prim.py 17.2 KB
Newer Older
S
SunAhong1993 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
#   Copyright (c) 2020  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import torch
from x2paddle.core.util import *


def prim_Constant(mapper, graph, node):
    """ 构造constant的PaddleLayer,该节点实现常量赋值。

S
SunAhong1993 已提交
22
    TorchScript示例:
S
SunAhong1993 已提交
23 24 25 26 27 28 29 30 31 32 33 34
        %2 : int = prim::Constant[value=-1]()
        参数含义:
        %2 (常量类型由赋值类型定义,该示例中为int型): 常量赋值结果输出。
    """
    output_name = mapper._get_outputs_name(node)[0]
    output = list(node.outputs())[0]
    value = output.toIValue()
    mapper.attrs[output_name] = value
    if isinstance(value, str):
        value = string(value)
    graph.add_layer(
        "prim.constant", inputs={}, outputs=[output_name], value=value)
S
SunAhong1993 已提交
35
    return [], [output_name]
S
SunAhong1993 已提交
36 37


38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
def prim_data(mapper, graph, node):
    """ 构造Tensor的PaddleLayer。

    TorchScript示例:
        %4336 : Tensor = prim::data(%out.6)
        参数含义:
        %4336 (Tensor): 输出Tensor。
        %out.6 (Tensor): 原始Tensor。

    【注意】Paddle中无此用法,所以此处翻译成赋值。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%4336
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.equal", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
66 67 68
def prim_GetAttr(mapper, graph, node):
    """ 获取attribute信息。

S
SunAhong1993 已提交
69
    TorchScript示例:
S
SunAhong1993 已提交
70 71 72 73 74
        %27 : Tensor? = prim::GetAttr[name="bias"](%7)
        参数含义:
        %7 (Tensor): 输入Tensor。
        %27 (Tensor): 输入Tensor。
    """
S
SunAhong1993 已提交
75
    current_node = node
S
SunAhong1993 已提交
76 77 78 79 80 81 82 83
    field_name_list = [node.s('name')]
    while True:
        input_node = list(node.inputs())[0].node()
        try:
            field_name_list.insert(0, input_node.s('name'))
            node = input_node
        except Exception:
            break
S
SunAhong1993 已提交
84 85 86 87 88 89 90 91 92 93
    attr_name = ".".join(field_name_list)
    output_name = mapper._get_outputs_name(current_node, attr_name)[0]
    part_script = mapper.script
    for field_name in field_name_list:
        if hasattr(part_script, field_name):
            param = getattr(part_script, field_name)
            if isinstance(param, torch.Tensor):
                param = param.detach().numpy()
            mapper.pytorch_params[output_name] = param
            part_script = param
S
SunAhong1993 已提交
94
    return [], [output_name]
S
SunAhong1993 已提交
95 96


97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
def prim_If(mapper, graph, node):
    """ 构造if控制流的PaddleLayer。

    TorchScript示例:
        %input.5 : Tensor = prim::If(%107)
          block0():
            %109 : Tensor = aten::t(%102)
            %ret.2 : Tensor = aten::addmm(%103, %101, %109, %104, %104)
            -> (%ret.2)
          block1():
            %111 : Tensor = aten::t(%102)
            ...
            -> (%output.4)
        参数含义:
        %107 (bool): if判断条件。
        %input.5 (Tensor): if控制流的输出,与%output.4对应。
    """
S
SunAhong1993 已提交
114 115 116
    outputs_name = mapper._get_outputs_name(node)
    node_outputs = outputs_name.copy()
    current_outputs = outputs_name.copy()
117 118 119
    input_node = list(node.inputs())[0].node()
    script_input_unique_id = list(node.inputs())[0].unique()
    input_node_name = mapper.outputs_info[script_input_unique_id]
S
SunAhong1993 已提交
120 121
    mapper._check_input(graph, input_node, input_node_name, current_outputs)
    graph.add_layer("prim.if", {'input': input_node_name}, node_outputs)
122 123 124 125 126 127 128 129 130 131 132 133 134
    current_layer = list(graph.layers.values())[-1]
    block0 = list(node.blocks())[0]
    block0_graph, graph_inputs0 = mapper.traverse(block0, current_layer)
    len0 = 0
    for i, input_name in enumerate(graph_inputs0):
        current_layer.inputs['input-{}'.format(i)] = input_name
        len0 = i
    current_layer.add_block(block0_graph)
    block1 = list(node.blocks())[1]
    block1_graph, graph_inputs1 = mapper.traverse(block1, current_layer)
    for i, input_name in enumerate(graph_inputs1):
        current_layer.inputs['input-{}'.format(len0 + 1 + i)] = input_name
    current_layer.add_block(block1_graph)
S
SunAhong1993 已提交
135
    return list(current_layer.inputs.values()), current_outputs
136 137


