            keepdim=keep_dims)

    def RandomUniform(self, node):
S
SunAhong1993 已提交
1243
        shape = self.graph.get_input_node(node, 0)
S
SunAhong1993 已提交
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
        if shape.layer_type == "Const":
            shape = shape.value.tolist()
            self.paddle_graph.add_layer(
                kernel="paddle.uniform",
                inputs={},
                outputs=[node.name],
                shape=shape,
                min=0.0,
                max=0.9999)
        else:
            self.paddle_graph.add_layer(
                kernel="paddle.uniform",
                inputs={'shape': shape.name},
                outputs=[node.name],
                min=0.0,
                max=0.9999)

    def Conv2DBackpropInput(self, node):
        op_name = name_generator("conv", self.nn_name2id)
        output_name = node.name
        layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
1265 1266 1267
        out_shape = self.graph.get_input_node(node, 0)
        kernel = self.graph.get_input_node(node, 1)
        input = self.graph.get_input_node(node, 2)
S
SunAhong1993 已提交
1268 1269 1270 1271 1272 1273

        assert kernel.layer_type == "Const", "Kernel of Conv2DBackpropInput should be Const"

        if out_shape.layer_type == "Const":
            out_shape = out_shape.value.tolist()
        else:
S
SunAhong1993 已提交
1274 1275
            out_shape = self.decoder.infer_tensor(out_shape,
                                                  out_shape=node.out_shapes[0])
S
SunAhong1993 已提交
1276 1277 1278

        in_shape = input.out_shapes[0]
        if in_shape.count(-1) > 2:
S
SunAhong1993 已提交
1279
            in_shape = self.decoder.infer_tensor(input, use_diff_inputs=False).shape
S
SunAhong1993 已提交
1280 1281
        k_size = kernel.out_shapes[0]
        if k_size.count(-1) > 2:
S
SunAhong1993 已提交
1282
            k_size = self.decoder.infer_tensor(kernel, use_diff_inputs=False).shape
S
SunAhong1993 已提交
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304

        pad_mode = node.get_attr("padding").decode()
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()

        kernel_name = op_name + ".weight"
        self.params[kernel_name] = numpy.transpose(kernel.value, (3, 2, 0, 1))

        input_name = input.name
        if data_format == "NHWC":
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
            transpose_name = gen_name("conv2dbackpropinput", "transpose")
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

S
SunAhong1993 已提交
1305
        # TODO(syf): The output_size is not set.
S
SunAhong1993 已提交
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
#         self.paddle_graph.add_layer(
#             kernel="paddle.nn.Conv2DTranspose",
#             inputs={"input": input_name},
#             outputs=layer_outputs,
#             weight_attr=string(kernel_name),
#             bias_attr=False,
#             in_channels=k_size[3],
#             out_channels=k_size[2],
#             kernel_size=k_size[0:2],
#             stride=strides[2:4],
#             dilation=dilations[2:4],
#             padding=string(pad_mode))
S
SunAhong1993 已提交
1318
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
            "self.create_parameter",
            inputs={},
            outputs=["{}_{}".format(node.name, kernel_name).replace(".", "_")],
            shape=self.params[kernel_name].shape,
            attr=string(kernel_name))
    
        self.paddle_graph.add_layer(
            kernel="paddle.nn.functional.conv2d_transpose",
            inputs={"x": input_name,
                    "weight": "{}_{}".format(node.name, kernel_name).replace(".", "_")},
            outputs=[node.name],
            bias=None,
S
SunAhong1993 已提交
1331 1332
            stride=strides[2:4],
            dilation=dilations[2:4],
S
SunAhong1993 已提交
1333 1334
            padding=string(pad_mode),
            output_size=out_shape[1:3])
S
SunAhong1993 已提交
1335 1336 1337 1338 1339 1340 1341 1342 1343

        if data_format == "NHWC":
            self.paddle_graph.add_layer(
                kernel="paddle.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])

