prim.py 8.8 KB
Newer Older
S
SunAhong1993 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
#   Copyright (c) 2020  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import torch
from x2paddle.core.util import *


def prim_Constant(mapper, graph, node):
    """ 构造constant的PaddleLayer,该节点实现常量赋值。

S
SunAhong1993 已提交
22
    TorchScript示例:
S
SunAhong1993 已提交
23 24 25 26 27 28 29 30 31 32 33 34
        %2 : int = prim::Constant[value=-1]()
        参数含义:
        %2 (常量类型由赋值类型定义,该示例中为int型): 常量赋值结果输出。
    """
    output_name = mapper._get_outputs_name(node)[0]
    output = list(node.outputs())[0]
    value = output.toIValue()
    mapper.attrs[output_name] = value
    if isinstance(value, str):
        value = string(value)
    graph.add_layer(
        "prim.constant", inputs={}, outputs=[output_name], value=value)
S
SunAhong1993 已提交
35
    return [], [output_name]
S
SunAhong1993 已提交
36 37 38 39 40


def prim_GetAttr(mapper, graph, node):
    """ 获取attribute信息。

S
SunAhong1993 已提交
41
    TorchScript示例:
S
SunAhong1993 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
        %27 : Tensor? = prim::GetAttr[name="bias"](%7)
        参数含义:
        %7 (Tensor): 输入Tensor。
        %27 (Tensor): 输入Tensor。
    """
    output_name = mapper._get_outputs_name(node)[0]
    field_name_list = [node.s('name')]
    while True:
        input_node = list(node.inputs())[0].node()
        try:
            field_name_list.insert(0, input_node.s('name'))
            node = input_node
        except Exception:
            break
    part_script = mapper.script
    for field_name in field_name_list:
        if hasattr(part_script, field_name):
            param = getattr(part_script, field_name)
            if isinstance(param, torch.Tensor):
                param = param.detach().numpy()
            mapper.pytorch_params[output_name] = param
            part_script = param
S
SunAhong1993 已提交
64
    return [], [output_name]
S
SunAhong1993 已提交
65 66 67 68 69


def prim_ListConstruct(mapper, graph, node):
    """ 构造list的PaddleLayer。

S
SunAhong1993 已提交
70
    TorchScript示例:
S
SunAhong1993 已提交
71 72 73 74 75 76 77
        %86 : int[] = prim::ListConstruct(%84, %85)
        参数含义:
        %84 (int/其他): list第一个元素信息。
        %85 (int/其他): list第二个元素信息。
        %86 (list): list节点输出。
    """
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
78 79 80 81 82 83 84 85 86 87 88 89
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 处理每个输入
    for i, input_name in enumerate(inputs_name):
        layer_inputs["input{}".format(i)] = input_name
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    current_outputs = layer_outputs

    graph.add_layer("prim.list", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs
S
SunAhong1993 已提交
90 91 92 93 94


def prim_RaiseException(mapper, graph, node):
    """ 构造抛出异常的PaddleLayer。

S
SunAhong1993 已提交
95
    TorchScript示例:
S
SunAhong1993 已提交
96 97 98 99 100
        = prim::RaiseException(%76)
        参数含义:
        %76 (str): 异常信息。
    """
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
101 102 103 104 105 106 107 108 109 110
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 处理输入0,即%76
    mapper._check_input(graph, inputs_node[0], inputs_name[0], layer_outputs)
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    current_outputs = layer_outputs

S
SunAhong1993 已提交
111
    graph.add_layer(
S
SunAhong1993 已提交
112 113
        "prim.exception", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs
S
SunAhong1993 已提交
114 115 116 117 118