S
SunAhong1993 已提交
138 139 140
def prim_ListConstruct(mapper, graph, node):
    """ 构造list的PaddleLayer。

S
SunAhong1993 已提交
141
    TorchScript示例:
S
SunAhong1993 已提交
142 143
        %86 : int[] = prim::ListConstruct(%84, %85)
        参数含义:
S
SunAhong1993 已提交
144
        %86 (list): list节点输出。
S
SunAhong1993 已提交
145 146 147 148
        %84 (int/其他): list第一个元素信息。
        %85 (int/其他): list第二个元素信息。
    """
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
149 150 151
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
SunAhong1993 已提交
152 153
    # 获取当前节点输出的list
    current_outputs = [output_name]
S
SunAhong1993 已提交
154 155 156
    # 处理每个输入
    for i, input_name in enumerate(inputs_name):
        layer_inputs["input{}".format(i)] = input_name
S
SunAhong1993 已提交
157
    # 获取当前节点输入的list
S
SunAhong1993 已提交
158 159 160 161
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.list", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs
S
SunAhong1993 已提交
162 163


164 165
def prim_ListUnpack(mapper, graph, node):
    """ 构造获取list中元素的PaddleLayer。
S
SunAhong1993 已提交
166

S
SunAhong1993 已提交
167
    TorchScript示例:
168
        %x1.4 : Tensor, %x2.4 : Tensor = prim::ListUnpack(%4354)
S
SunAhong1993 已提交
169
        参数含义:
170 171 172
        %x1.4 (Tensor): 输出,list的第一个元素。
        %x2.4 (Tensor): 输出,list的第二个元素。
        %4354 (list): 列表。
S
SunAhong1993 已提交
173
    """
174 175
    outputs_name = mapper._get_outputs_name(node)
    layer_outputs = outputs_name.copy()
S
SunAhong1993 已提交
176 177
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
SunAhong1993 已提交
178
    # 获取当前节点输出的list
179 180
    current_outputs = layer_outputs.copy()
    # 处理输入0,即%4354
S
SunAhong1993 已提交
181
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
S
SunAhong1993 已提交
182
    layer_inputs["input"] = inputs_name[0]
S
SunAhong1993 已提交
183
    # 获取当前节点输入的list
S
SunAhong1993 已提交
184 185
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
186
    graph.add_layer(
187
        "prim.list_unpack", inputs=layer_inputs, outputs=layer_outputs)
S
SunAhong1993 已提交
188
    return current_inputs, current_outputs
S
SunAhong1993 已提交
189 190 191 192 193


