提交 841bfa0b 编写于 作者: S SunAhong1993

add optimizer

上级 ab446bfd
......@@ -174,6 +174,36 @@ def onnx2paddle(model_path, save_dir, params_merge=False):
print("Paddle model and code generated.")
def pytorch2paddle(model_path, save_dir):
# check pytorch installation and version
try:
import torch
version = torch.__version__
ver_part = version.split('.')
print(ver_part)
if int(ver_part[1]) < 5:
print("[ERROR] pytorch>=1.5.0 is required")
return
except:
print(
"[ERROR] Pytorch is not installed, use \"pip install torch==1.5.0 torchvision\"."
)
return
print("Now translating model from pytorch to paddle.")
from x2paddle.decoder.pytorch_decoder import PyTorchDecoder
from x2paddle.op_mapper.pytorch2paddle import pytorch_op_mapper
model = PyTorchDecoder(model_path)
mapper = pytorch_op_mapper.PyTorchOpMapper(model)
mapper.graph.build()
print("Model optimizing ...")
from x2paddle.optimizer.optimizer import GraphOptimizer
graph_opt = GraphOptimizer()
graph_opt.optimize(mapper.graph)
print("Model optimized.")
mapper.graph.gen_model(save_dir)
def paddle2onnx(model_path, save_dir, opset_version=10):
from x2paddle.decoder.paddle_decoder import PaddleDecoder
from x2paddle.op_mapper.paddle2onnx.paddle_op_mapper import PaddleOpMapper
......@@ -243,6 +273,9 @@ def main():
if args.params_merge:
params_merge = True
onnx2paddle(args.model, args.save_dir, params_merge)
elif args.framework == "pytorch":
assert args.model is not None, "--model should be defined while translating pytorch model"
pytorch2paddle(args.model, args.save_dir)
elif args.framework == "paddle2onnx":
assert args.model is not None, "--model should be defined while translating paddle model to onnx"
......
......@@ -132,7 +132,8 @@ class PaddleGraph(object):
if self.graph_type == "dygraph":
self.get_dygraph_inputs()
self.get_dygraph_outputs()
if len(self.outputs) == 0:
self.get_dygraph_outputs()
def get_global_layers(self):
# 该全局layers的信息是按照拓扑排序组成的
......@@ -164,8 +165,8 @@ class PaddleGraph(object):
f, [
"from paddle.fluid.initializer import Constant",
"from paddle.fluid.param_attr import ParamAttr",
"import paddle.fluid as fluid"
"", "def x2paddle_net():"
"import paddle.fluid as fluid", "import math", "",
"def x2paddle_net():"
],
indent=0)
for layer_id, layer in self.layers.items():
......@@ -204,6 +205,8 @@ class PaddleGraph(object):
f.close()
def gen_model(self, save_dir):
if not os.path.exists(save_dir):
os.makedirs(save_dir)
if self.graph_type == "static":
code_dir = os.path.join(save_dir, 'model_with_code')
infer_dir = os.path.join(save_dir, 'inference_model')
......
......@@ -451,6 +451,35 @@ def aten_chunk(mapper, graph, node):
return current_inputs, current_outputs
def aten___contains__(mapper, graph, node):
""" 构造in的PaddleLayer。
TorchScript示例:
%51 : bool = aten::__contains__(%50, %name.1)
参数含义:
%51 (bool): 输出,第一个元素是否包含第二个元素。
%50 (-): 需对比的输入1。
%name.1 (-): 需对比的输入2。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%50
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["input"] = inputs_name[0]
# 处理输入1,即%name.1
mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
layer_inputs["element"] = inputs_name[1]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
graph.add_layer("prim.contain", inputs=layer_inputs, outputs=layer_outputs)
return current_inputs, current_outputs
def aten_contiguous(mapper, graph, node):
""" 构造在内存中连续存储的PaddleLayer。
......@@ -545,6 +574,25 @@ def aten_conv2d(mapper, graph, node):
return current_inputs, current_outputs
def aten_dict(mapper, graph, node):
""" 构造初始化dict的PaddleLayer。
TorchScript示例:
%features.1 : Dict(str, Tensor) = aten::dict()
参数含义:
%features.1: 输出,初始化的dict。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
current_inputs = {}
# 获取当前节点输出的list
current_outputs = [output_name]
graph.add_layer("prim.dict", inputs=layer_inputs, outputs=layer_outputs)
return current_inputs, current_outputs
def aten_dim(mapper, graph, node):
""" 构造获取维度的PaddleLayer。
......@@ -720,6 +768,56 @@ def aten_flatten(mapper, graph, node):
return current_inputs, current_outputs
def aten_Float(mapper, graph, node):
""" 构造取浮点型的PaddleLayer。
TorchScript示例:
%3992 : float = aten::Float(%3991)
参数含义:
%3992 (int): 向上取整后的整数。
%3991 (float): 需要取整的浮点数。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%3991
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["input"] = inputs_name[0]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
graph.add_layer("prim.float", inputs=layer_inputs, outputs=layer_outputs)
return current_inputs, current_outputs
def aten_floor(mapper, graph, node):
""" 构造向上取整的PaddleLayer。
TorchScript示例:
%3978 : int = aten::floor(%scale.18)
参数含义:
%3978 (int): 向上取整后的整数。
%scale.18 (float): 需要取整的浮点数。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%scale.18
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["input"] = inputs_name[0]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
graph.add_layer("prim.floor", inputs=layer_inputs, outputs=layer_outputs)
return current_inputs, current_outputs
def aten_floordiv(mapper, graph, node):
""" 构造向上取整除法的PaddleLayer。
......@@ -727,7 +825,7 @@ def aten_floordiv(mapper, graph, node):
%channels_per_group.2 : int = aten::floordiv(%num_channels.2, %3690)
参数含义:
%channels_per_group.2 (-): 除后的结果。
%%num_channels.2 (-): 被除数。
%num_channels.2 (-): 被除数。
%2 (int): 除数。
"""
output_name = mapper._get_outputs_name(node)[0]
......@@ -854,6 +952,64 @@ def aten_hardtanh_(mapper, graph, node):
return current_inputs, current_outputs
def aten___is__(mapper, graph, node):
""" 构造is not的PaddleLayer。
TorchScript示例:
%3949 : bool = aten::__isnot__(%size.122, %3931)
参数含义:
%3949 (bool): 输出,第一个元素是否不是第二个元素。
%size.122 (-): 需对比的输入1。
%3931 (-): 需对比的输入2。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%size.122
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["x"] = inputs_name[0]
# 处理输入1,即%3931
mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
layer_inputs["y"] = inputs_name[1]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
graph.add_layer("prim.is", inputs=layer_inputs, outputs=layer_outputs)
return current_inputs, current_outputs
def aten___isnot__(mapper, graph, node):
""" 构造is not的PaddleLayer。
TorchScript示例:
%3949 : bool = aten::__isnot__(%size.122, %3931)
参数含义:
%3949 (bool): 输出,第一个元素是否不是第二个元素。
%size.122 (-): 需对比的输入1。
%3931 (-): 需对比的输入2。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%size.122
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["x"] = inputs_name[0]
# 处理输入1,即%3931
mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
layer_inputs["y"] = inputs_name[1]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
graph.add_layer("prim.isnot", inputs=layer_inputs, outputs=layer_outputs)
return current_inputs, current_outputs
def aten_le(mapper, graph, node):
""" 构造对比大小的PaddleLayer。
......@@ -1344,6 +1500,36 @@ def aten_select(mapper, graph, node):
return current_inputs, current_outputs
def aten__set_item(mapper, graph, node):
""" 构造对dict加入元素的PaddleLayer。
TorchScript示例:
= aten::_set_item(%features.1, %out_name.1, %x.3)
参数含义:
%features.1 (list): dict。
%out_name.1 (-): dict的key。
%x.3 (-): dict的value。
"""
layer_inputs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = []
# 处理输入0,即%features.1
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["dict"] = inputs_name[0]
# 处理输入1,即%out_name.1
mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
layer_inputs["key"] = inputs_name[1]
# 处理输入2,即%x.3
mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs)
layer_inputs["value"] = inputs_name[2]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
graph.add_layer("prim.set_item", inputs=layer_inputs, outputs=[])
return current_inputs, current_outputs
def aten_size(mapper, graph, node):
""" 构造获取shape的PaddleLayer。
......@@ -1569,6 +1755,70 @@ def aten_unsqueeze(mapper, graph, node):
return current_inputs, current_outputs
def aten_upsample_bilinear2d(mapper, graph, node):
""" 构造使用bilinear上采样的PaddleLayer。
TorchScript示例:
%4997 : Tensor = aten::upsample_bilinear2d(%x.13, %4963, %5421, %4995, %4996)