    def Tile(self, node):
S
SunAhong1993 已提交
1344
        input = self.graph.get_input_node(node, 0)
S
SunAhong1993 已提交
1345
        repeat_times = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
1346 1347 1348
        inputs = {"x": input.name}
        attr = dict()
        in_shape = input.out_shapes[0]
S
SunAhong1993 已提交
1349 1350 1351
        if repeat_times.layer_type == "Const":
            repeat_times = repeat_times.value.tolist()
            attr["repeat_times"] = repeat_times
S
SunAhong1993 已提交
1352
        else:
S
SunAhong1993 已提交
1353
            inputs["repeat_times"] = repeat_times.name
S
SunAhong1993 已提交
1354 1355 1356 1357 1358 1359 1360 1361

        self.paddle_graph.add_layer(
            kernel="paddle.tile",
            inputs=inputs,
            outputs=[node.name],
            **attr)

    def Range(self, node):
S
SunAhong1993 已提交
1362 1363 1364
        start = self.graph.get_input_node(node, 0)
        limit = self.graph.get_input_node(node, 1)
        delta = self.graph.get_input_node(node, 2)
S
SunAhong1993 已提交
1365 1366 1367 1368 1369 1370 1371 1372 1373
        inputs = dict()
        attr = dict()

        dtype = 'int32'
        if start.dtype.startswith('float'):
            dtype = start.dtype
        if start.layer_type == "Const":
            attr["start"] = start.value
        else:
S
SunAhong1993 已提交
1374
            
S
SunAhong1993 已提交
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
            inputs["start"] = start.name
        if limit.dtype.startswith('float'):
            dtype = limit.dtype
        if limit.layer_type == "Const":
            attr["end"] = limit.value
        else:
            inputs["end"] = limit.name
        if delta.dtype.startswith('float'):
            dtype = delta.dtype
        if delta.layer_type == "Const":
            attr["step"] = delta.value
        else:
            inputs["step"] = delta.name
        node.set_dtype(dtype)
        attr["dtype"] = string(node.dtype)

        self.paddle_graph.add_layer(
            kernel="paddle.arange",
            inputs=inputs,
            outputs=[node.name],
            **attr)

    def SquaredDifference(self, node):
S
SunAhong1993 已提交
1398 1399
        x = self.graph.get_input_node(node, 0)
        y = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
1400 1401 1402
        inputs = {"x": x.name, "y": y.name}
        x_shape = x.out_shapes[0]
        y_shape = y.out_shapes[0]
S
SunAhong1993 已提交
1403
        # TODO(syf)
S
SunAhong1993 已提交
1404
        layer_id = self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1405
            "paddle.subtract", inputs=inputs, outputs=[node.name])
S
SunAhong1993 已提交
1406
        self.paddle_graph.layers[layer_id].input_shapes = {"x": x_shape, "y": y_shape}
S
SunAhong1993 已提交
1407 1408 1409 1410 1411 1412

        inputs = {"x": node.name, "y": node.name}
        x_shape = node.out_shapes[0]
        y_shape = node.out_shapes[0]
        layer_id = self.paddle_graph.add_layer(
            "paddle.multiply", inputs=inputs, outputs=[node.name])
S
SunAhong1993 已提交
1413
        self.paddle_graph.layers[layer_id].input_shapes = {"x": x_shape, "y": y_shape}
S
SunAhong1993 已提交
1414 1415

    def OneHot(self, node):
S
SunAhong1993 已提交
1416 1417 1418 1419
        input = self.graph.get_input_node(node, 0)
        depth = self.graph.get_input_node(node, 1)
        on_value = self.graph.get_input_node(node, 2)
        off_value = self.graph.get_input_node(node, 3)
S
SunAhong1993 已提交
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
        assert depth.layer_type == 'Const', 'Parameter depth should be Const in OneHot'
        assert on_value.layer_type == 'Const', 'Parameter on_value should be Const in OneHot'
        assert off_value.layer_type == 'Const', 'Parameter off_value should be Const in OneHot'

        attr = {'depth': depth.value}
        on_value = on_value.value
        off_value = off_value.value
        assert math.fabs(on_value -
                         1.0) < 1e-06, "on_value should be 1 in OneHot"
        assert math.fabs(off_value -
                         0.0) < 1e-06, "off_value should be 0 in OneHot"