def prim_Loop(mapper, graph, node):
    """ 构造loop循环的PaddleLayer。

S
SunAhong1993 已提交
194
    TorchScript示例:
S
SunAhong1993 已提交
195 196 197 198 199 200 201 202 203 204 205 206
        %x : Tensor = prim::Loop(%4, %3, %x.3)
        block0(%i : int, %x.12 : Tensor):
          %72 : int[] = prim::Constant[value=[6, 6]]()
          ...
          %x.5 : Tensor = aten::adaptive_avg_pool2d(%x.12, %_output_size.1)
          -> (%3, %x.5)
       参数含义:
       %4 (int): 循环次数。
       %3 (bool): 是否进入退出。
       %x.3 (Tensor): 循环中修改的Tensor。
       %x (Tensor): loop循环的输出,与%x.5对应。
    """
S
SunAhong1993 已提交
207
    node_outputs = mapper._get_outputs_name(node)
S
SunAhong1993 已提交
208 209
    loop_inputs = {}
    block = list(node.blocks())[0]
S
SunAhong1993 已提交
210
    loop_outputs = node_outputs.copy()
S
SunAhong1993 已提交
211
    for i, block_input_ivalue in enumerate(block.inputs()):
S
SunAhong1993 已提交
212 213 214 215
        if i == 0:
            block_input_node_name = '_x' + str(mapper.output_index)
        else:
            block_input_node_name = 'x' + str(mapper.output_index)
S
SunAhong1993 已提交
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
        unique_id = block_input_ivalue.unique()
        if unique_id not in mapper.outputs_info:
            mapper.outputs_info[unique_id] = block_input_node_name
            mapper.output_index += 1
        if i == 0:
            loop_input_node = list(node.inputs())[0].node()
            script_loop_input_unique_id = list(node.inputs())[0].unique()
            loop_input_node_name = mapper.outputs_info[
                script_loop_input_unique_id]
            mapper._check_input(graph, loop_input_node, loop_input_node_name,
                                node_outputs)
            loop_inputs['input'] = loop_input_node_name
            loop_outputs.append(block_input_node_name)
            node_outputs.append(block_input_node_name)
        else:
            loop_input_node = list(node.inputs())[i + 1].node()
            script_loop_input_unique_id = list(node.inputs())[i + 1].unique()
            loop_input_node_name = mapper.outputs_info[
                script_loop_input_unique_id]
            mapper._check_input(graph, loop_input_node, loop_input_node_name,
                                node_outputs)
            graph.add_layer(
                "prim.equal",
                inputs={'input': loop_input_node_name},
                outputs=[block_input_node_name])
            node_outputs.append(block_input_node_name)

    graph.add_layer("prim.loop", inputs=loop_inputs, outputs=loop_outputs)
    current_layer = list(graph.layers.values())[-1]
S
SunAhong1993 已提交
245
    block_graph, graph_inputs = mapper.traverse(block, current_layer)
S
SunAhong1993 已提交
246 247 248 249 250 251 252 253 254 255 256
    for i, input_name in enumerate(graph_inputs):
        if input_name == loop_outputs[1]:
            continue
        current_layer.inputs['input-{}'.format(i)] = input_name
    current_layer.add_block(block_graph)
    return list(current_layer.inputs.values()), node_outputs


def prim_min(mapper, graph, node):
    """ 构造min的PaddleLayer。

S
SunAhong1993 已提交
257
    TorchScript示例:
S
SunAhong1993 已提交
258 259 260 261 262 263
        %87 : int = prim::min(%86)
        参数含义:
        %86 (list): 输入。
        %87 (int): 输出。
    """
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
264 265 266
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
SunAhong1993 已提交
267 268
    # 获取当前节点输出的list
    current_outputs = [output_name]
S
SunAhong1993 已提交
269
    # 处理输入0,即%86
S
SunAhong1993 已提交
270
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
S
SunAhong1993 已提交
271
    layer_inputs["input"] = inputs_name[0]
S
SunAhong1993 已提交
272
    # 获取当前节点输入的list
S
SunAhong1993 已提交
273 274 275 276
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.min", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs
S
SunAhong1993 已提交
277 278


279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
def prim_RaiseException(mapper, graph, node):
    """ 构造抛出异常的PaddleLayer。

    TorchScript示例:
        = prim::RaiseException(%76)
        参数含义:
        %76 (str): 异常信息。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%76
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "prim.exception", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
def prim_requires_grad(mapper, graph, node):
    """ 构造是否计算梯度的PaddleLayer。

    TorchScript示例:
        %356 : bool = prim::requires_grad(%tensor.31)
        参数含义:
        %356 (bool): 输出,当前Tensor是否计算梯度。
        %tensor.31 (Tensor): 输入的Tensor。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%86
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "prim.requires_grad", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
def prim_SetAttr(mapper, graph, node):
    """ 设置attribute信息。

    TorchScript示例:
        = prim::SetAttr[name="num_batches_tracked"](%260, %277)
        参数含义:
        %260 (-): 属性名前缀。
        %277 (-): 需要设置的值。
    """
    output_name = mapper._get_outputs_name(node)[0]
    field_name_list = []
    tmp_node = node
    while True:
        input_node = list(tmp_node.inputs())[0].node()
        try:
            field_name_list.insert(0, input_node.s('name'))
            tmp_node = input_node
        except Exception:
            break
    field_name_list.append(node.s('name'))

    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
SunAhong1993 已提交
352 353 354 355
    param = {
        "Tensor": "self." + ".".join(field_name_list).replace(".", "_"),
        "parent_layer_id": graph.parent_layer.id
    }
S
SunAhong1993 已提交
356
    mapper.pytorch_params[".".join(field_name_list)] = param
S
SunAhong1993 已提交
357 358 359 360
    graph.add_layer(
        "prim.set_attr",
        inputs={"input": inputs_name[1]},
        outputs=["self." + ".".join(field_name_list).replace(".", "_")])
S
SunAhong1993 已提交
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
    return [], [output_name]


def prim_shape(mapper, graph, node):
    """ 构造获取shape的PaddleLayer。

    TorchScript示例:
        %4701 : int[] = prim::shape(%result.1)
        参数含义:
        %4701 (list): 输出,shape信息。
        %result.1 (Tensor): 需要获取shape的值。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.8
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.shape", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs
S
SunAhong1993 已提交
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439


def prim_TupleConstruct(mapper, graph, node):
    """ 构造tuple的PaddleLayer。

    TorchScript示例:
        %4492 : (Tensor, Tensor?) = prim::TupleConstruct(%x.46, %aux)
        参数含义:
        %4492 (tuple): 输出,tuple。
        %x.46 (Tensor/其他): tuple第一个元素信息。
        %aux (Tensor/其他): tuple第二个元素信息。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理每个输入
    for i, input_name in enumerate(inputs_name):
        layer_inputs["input{}".format(i)] = input_name
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.tuple", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


def prim_TupleUnpack(mapper, graph, node):
    """ 构造获取tuple元素的PaddleLayer。

    TorchScript示例:
        %x.223 : Tensor, %aux.3 : Tensor? = prim::TupleUnpack(%4492)
        参数含义:
        %x.223 (Tensor/其他): 输出,tuple第一个元素信息。
        %aux.3 (Tensor/其他): 输出,tuple第二个元素信息。
        %4492 (tuple): 需要获取元素的tuple。
    """
    outputs_name = mapper._get_outputs_name(node)
    layer_outputs = outputs_name
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = outputs_name
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "prim.tuple_unpack", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
def prim_unchecked_cast(mapper, graph, node):
    """ 构造确认类型的PaddleLayer。

    TorchScript示例:
        %size.64 : int[] = prim::unchecked_cast(%size.63)
        参数含义:
        %size.64 (-): 输出。
        %size.63 (-): 输入。

    【注意】Paddle中无此用法,所以此处翻译成赋值。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%size.63
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.equal", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
468 469 470 471 472 473 474 475 476 477 478 479 480 481
def prim_Uninitialized(mapper, graph, node):
    """ 构造表示编译器永远不会使用的值的PaddleLayer,该节点转换为None。

    TorchScript示例:
        %345 : bool = prim::Uninitialized()
        参数含义:
        %345 (bool): 输出,为赋值的bool。
    """
    output_name = mapper._get_outputs_name(node)[0]
    output = list(node.outputs())[0]
    mapper.attrs[output_name] = None
    graph.add_layer(
        "prim.constant", inputs={}, outputs=[output_name], value=None)
    return [], [output_name]