prim.py 14.2 KB
Newer Older
S
SunAhong1993 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
#   Copyright (c) 2020  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import torch
from x2paddle.core.util import *


def prim_Constant(mapper, graph, node):
    """ 构造constant的PaddleLayer,该节点实现常量赋值。

S
SunAhong1993 已提交
22
    TorchScript示例:
S
SunAhong1993 已提交
23 24 25 26 27 28 29 30 31 32 33 34
        %2 : int = prim::Constant[value=-1]()
        参数含义:
        %2 (常量类型由赋值类型定义,该示例中为int型): 常量赋值结果输出。
    """
    output_name = mapper._get_outputs_name(node)[0]
    output = list(node.outputs())[0]
    value = output.toIValue()
    mapper.attrs[output_name] = value
    if isinstance(value, str):
        value = string(value)
    graph.add_layer(
        "prim.constant", inputs={}, outputs=[output_name], value=value)
S
SunAhong1993 已提交
35
    return [], [output_name]
S
SunAhong1993 已提交
36 37 38 39 40


def prim_GetAttr(mapper, graph, node):
    """ 获取attribute信息。

S
SunAhong1993 已提交
41
    TorchScript示例:
S
SunAhong1993 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55
        %27 : Tensor? = prim::GetAttr[name="bias"](%7)
        参数含义:
        %7 (Tensor): 输入Tensor。
        %27 (Tensor): 输入Tensor。
    """
    output_name = mapper._get_outputs_name(node)[0]
    field_name_list = [node.s('name')]
    while True:
        input_node = list(node.inputs())[0].node()
        try:
            field_name_list.insert(0, input_node.s('name'))
            node = input_node
        except Exception:
            break
S
SunAhong1993 已提交
56 57 58 59 60 61 62 63 64 65 66 67
    if ".".join(field_name_list) in mapper.pytorch_params:
        mapper.pytorch_params[output_name] = mapper.pytorch_params[".".join(
            field_name_list)]
    else:
        part_script = mapper.script
        for field_name in field_name_list:
            if hasattr(part_script, field_name):
                param = getattr(part_script, field_name)
                if isinstance(param, torch.Tensor):
                    param = param.detach().numpy()
                mapper.pytorch_params[output_name] = param
                part_script = param
S
SunAhong1993 已提交
68
    return [], [output_name]
S
SunAhong1993 已提交
69 70 71 72 73


def prim_ListConstruct(mapper, graph, node):
    """ 构造list的PaddleLayer。

S
SunAhong1993 已提交
74
    TorchScript示例:
S
SunAhong1993 已提交
75 76
        %86 : int[] = prim::ListConstruct(%84, %85)
        参数含义:
S
SunAhong1993 已提交
77
        %86 (list): list节点输出。
S
SunAhong1993 已提交
78 79 80 81
        %84 (int/其他): list第一个元素信息。
        %85 (int/其他): list第二个元素信息。
    """
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
82 83 84
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
SunAhong1993 已提交
85 86
    # 获取当前节点输出的list
    current_outputs = [output_name]
S
SunAhong1993 已提交
87 88 89
    # 处理每个输入
    for i, input_name in enumerate(inputs_name):
        layer_inputs["input{}".format(i)] = input_name
S
SunAhong1993 已提交
90
    # 获取当前节点输入的list
S
SunAhong1993 已提交
91 92 93 94
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.list", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs
S
SunAhong1993 已提交
95 96 97 98 99


def prim_RaiseException(mapper, graph, node):
    """ 构造抛出异常的PaddleLayer。

S
SunAhong1993 已提交
100
    TorchScript示例:
S
SunAhong1993 已提交
101 102 103 104 105
        = prim::RaiseException(%76)
        参数含义:
        %76 (str): 异常信息。
    """
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
106 107 108
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
SunAhong1993 已提交
109 110
    # 获取当前节点输出的list
    current_outputs = [output_name]
S
SunAhong1993 已提交
111
    # 处理输入0,即%76
S
SunAhong1993 已提交
112
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
S
SunAhong1993 已提交
113
    layer_inputs["input"] = inputs_name[0]
S
SunAhong1993 已提交
114
    # 获取当前节点输入的list
S
SunAhong1993 已提交
115 116
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
117
    graph.add_layer(
S
SunAhong1993 已提交
118 119
        "prim.exception", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs
S
SunAhong1993 已提交
120 121 122 123 124


def prim_Loop(mapper, graph, node):
    """ 构造loop循环的PaddleLayer。

S
SunAhong1993 已提交
125
    TorchScript示例:
S
SunAhong1993 已提交
126 127 128 129 130 131 132 133 134 135 136 137
        %x : Tensor = prim::Loop(%4, %3, %x.3)
        block0(%i : int, %x.12 : Tensor):
          %72 : int[] = prim::Constant[value=[6, 6]]()
          ...
          %x.5 : Tensor = aten::adaptive_avg_pool2d(%x.12, %_output_size.1)
          -> (%3, %x.5)
       参数含义:
       %4 (int): 循环次数。
       %3 (bool): 是否进入退出。
       %x.3 (Tensor): 循环中修改的Tensor。
       %x (Tensor): loop循环的输出,与%x.5对应。
    """
S
SunAhong1993 已提交
138
    node_outputs = mapper._get_outputs_name(node)
S
SunAhong1993 已提交
139 140
    loop_inputs = {}
    block = list(node.blocks())[0]
S
SunAhong1993 已提交
141
    loop_outputs = node_outputs.copy()
S
SunAhong1993 已提交
142
    for i, block_input_ivalue in enumerate(block.inputs()):
S
SunAhong1993 已提交
143 144 145 146
        if i == 0:
            block_input_node_name = '_x' + str(mapper.output_index)
        else:
            block_input_node_name = 'x' + str(mapper.output_index)
S
SunAhong1993 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
        unique_id = block_input_ivalue.unique()
        if unique_id not in mapper.outputs_info:
            mapper.outputs_info[unique_id] = block_input_node_name
            mapper.output_index += 1
        if i == 0:
            loop_input_node = list(node.inputs())[0].node()
            script_loop_input_unique_id = list(node.inputs())[0].unique()
            loop_input_node_name = mapper.outputs_info[
                script_loop_input_unique_id]
            mapper._check_input(graph, loop_input_node, loop_input_node_name,
                                node_outputs)
            loop_inputs['input'] = loop_input_node_name
            loop_outputs.append(block_input_node_name)
            node_outputs.append(block_input_node_name)
        else:
            loop_input_node = list(node.inputs())[i + 1].node()
            script_loop_input_unique_id = list(node.inputs())[i + 1].unique()
            loop_input_node_name = mapper.outputs_info[
                script_loop_input_unique_id]
            mapper._check_input(graph, loop_input_node, loop_input_node_name,
                                node_outputs)
            graph.add_layer(
                "prim.equal",
                inputs={'input': loop_input_node_name},
                outputs=[block_input_node_name])
            node_outputs.append(block_input_node_name)

    graph.add_layer("prim.loop", inputs=loop_inputs, outputs=loop_outputs)
    current_layer = list(graph.layers.values())[-1]
S
SunAhong1993 已提交
176
    block_graph, graph_inputs = mapper.traverse(block, current_layer)
S
SunAhong1993 已提交
177 178 179 180 181 182 183 184 185 186 187
    for i, input_name in enumerate(graph_inputs):
        if input_name == loop_outputs[1]:
            continue
        current_layer.inputs['input-{}'.format(i)] = input_name
    current_layer.add_block(block_graph)
    return list(current_layer.inputs.values()), node_outputs


def prim_If(mapper, graph, node):
    """ 构造if控制流的PaddleLayer。

S
SunAhong1993 已提交
188
    TorchScript示例:
S
SunAhong1993 已提交
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
        %input.5 : Tensor = prim::If(%107)
          block0():
            %109 : Tensor = aten::t(%102)
            %ret.2 : Tensor = aten::addmm(%103, %101, %109, %104, %104)
            -> (%ret.2)
          block1():
            %111 : Tensor = aten::t(%102)
            ...
            -> (%output.4)
        参数含义:
        %107 (bool): if判断条件。
        %input.5 (Tensor): if控制流的输出,与%output.4对应。
    """
    output_name = mapper._get_outputs_name(node)[0]
    node_outputs = [output_name]
    input_node = list(node.inputs())[0].node()
    script_input_unique_id = list(node.inputs())[0].unique()
    input_node_name = mapper.outputs_info[script_input_unique_id]
    mapper._check_input(graph, input_node, input_node_name, node_outputs)
    graph.add_layer("prim.if", {'input': input_node_name}, [output_name])
    current_layer = list(graph.layers.values())[-1]
    block0 = list(node.blocks())[0]
S
SunAhong1993 已提交
211
    block0_graph, graph_inputs0 = mapper.traverse(block0, current_layer)
S
SunAhong1993 已提交
212 213 214 215 216 217
    len0 = 0
    for i, input_name in enumerate(graph_inputs0):
        current_layer.inputs['input-{}'.format(i)] = input_name
        len0 = i
    current_layer.add_block(block0_graph)
    block1 = list(node.blocks())[1]
S
SunAhong1993 已提交
218
    block1_graph, graph_inputs1 = mapper.traverse(block1, current_layer)
S
SunAhong1993 已提交
219 220 221 222 223 224 225 226 227
    for i, input_name in enumerate(graph_inputs1):
        current_layer.inputs['input-{}'.format(len0 + 1 + i)] = input_name
    current_layer.add_block(block1_graph)
    return list(current_layer.inputs.values()), node_outputs