参数含义:
%4997 (Tensor): 输出,上采样后的Tensor。
%x.13 (Tensor): 需要上采样的Tensor。
%4963 (list): 上采样后的大小。
%5421 (bool): 若为True,则将输入和输出张量的4个角落像素的中心对齐,并保留角点像素的值。
%4995 (float): 高度的乘数因子。
%4995 (float): 宽度的乘数因子。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
layer_attrs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%x.13
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["input"] = inputs_name[0]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
# 处理输入1,即%4963
if inputs_name[1] in mapper.attrs:
layer_attrs["out_shape"] = mapper.attrs[inputs_name[1]]
else:
mapper._check_input(graph, inputs_node[1], inputs_name[1],
current_outputs)
layer_inputs["out_shape"] = inputs_name[1]
current_inputs.append(inputs_name[1])
# 处理输入2,即%5421
if inputs_name[2] in mapper.attrs:
layer_attrs["align_corners"] = mapper.attrs[inputs_name[2]]
else:
mapper._check_input(graph, inputs_node[2], inputs_name[2],
current_outputs)
layer_inputs["align_corners"] = inputs_name[2]
current_inputs.append(inputs_name[2])
# 处理输入3和4,构造assert
list_layer_inputs = {}
mapper._check_input(graph, inputs_node[3], inputs_name[3], current_outputs)
list_layer_inputs["key"] = inputs_name[3]
current_inputs.append(inputs_name[3])
mapper._check_input(graph, inputs_node[4], inputs_name[4], current_outputs)
list_layer_inputs["value"] = inputs_name[4]
current_inputs.append(inputs_name[4])
graph.add_layer(
"prim.assert",
inputs=list_layer_inputs,
outputs=[output_name + "_assert"],
type="eq")
layer_inputs["scale"] = inputs_name[3]
layer_attrs["align_mode"] = 0
graph.add_layer(
"fluid.layers.interpolate",
inputs=layer_inputs,
outputs=layer_outputs,
**layer_attrs)
return current_inputs, current_outputs
def aten_view(mapper, graph, node):
""" 构造调整大小的PaddleLayer。
......
......@@ -111,13 +111,14 @@ def prim_If(mapper, graph, node):
%107 (bool): if判断条件。
%input.5 (Tensor): if控制流的输出,与%output.4对应。
"""
output_name = mapper._get_outputs_name(node)[0]
node_outputs = [output_name]
outputs_name = mapper._get_outputs_name(node)
node_outputs = outputs_name.copy()
current_outputs = outputs_name.copy()
input_node = list(node.inputs())[0].node()
script_input_unique_id = list(node.inputs())[0].unique()
input_node_name = mapper.outputs_info[script_input_unique_id]
mapper._check_input(graph, input_node, input_node_name, node_outputs)
graph.add_layer("prim.if", {'input': input_node_name}, [output_name])
mapper._check_input(graph, input_node, input_node_name, current_outputs)
graph.add_layer("prim.if", {'input': input_node_name}, node_outputs)
current_layer = list(graph.layers.values())[-1]
block0 = list(node.blocks())[0]
block0_graph, graph_inputs0 = mapper.traverse(block0, current_layer)
......@@ -131,7 +132,7 @@ def prim_If(mapper, graph, node):
for i, input_name in enumerate(graph_inputs1):
current_layer.inputs['input-{}'.format(len0 + 1 + i)] = input_name
current_layer.add_block(block1_graph)
return list(current_layer.inputs.values()), node_outputs
return list(current_layer.inputs.values()), current_outputs
def prim_ListConstruct(mapper, graph, node):
......@@ -436,6 +437,34 @@ def prim_TupleUnpack(mapper, graph, node):
return current_inputs, current_outputs
def prim_unchecked_cast(mapper, graph, node):
""" 构造确认类型的PaddleLayer。
TorchScript示例:
%size.64 : int[] = prim::unchecked_cast(%size.63)
参数含义:
%size.64 (-): 输出。
%size.63 (-): 输入。
【注意】Paddle中无此用法,所以此处翻译成赋值。
"""
output_name = mapper._get_outputs_name(node)[0]
layer_outputs = [output_name]
layer_inputs = {}
layer_attrs = {}
inputs_name, inputs_node = mapper._get_inputs_name(node)
# 获取当前节点输出的list
current_outputs = [output_name]
# 处理输入0,即%size.63
mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
layer_inputs["input"] = inputs_name[0]
# 获取当前节点输入的list
current_inputs = list(layer_inputs.values())
graph.add_layer("prim.equal", inputs=layer_inputs, outputs=layer_outputs)
return current_inputs, current_outputs
def prim_Uninitialized(mapper, graph, node):
""" 构造表示编译器永远不会使用的值的PaddleLayer,该节点转换为None。
......