def prim_Loop(mapper, graph, node):
    """ 构造loop循环的PaddleLayer。

S
SunAhong1993 已提交
119
    TorchScript示例:
S
SunAhong1993 已提交
120 121 122 123 124 125 126 127 128 129 130 131
        %x : Tensor = prim::Loop(%4, %3, %x.3)
        block0(%i : int, %x.12 : Tensor):
          %72 : int[] = prim::Constant[value=[6, 6]]()
          ...
          %x.5 : Tensor = aten::adaptive_avg_pool2d(%x.12, %_output_size.1)
          -> (%3, %x.5)
       参数含义:
       %4 (int): 循环次数。
       %3 (bool): 是否进入退出。
       %x.3 (Tensor): 循环中修改的Tensor。
       %x (Tensor): loop循环的输出,与%x.5对应。
    """
S
SunAhong1993 已提交
132
    node_outputs = mapper._get_outputs_name(node)
S
SunAhong1993 已提交
133 134
    loop_inputs = {}
    block = list(node.blocks())[0]
S
SunAhong1993 已提交
135
    loop_outputs = node_outputs
S
SunAhong1993 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
    for i, block_input_ivalue in enumerate(block.inputs()):
        block_input_node_name = 'x' + str(mapper.output_index)
        unique_id = block_input_ivalue.unique()
        if unique_id not in mapper.outputs_info:
            mapper.outputs_info[unique_id] = block_input_node_name
            mapper.output_index += 1
        if i == 0:
            loop_input_node = list(node.inputs())[0].node()
            script_loop_input_unique_id = list(node.inputs())[0].unique()
            loop_input_node_name = mapper.outputs_info[
                script_loop_input_unique_id]
            mapper._check_input(graph, loop_input_node, loop_input_node_name,
                                node_outputs)
            loop_inputs['input'] = loop_input_node_name
            loop_outputs.append(block_input_node_name)
            node_outputs.append(block_input_node_name)
        else:
            loop_input_node = list(node.inputs())[i + 1].node()
            script_loop_input_unique_id = list(node.inputs())[i + 1].unique()
            loop_input_node_name = mapper.outputs_info[
                script_loop_input_unique_id]
            mapper._check_input(graph, loop_input_node, loop_input_node_name,
                                node_outputs)
            graph.add_layer(
                "prim.equal",
                inputs={'input': loop_input_node_name},
                outputs=[block_input_node_name])
            node_outputs.append(block_input_node_name)

    graph.add_layer("prim.loop", inputs=loop_inputs, outputs=loop_outputs)
    current_layer = list(graph.layers.values())[-1]
S
SunAhong1993 已提交
167
    block_graph, graph_inputs = mapper.traverse(block, current_layer)
S
SunAhong1993 已提交
168 169 170 171 172 173 174 175 176 177 178
    for i, input_name in enumerate(graph_inputs):
        if input_name == loop_outputs[1]:
            continue
        current_layer.inputs['input-{}'.format(i)] = input_name
    current_layer.add_block(block_graph)
    return list(current_layer.inputs.values()), node_outputs


def prim_If(mapper, graph, node):
    """ 构造if控制流的PaddleLayer。

S
SunAhong1993 已提交
179
    TorchScript示例:
S
SunAhong1993 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
        %input.5 : Tensor = prim::If(%107)
          block0():
            %109 : Tensor = aten::t(%102)
            %ret.2 : Tensor = aten::addmm(%103, %101, %109, %104, %104)
            -> (%ret.2)
          block1():
            %111 : Tensor = aten::t(%102)
            ...
            -> (%output.4)
        参数含义:
        %107 (bool): if判断条件。
        %input.5 (Tensor): if控制流的输出,与%output.4对应。
    """
    output_name = mapper._get_outputs_name(node)[0]
    node_outputs = [output_name]
    input_node = list(node.inputs())[0].node()
    script_input_unique_id = list(node.inputs())[0].unique()
    input_node_name = mapper.outputs_info[script_input_unique_id]
    mapper._check_input(graph, input_node, input_node_name, node_outputs)
    graph.add_layer("prim.if", {'input': input_node_name}, [output_name])
    current_layer = list(graph.layers.values())[-1]
    block0 = list(node.blocks())[0]
S
SunAhong1993 已提交
202
    block0_graph, graph_inputs0 = mapper.traverse(block0, current_layer)
S
SunAhong1993 已提交
203 204 205 206 207 208
    len0 = 0
    for i, input_name in enumerate(graph_inputs0):
        current_layer.inputs['input-{}'.format(i)] = input_name
        len0 = i
    current_layer.add_block(block0_graph)
    block1 = list(node.blocks())[1]
S
SunAhong1993 已提交
209
    block1_graph, graph_inputs1 = mapper.traverse(block1, current_layer)
S
SunAhong1993 已提交
210 211 212 213 214 215 216 217 218
    for i, input_name in enumerate(graph_inputs1):
        current_layer.inputs['input-{}'.format(len0 + 1 + i)] = input_name
    current_layer.add_block(block1_graph)
    return list(current_layer.inputs.values()), node_outputs


def prim_min(mapper, graph, node):
    """ 构造min的PaddleLayer。

S
SunAhong1993 已提交
219
    TorchScript示例:
S
SunAhong1993 已提交
220 221 222 223 224 225
        %87 : int = prim::min(%86)
        参数含义:
        %86 (list): 输入。
        %87 (int): 输出。
    """
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
226 227 228 229 230 231 232 233 234 235 236 237
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 处理输入0,即%86
    mapper._check_input(graph, inputs_node[0], inputs_name[0], layer_outputs)
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    current_outputs = layer_outputs

    graph.add_layer("prim.min", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs