prim.py 19.4 KB
Newer Older
S
SunAhong1993 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import torch
S
SunAhong1993 已提交
16
import numpy as np
S
SunAhong1993 已提交
17 18 19 20 21 22
from x2paddle.core.util import *


def prim_Constant(mapper, graph, node):
    """ 构造constant的PaddleLayer,该节点实现常量赋值。

S
SunAhong1993 已提交
23
    TorchScript示例:
S
SunAhong1993 已提交
24 25 26 27 28 29 30
        %2 : int = prim::Constant[value=-1]()
        参数含义:
        %2 (常量类型由赋值类型定义,该示例中为int型): 常量赋值结果输出。
    """
    output_name = mapper._get_outputs_name(node)[0]
    output = list(node.outputs())[0]
    value = output.toIValue()
S
SunAhong1993 已提交
31
    output_type = output.type()
S
SunAhong1993 已提交
32 33
    if isinstance(value, str):
        value = string(value)
S
SunAhong1993 已提交
34
    if str(output_type) == "Tensor":
S
SunAhong1993 已提交
35 36 37 38 39 40 41 42 43 44 45
        value = "{}".format(value)

    if "inf" in str(value):
        t = str(type(value)).split("'")[1]
        if str(value).startswith("-"):
            value = "-{}({})".format(t, string(str(value)[1:]))
        else:
            value = "{}({})".format(t, string(str(value)))
    if "9223372036854775807" in str(value):
        import math
        value = int(math.pow(2, 31) - 1)
S
SunAhong1993 已提交
46
    mapper.attrs[output_name] = value
S
SunAhong1993 已提交
47 48
    graph.add_layer(
        "prim.constant", inputs={}, outputs=[output_name], value=value)
S
SunAhong1993 已提交
49
    return [], [output_name]
S
SunAhong1993 已提交
50 51


52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
def prim_data(mapper, graph, node):
    """ 构造Tensor的PaddleLayer。

    TorchScript示例:
        %4336 : Tensor = prim::data(%out.6)
        参数含义:
        %4336 (Tensor): 输出Tensor。
        %out.6 (Tensor): 原始Tensor。

    【注意】Paddle中无此用法,所以此处翻译成赋值。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%4336
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.equal", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
80 81 82
def prim_GetAttr(mapper, graph, node):
    """ 获取attribute信息。

S
SunAhong1993 已提交
83
    TorchScript示例:
S
SunAhong1993 已提交
84 85 86 87 88
        %27 : Tensor? = prim::GetAttr[name="bias"](%7)
        参数含义:
        %7 (Tensor): 输入Tensor。
        %27 (Tensor): 输入Tensor。
    """
S
SunAhong1993 已提交
89
    current_node = node
S
SunAhong1993 已提交
90 91 92 93 94 95 96 97
    field_name_list = [node.s('name')]
    while True:
        input_node = list(node.inputs())[0].node()
        try:
            field_name_list.insert(0, input_node.s('name'))
            node = input_node
        except Exception:
            break
S
SunAhong1993 已提交
98 99 100 101 102 103 104 105
    attr_name = ".".join(field_name_list)
    output_name = mapper._get_outputs_name(current_node, attr_name)[0]
    part_script = mapper.script
    for field_name in field_name_list:
        if hasattr(part_script, field_name):
            param = getattr(part_script, field_name)
            if isinstance(param, torch.Tensor):
                param = param.detach().numpy()
S
SunAhong1993 已提交
106 107 108 109
                if len(param.shape) == 0:
                    param = np.reshape(param, 1)
                if str(param.dtype) == "uint8":
                    param = param.astype("int32")
S
SunAhong1993 已提交
110 111
            mapper.pytorch_params[output_name] = param
            part_script = param
S
SunAhong1993 已提交
112
    return [], [output_name]
S
SunAhong1993 已提交
113 114


115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
def prim_If(mapper, graph, node):
    """ 构造if控制流的PaddleLayer。

    TorchScript示例:
        %input.5 : Tensor = prim::If(%107)
          block0():
            %109 : Tensor = aten::t(%102)
            %ret.2 : Tensor = aten::addmm(%103, %101, %109, %104, %104)
            -> (%ret.2)
          block1():
            %111 : Tensor = aten::t(%102)
            ...
            -> (%output.4)
        参数含义:
        %107 (bool): if判断条件。
        %input.5 (Tensor): if控制流的输出,与%output.4对应。
    """
S
SunAhong1993 已提交
132 133 134
    outputs_name = mapper._get_outputs_name(node)
    node_outputs = outputs_name.copy()
    current_outputs = outputs_name.copy()
135 136 137
    input_node = list(node.inputs())[0].node()
    script_input_unique_id = list(node.inputs())[0].unique()
    input_node_name = mapper.outputs_info[script_input_unique_id]
S
SunAhong1993 已提交
138 139
    mapper._check_input(graph, input_node, input_node_name, current_outputs)
    graph.add_layer("prim.if", {'input': input_node_name}, node_outputs)
140 141 142 143 144 145 146 147 148 149 150 151 152
    current_layer = list(graph.layers.values())[-1]
    block0 = list(node.blocks())[0]
    block0_graph, graph_inputs0 = mapper.traverse(block0, current_layer)
    len0 = 0
    for i, input_name in enumerate(graph_inputs0):
        current_layer.inputs['input-{}'.format(i)] = input_name
        len0 = i
    current_layer.add_block(block0_graph)
    block1 = list(node.blocks())[1]
    block1_graph, graph_inputs1 = mapper.traverse(block1, current_layer)
    for i, input_name in enumerate(graph_inputs1):
        current_layer.inputs['input-{}'.format(len0 + 1 + i)] = input_name
    current_layer.add_block(block1_graph)
S
SunAhong1993 已提交
153
    return list(current_layer.inputs.values()), current_outputs
154 155


S
SunAhong1993 已提交
156 157 158
def prim_ListConstruct(mapper, graph, node):
    """ 构造list的PaddleLayer。

S
SunAhong1993 已提交
159
    TorchScript示例:
S
SunAhong1993 已提交
160 161
        %86 : int[] = prim::ListConstruct(%84, %85)
        参数含义:
S
SunAhong1993 已提交
162
        %86 (list): list节点输出。
S
SunAhong1993 已提交
163 164 165 166
        %84 (int/其他): list第一个元素信息。
        %85 (int/其他): list第二个元素信息。
    """
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
167 168 169
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
SunAhong1993 已提交
170 171
    # 获取当前节点输出的list
    current_outputs = [output_name]
S
SunAhong1993 已提交
172 173 174
    # 处理每个输入
    for i, input_name in enumerate(inputs_name):
        layer_inputs["input{}".format(i)] = input_name
S
SunAhong1993 已提交
175
    # 获取当前节点输入的list
S
SunAhong1993 已提交
176 177 178 179
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.list", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs
S
SunAhong1993 已提交
180 181


182 183
def prim_ListUnpack(mapper, graph, node):
    """ 构造获取list中元素的PaddleLayer。
S
SunAhong1993 已提交
184

S
SunAhong1993 已提交
185
    TorchScript示例:
186
        %x1.4 : Tensor, %x2.4 : Tensor = prim::ListUnpack(%4354)
S
SunAhong1993 已提交
187
        参数含义:
188 189 190
        %x1.4 (Tensor): 输出,list的第一个元素。
        %x2.4 (Tensor): 输出,list的第二个元素。
        %4354 (list): 列表。
S
SunAhong1993 已提交
191
    """
192 193
    outputs_name = mapper._get_outputs_name(node)
    layer_outputs = outputs_name.copy()
S
SunAhong1993 已提交
194 195
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
SunAhong1993 已提交
196
    # 获取当前节点输出的list
197 198
    current_outputs = layer_outputs.copy()
    # 处理输入0,即%4354
S
SunAhong1993 已提交
199
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
S
SunAhong1993 已提交
200
    layer_inputs["input"] = inputs_name[0]
S
SunAhong1993 已提交
201
    # 获取当前节点输入的list
S
SunAhong1993 已提交
202 203
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
204
    graph.add_layer(
205
        "prim.list_unpack", inputs=layer_inputs, outputs=layer_outputs)
S
SunAhong1993 已提交
206
    mapper.split_len[list(layer_inputs.values())[0]] = len(layer_outputs)
S
SunAhong1993 已提交
207
    return current_inputs, current_outputs
S
SunAhong1993 已提交
208 209 210 211 212