......@@ -62,18 +62,22 @@ def prim_append(layer, indent=1, init_func=[], forward_func=[]):
def prim_assert(layer, indent=1, init_func=[], forward_func=[]):
if layer.attrs["type"] == "eq":
if isinstance(layer.attrs["value"], list):
values = get_value(layer, "key")
if "value" in layer.attrs:
values = layer.attrs["value"]
if isinstance(values, list):
s = ""
for v in layer.attrs["value"]:
s += "{} == {} or ".format(layer.attrs["key"], v)
for v in values:
s += "{} == {} or ".format(get_value(layer, "key"), v)
if len(s) > 0:
s = s[:-4]
line = "assert {}, \'The {} must be {}!\'".format(
s, layer.attrs["key"], layer.attrs["value"])
s, get_value(layer, "key"), get_value(layer, "value"))
else:
line = "assert {} == {}, \'The {} must be {}!\'".format(
layer.attrs["key"], layer.attrs["value"], layer.attrs["key"],
layer.attrs["value"])
get_value(layer, "key"),
get_value(layer, "value"),
get_value(layer, "key"), get_value(layer, "value"))
else:
raise Exception("Not implement yet!")
forward_func.extend(gen_codes([line], indent=indent))
......@@ -84,6 +88,18 @@ def prim_constant(layer, indent=1, init_func=[], forward_func=[]):
forward_func.extend(gen_codes([line], indent=indent))
def prim_contain(layer, indent=1, init_func=[], forward_func=[]):
line = "{} = {} in {}".format(layer.outputs[0],
get_value(layer, "element"),
get_value(layer, "input"))
forward_func.extend(gen_codes([line], indent=indent))
def prim_dict(layer, indent=1, init_func=[], forward_func=[]):
line = "{} = dict()".format(layer.outputs[0])
forward_func.extend(gen_codes([line], indent=indent))
def prim_eq(layer, indent=1, init_func=[], forward_func=[]):
line = "{} = {} == {}".format(layer.outputs[0],
get_value(layer, "x"), get_value(layer, "y"))
......@@ -100,12 +116,36 @@ def prim_exception(layer, indent=1, init_func=[], forward_func=[]):
forward_func.extend(gen_codes([line], indent=indent))
def prim_float(layer, indent=1, init_func=[], forward_func=[]):
line = "{} = float({})".format(layer.outputs[0], get_value(layer, "input"))
forward_func.extend(gen_codes([line], indent=indent))
def prim_floor(layer, indent=1, init_func=[], forward_func=[]):
line = "{} = math.floor({})".format(layer.outputs[0],
get_value(layer, "input"))
forward_func.extend(gen_codes([line], indent=indent))
def prim_floordiv(layer, indent=1, init_func=[], forward_func=[]):
line = "{} = {} // {}".format(layer.outputs[0],
get_value(layer, "x"), get_value(layer, "y"))
forward_func.extend(gen_codes([line], indent=indent))
def prim_getitem(layer, indent=1, init_func=[], forward_func=[]):
line = "{} = {}[{}]".format(layer.outputs[0],
get_value(layer, "list"),
get_value(layer, "index"))
forward_func.extend(gen_codes([line], indent=indent))
def prim_gt(layer, indent=1, init_func=[], forward_func=[]):
line = "{} = {} > {}".format(layer.outputs[0],
get_value(layer, "x"), get_value(layer, "y"))
forward_func.extend(gen_codes([line], indent=indent))
def prim_if(layer, indent=1, init_func=[], forward_func=[]):
line = "if {} :".format(get_value(layer, "input"))
forward_func.extend(gen_codes([line], indent=indent))
......@@ -123,16 +163,16 @@ def prim_if(layer, indent=1, init_func=[], forward_func=[]):
forward_func.extend(b_forward_lines)
def prim_getitem(layer, indent=1, init_func=[], forward_func=[]):
line = "{} = {}[{}]".format(layer.outputs[0],
get_value(layer, "list"),
get_value(layer, "index"))