def prim_min(mapper, graph, node):
    """ 构造min的PaddleLayer。

S
SunAhong1993 已提交
228
    TorchScript示例:
S
SunAhong1993 已提交
229 230 231 232 233 234
        %87 : int = prim::min(%86)
        参数含义:
        %86 (list): 输入。
        %87 (int): 输出。
    """
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
235 236 237
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
SunAhong1993 已提交
238 239
    # 获取当前节点输出的list
    current_outputs = [output_name]
S
SunAhong1993 已提交
240
    # 处理输入0,即%86
S
SunAhong1993 已提交
241
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
S
SunAhong1993 已提交
242
    layer_inputs["input"] = inputs_name[0]
S
SunAhong1993 已提交
243
    # 获取当前节点输入的list
S
SunAhong1993 已提交
244 245 246 247
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.min", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs
S
SunAhong1993 已提交
248 249


S
SunAhong1993 已提交
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
def prim_requires_grad(mapper, graph, node):
    """ 构造是否计算梯度的PaddleLayer。

    TorchScript示例:
        %356 : bool = prim::requires_grad(%tensor.31)
        参数含义:
        %356 (bool): 输出,当前Tensor是否计算梯度。
        %tensor.31 (Tensor): 输入的Tensor。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%86
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "prim.requires_grad", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
def prim_SetAttr(mapper, graph, node):
    """ 设置attribute信息。

    TorchScript示例:
        = prim::SetAttr[name="num_batches_tracked"](%260, %277)
        参数含义:
        %260 (-): 属性名前缀。
        %277 (-): 需要设置的值。
    """
    output_name = mapper._get_outputs_name(node)[0]
    field_name_list = []
    tmp_node = node
    while True:
        input_node = list(tmp_node.inputs())[0].node()
        try:
            field_name_list.insert(0, input_node.s('name'))
            tmp_node = input_node
        except Exception:
            break
    field_name_list.append(node.s('name'))

    inputs_name, inputs_node = mapper._get_inputs_name(node)
    param = {"Tensor": inputs_name[1]}
    mapper.pytorch_params[".".join(field_name_list)] = param
    return [], [output_name]


def prim_shape(mapper, graph, node):
    """ 构造获取shape的PaddleLayer。

    TorchScript示例:
        %4701 : int[] = prim::shape(%result.1)
        参数含义:
        %4701 (list): 输出,shape信息。
        %result.1 (Tensor): 需要获取shape的值。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.8
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.shape", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs
S
SunAhong1993 已提交
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392


def prim_TupleConstruct(mapper, graph, node):
    """ 构造tuple的PaddleLayer。

    TorchScript示例:
        %4492 : (Tensor, Tensor?) = prim::TupleConstruct(%x.46, %aux)
        参数含义:
        %4492 (tuple): 输出,tuple。
        %x.46 (Tensor/其他): tuple第一个元素信息。
        %aux (Tensor/其他): tuple第二个元素信息。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理每个输入
    for i, input_name in enumerate(inputs_name):
        layer_inputs["input{}".format(i)] = input_name
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.tuple", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


def prim_TupleUnpack(mapper, graph, node):
    """ 构造获取tuple元素的PaddleLayer。

    TorchScript示例:
        %x.223 : Tensor, %aux.3 : Tensor? = prim::TupleUnpack(%4492)
        参数含义:
        %x.223 (Tensor/其他): 输出,tuple第一个元素信息。
        %aux.3 (Tensor/其他): 输出,tuple第二个元素信息。
        %4492 (tuple): 需要获取元素的tuple。
    """
    outputs_name = mapper._get_outputs_name(node)
    layer_outputs = outputs_name
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = outputs_name
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "prim.tuple_unpack", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


def prim_Uninitialized(mapper, graph, node):
    """ 构造表示编译器永远不会使用的值的PaddleLayer,该节点转换为None。

    TorchScript示例:
        %345 : bool = prim::Uninitialized()
        参数含义:
        %345 (bool): 输出,为赋值的bool。
    """
    output_name = mapper._get_outputs_name(node)[0]
    output = list(node.outputs())[0]
    mapper.attrs[output_name] = None
    graph.add_layer(
        "prim.constant", inputs={}, outputs=[output_name], value=None)
    return [], [output_name]