        self.paddle_graph.add_layer(
            "paddle.nn.functional.one_hot",
            inputs={"x": input.name},
            outputs=[node.name],
            num_classes=depth.value)

    def Pow(self, node):
S
SunAhong1993 已提交
1439 1440
        x = self.graph.get_input_node(node, 0)
        factor = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
        inputs = {"x": x.name}
        attr = dict()
        if factor.layer_type == 'Const':
            attr["y"] = factor.value.tolist()
        else:
            inputs["y"] = factor.name
        self.paddle_graph.add_layer(
            "paddle.pow", inputs=inputs, outputs=[node.name], **attr)

    def All(self, node):
S
SunAhong1993 已提交
1451 1452
        input = self.graph.get_input_node(node, 0)
        reduce_idx = self.graph.get_input_node(node, 1)
S
SunAhong1993 已提交
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        attr = dict()
        attr["axis"] = reduce_idx.value.tolist()
        attr["keepdim"] = node.get_attr("keep_dims")

        input_name = input.name
        if input.dtype != "bool":
            input_name = gen_name("all", "cast")
            self.paddle_graph.add_layer(
                "paddle.cast",
                inputs={"x": input.name},
                outputs=[input_name],
                dtype=string("bool"))
        self.paddle_graph.add_layer(
            "paddle.all",
            inputs={"x": input_name},
            outputs=[node.name],
            **attr)

        node.layer.attr['dtype'].type = 10

    def GatherV2(self, node):
S
SunAhong1993 已提交
1475 1476 1477
        embeddings = self.graph.get_input_node(node, 0)
        index = self.graph.get_input_node(node, 1)
        axis = self.graph.get_input_node(node, 2)
S
SunAhong1993 已提交
1478
        assert axis.layer_type == 'Const', "Only support Const parameter[axis]"
S
SunAhong1993 已提交
1479
        axis = axis.value
S
SunAhong1993 已提交
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
        index_name = index.name
        if len(index.out_shapes[0]) != 1:
            reshape_name = gen_name("gather", "reshape")
            index_name = reshape_name
            self.paddle_graph.add_layer(
                "paddle.reshape",
                inputs={"x": index.name},
                outputs=[reshape_name],
                shape=[-1])
        inputs = {'x': embeddings.name, 'index': index_name}
        self.paddle_graph.add_layer(
            "paddle.gather",
            inputs=inputs,
S
SunAhong1993 已提交
1493 1494
            outputs=[node.name],
            axis=axis)
S
SunAhong1993 已提交
1495 1496 1497 1498 1499 1500 1501
        if len(index.out_shapes[0]) != 1:
            out_shape = node.out_shapes[0]
            self.paddle_graph.add_layer(
                kernel="paddle.reshape",
                inputs={"x": node.name},
                outputs=[node.name],
                shape=out_shape)
S
SunAhong1993 已提交
1502 1503 1504 1505 1506 1507 1508 1509 1510
            
    def GatherNd(self, node):
        x = self.graph.get_input_node(node, 0)
        index = self.graph.get_input_node(node, 1)
        inputs = {'x': x.name, 'index': index.name}
        self.paddle_graph.add_layer(
            "paddle.gather_nd",
            inputs=inputs,
            outputs=[node.name])
S
SunAhong1993 已提交
1511 1512

    def ExpandDims(self, node):
S
SunAhong1993 已提交
1513 1514
        x = self.graph.get_input_node(node, 0, copy=True)
        y = self.graph.get_input_node(node, 1, copy=True)
S
SunAhong1993 已提交
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
        inputs = {"x": x.name}
        attr = dict()
        if y.layer_type == 'Const':
            dim = y.value.tolist()
            if not isinstance(dim, list):
                dim = [dim]
            attr['axis'] = dim
        else:
            inputs['axis'] = y.name
        self.paddle_graph.add_layer(
            "paddle.unsqueeze",
            inputs=inputs,
            outputs=[node.name],
            **attr)