def prim_Loop(mapper, graph, node):
    """ 构造loop循环的PaddleLayer。

S
SunAhong1993 已提交
213
    TorchScript示例:
S
SunAhong1993 已提交
214 215 216 217 218 219 220 221 222 223 224 225
        %x : Tensor = prim::Loop(%4, %3, %x.3)
        block0(%i : int, %x.12 : Tensor):
          %72 : int[] = prim::Constant[value=[6, 6]]()
          ...
          %x.5 : Tensor = aten::adaptive_avg_pool2d(%x.12, %_output_size.1)
          -> (%3, %x.5)
       参数含义:
       %4 (int): 循环次数。
       %3 (bool): 是否进入退出。
       %x.3 (Tensor): 循环中修改的Tensor。
       %x (Tensor): loop循环的输出,与%x.5对应。
    """
S
SunAhong1993 已提交
226
    node_outputs = mapper._get_outputs_name(node)
S
SunAhong1993 已提交
227 228
    loop_inputs = {}
    block = list(node.blocks())[0]
S
SunAhong1993 已提交
229
    loop_outputs = node_outputs.copy()
S
SunAhong1993 已提交
230
    for i, block_input_ivalue in enumerate(block.inputs()):
S
SunAhong1993 已提交
231 232 233 234
        if i == 0:
            block_input_node_name = '_x' + str(mapper.output_index)
        else:
            block_input_node_name = 'x' + str(mapper.output_index)
S
SunAhong1993 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
        unique_id = block_input_ivalue.unique()
        if unique_id not in mapper.outputs_info:
            mapper.outputs_info[unique_id] = block_input_node_name
            mapper.output_index += 1
        if i == 0:
            loop_input_node = list(node.inputs())[0].node()
            script_loop_input_unique_id = list(node.inputs())[0].unique()
            loop_input_node_name = mapper.outputs_info[
                script_loop_input_unique_id]
            mapper._check_input(graph, loop_input_node, loop_input_node_name,
                                node_outputs)
            loop_inputs['input'] = loop_input_node_name
            loop_outputs.append(block_input_node_name)
            node_outputs.append(block_input_node_name)
        else:
            loop_input_node = list(node.inputs())[i + 1].node()
            script_loop_input_unique_id = list(node.inputs())[i + 1].unique()
            loop_input_node_name = mapper.outputs_info[
                script_loop_input_unique_id]
            mapper._check_input(graph, loop_input_node, loop_input_node_name,
                                node_outputs)
            graph.add_layer(
                "prim.equal",
                inputs={'input': loop_input_node_name},
                outputs=[block_input_node_name])
            node_outputs.append(block_input_node_name)

    graph.add_layer("prim.loop", inputs=loop_inputs, outputs=loop_outputs)
    current_layer = list(graph.layers.values())[-1]
S
SunAhong1993 已提交
264
    block_graph, graph_inputs = mapper.traverse(block, current_layer)
S
SunAhong1993 已提交
265 266 267 268 269 270 271 272 273 274 275
    for i, input_name in enumerate(graph_inputs):
        if input_name == loop_outputs[1]:
            continue
        current_layer.inputs['input-{}'.format(i)] = input_name
    current_layer.add_block(block_graph)
    return list(current_layer.inputs.values()), node_outputs


def prim_min(mapper, graph, node):
    """ 构造min的PaddleLayer。

S
SunAhong1993 已提交
276
    TorchScript示例:
S
SunAhong1993 已提交
277 278 279 280 281 282
        %87 : int = prim::min(%86)
        参数含义:
        %86 (list): 输入。
        %87 (int): 输出。
    """
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
283 284 285
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
SunAhong1993 已提交
286 287
    # 获取当前节点输出的list
    current_outputs = [output_name]
S
SunAhong1993 已提交
288
    # 处理输入0,即%86
S
SunAhong1993 已提交
289
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
S
SunAhong1993 已提交
290
    layer_inputs["input"] = inputs_name[0]
S
SunAhong1993 已提交
291
    # 获取当前节点输入的list
S
SunAhong1993 已提交
292 293 294 295
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.min", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs
S
SunAhong1993 已提交
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315


def prim_NumToTensor(mapper, graph, node):
    """ 构造转为Tensor的PaddleLayer。

    TorchScript示例:
        %other.2 : Tensor = prim::NumToTensor(%1736)
        参数含义:
        %other.2 (Tensor): 输出。
        %1736 (-): 输入。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%86
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
S
SunAhong1993 已提交
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
    if inputs_node[0].kind() == "aten::size":
        layer_inputs["input"] = inputs_name[0]
        # 获取当前节点输入的list
        current_inputs = list(layer_inputs.values())
        graph.add_layer(
            "prim_equal", inputs=layer_inputs, outputs=layer_outputs)
    else:
        layer_inputs["value"] = inputs_name[0]
        # 获取当前节点输入的list
        current_inputs = list(layer_inputs.values())
        input_type = list(node.inputs())[0].type()
        layer_attrs["dtype"] = input_type
        layer_attrs["persistable"] = True
        layer_attrs["shape"] = [1]
        graph.add_layer(
            "fluid.layers.create_global_var",
            inputs=layer_inputs,
            outputs=layer_outputs,
            **layer_attrs)
S
SunAhong1993 已提交
335
    return current_inputs, current_outputs
S
SunAhong1993 已提交
336 337