def prim_is(layer, indent=1, init_func=[], forward_func=[]):
line = "{} = {} is {}".format(layer.outputs[0],
get_value(layer, "x"), get_value(layer, "y"))
forward_func.extend(gen_codes([line], indent=indent))
def prim_gt(layer, indent=1, init_func=[], forward_func=[]):
line = "{} = {} > {}".format(layer.outputs[0],
get_value(layer, "x"), get_value(layer, "y"))
def prim_isnot(layer, indent=1, init_func=[], forward_func=[]):
line = "{} = {} is not {}".format(layer.outputs[0],
get_value(layer, "x"),
get_value(layer, "y"))
forward_func.extend(gen_codes([line], indent=indent))
......@@ -239,6 +279,13 @@ def prim_set_attr(layer, indent=1, init_func=[], forward_func=[]):
forward_func.extend(gen_codes([line], indent=indent))
def prim_set_item(layer, indent=1, init_func=[], forward_func=[]):
line = "{}[{}] = {}".format(
get_value(layer, "dict"),
get_value(layer, "key"), get_value(layer, "value"))
forward_func.extend(gen_codes([line], indent=indent))
def prim_shape(layer, indent=1, init_func=[], forward_func=[]):
line = "{} = {}.shape".format(layer.outputs[0], get_value(layer, "input"))
forward_func.extend(gen_codes([line], indent=indent))
......
......@@ -108,9 +108,14 @@ class PyTorchOpMapper(OpMapper):
parent_layer=parent_layer,
index=i)
_update_graph_inputs("equal", inputs, outputs)
# 设置graph的参数
# 设置graph的参数和输出节点
if isinstance(script_graph, torch._C.Graph):
graph.set_parameters(self.paddle_params)
if hasattr(script_graph, 'return_node'):
inputs_name, inputs_node = self._get_inputs_name(
script_graph.return_node())
graph.outputs = inputs_name
return graph, graph_inputs
def _get_outputs_name(self, node, attr_name=None):
......
......@@ -12,11 +12,13 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from .fc_fuser import FcFuser
from .fc_fuse_pass import FcFusePass
from .adaptive_pool2d_fuser import AdaptivePool2dFuser
from .adaptive_pool2d_fuse_pass import AdaptivePool2dFusePass
from .constant_fuser import ConstantFuser
from .constant_fuse_pass import ConstantFusePass
from .batchnorm2d_fuser import BatchNorm2dFuser
from .batchnorm2d_fuse_pass import BatchNorm2dFusePass
from .constant_fuser import ConstantFuser
from .constant_fuse_pass import ConstantFusePass
from .fc_fuser import FcFuser
from .fc_fuse_pass import FcFusePass
from .interpolate_bilinear_fuser import InterpolateBilinearFuser
from .interpolate_bilinear_fuse_pass import InterpolateBilinearFusePass
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from x2paddle.optimizer.pass_ import Pass
from x2paddle.optimizer.fusion import InterpolateBilinearFuser
from x2paddle.optimizer.pass_manager import pass_register
@pass_register
class InterpolateBilinearFusePass(Pass):
name = "interpolate_bilinear_fuse_pass"
def __init__(self):
Pass.__init__(self)
def apply(self, graph):
fuser = InterpolateBilinearFuser()
fuser.operate(graph, match_kind="topo")
# 用于注册
interpolate_bilinear_fuse_pass = InterpolateBilinearFusePass()
此差异已折叠。
......@@ -19,8 +19,9 @@ from x2paddle.optimizer.pass_manager import PassManager
class GraphOptimizer(object):
def __init__(self):
self.passes = [
"fc_fuse_pass", "adaptive_pool2d_fuse_pass",
"batchnorm2d_fuse_pass", "constant_fuse_pass"
"interpolate_bilinear_fuse_pass", "fc_fuse_pass",
"adaptive_pool2d_fuse_pass", "batchnorm2d_fuse_pass",
"constant_fuse_pass"
]
def optimize(self, graph):
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册