338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
def prim_RaiseException(mapper, graph, node):
    """ 构造抛出异常的PaddleLayer。

    TorchScript示例:
        = prim::RaiseException(%76)
        参数含义:
        %76 (str): 异常信息。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%76
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "prim.exception", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
def prim_requires_grad(mapper, graph, node):
    """ 构造是否计算梯度的PaddleLayer。

    TorchScript示例:
        %356 : bool = prim::requires_grad(%tensor.31)
        参数含义:
        %356 (bool): 输出,当前Tensor是否计算梯度。
        %tensor.31 (Tensor): 输入的Tensor。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%86
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "prim.requires_grad", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
def prim_SetAttr(mapper, graph, node):
    """ 设置attribute信息。

    TorchScript示例:
        = prim::SetAttr[name="num_batches_tracked"](%260, %277)
        参数含义:
        %260 (-): 属性名前缀。
        %277 (-): 需要设置的值。
    """
    output_name = mapper._get_outputs_name(node)[0]
    field_name_list = []
    tmp_node = node
    while True:
        input_node = list(tmp_node.inputs())[0].node()
        try:
            field_name_list.insert(0, input_node.s('name'))
            tmp_node = input_node
        except Exception:
            break
    field_name_list.append(node.s('name'))

    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
SunAhong1993 已提交
411 412 413 414
    param = {
        "Tensor": "self." + ".".join(field_name_list).replace(".", "_"),
        "parent_layer_id": graph.parent_layer.id
    }
S
SunAhong1993 已提交
415
    mapper.pytorch_params[".".join(field_name_list)] = param
S
SunAhong1993 已提交
416 417 418 419
    graph.add_layer(
        "prim.set_attr",
        inputs={"input": inputs_name[1]},
        outputs=["self." + ".".join(field_name_list).replace(".", "_")])
S
SunAhong1993 已提交
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
    return [], [output_name]


def prim_shape(mapper, graph, node):
    """ 构造获取shape的PaddleLayer。

    TorchScript示例:
        %4701 : int[] = prim::shape(%result.1)
        参数含义:
        %4701 (list): 输出,shape信息。
        %result.1 (Tensor): 需要获取shape的值。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.8
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
444 445
    graph.add_layer(
        "fluid.layers.shape", inputs=layer_inputs, outputs=layer_outputs)
S
SunAhong1993 已提交
446
    return current_inputs, current_outputs
S
SunAhong1993 已提交
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499


def prim_TupleConstruct(mapper, graph, node):
    """ 构造tuple的PaddleLayer。

    TorchScript示例:
        %4492 : (Tensor, Tensor?) = prim::TupleConstruct(%x.46, %aux)
        参数含义:
        %4492 (tuple): 输出,tuple。
        %x.46 (Tensor/其他): tuple第一个元素信息。
        %aux (Tensor/其他): tuple第二个元素信息。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理每个输入
    for i, input_name in enumerate(inputs_name):
        layer_inputs["input{}".format(i)] = input_name
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.tuple", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


def prim_TupleUnpack(mapper, graph, node):
    """ 构造获取tuple元素的PaddleLayer。

    TorchScript示例:
        %x.223 : Tensor, %aux.3 : Tensor? = prim::TupleUnpack(%4492)
        参数含义:
        %x.223 (Tensor/其他): 输出,tuple第一个元素信息。
        %aux.3 (Tensor/其他): 输出,tuple第二个元素信息。
        %4492 (tuple): 需要获取元素的tuple。
    """
    outputs_name = mapper._get_outputs_name(node)
    layer_outputs = outputs_name
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = outputs_name
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "prim.tuple_unpack", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
def prim_unchecked_cast(mapper, graph, node):
    """ 构造确认类型的PaddleLayer。

    TorchScript示例:
        %size.64 : int[] = prim::unchecked_cast(%size.63)
        参数含义:
        %size.64 (-): 输出。
        %size.63 (-): 输入。

    【注意】Paddle中无此用法,所以此处翻译成赋值。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%size.63
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.equal", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
528 529 530 531 532 533 534 535 536 537 538 539 540 541
def prim_Uninitialized(mapper, graph, node):
    """ 构造表示编译器永远不会使用的值的PaddleLayer,该节点转换为None。

    TorchScript示例:
        %345 : bool = prim::Uninitialized()
        参数含义:
        %345 (bool): 输出,为赋值的bool。
    """
    output_name = mapper._get_outputs_name(node)[0]
    output = list(node.outputs())[0]
    mapper.attrs[output_name] = None
    graph.add_layer(
        "prim.constant", inputs={}, outputs=[output_name], value=None)
    return [], [output_name]