README.md 49.2 KB
Newer Older
1
[**中文**](./README_CN.md)
Y
YixinKristy 已提交
2

3
# VisualDL Guide
Y
YixinKristy 已提交
4

5
### Overview
Y
YixinKristy 已提交
6

7
VisualDL is a visualization tool designed for Deep Learning. VisualDL provides a variety of charts to show the trends of parameters. It enables users to understand the training process and model structures of Deep Learning models more clearly and intuitively so as to optimize models efficiently.
Y
YixinKristy 已提交
8

9
Currently, VisualDL provides **Ten Components**: scalar, image, audio, text, graph, histogram, pr curve, ROC curve, high dimensional and hyperparameters. VisualDL iterates rapidly and new functions will be continuously added.
走神的阿圆's avatar
走神的阿圆 已提交
10

11 12


13 14 15 16 17
|                        Component Name                        |         Display Chart         | Function                                                     |
| :----------------------------------------------------------: | :---------------------------: | :----------------------------------------------------------- |
|                [ Scalar](#Scalar--Line-Chart)                |          Line Chart           | Display scalar data such as loss and accuracy dynamically.   |
|             [Image](#Image--Image-Visualization)             |      Image Visualization      | Display images, visualizing the input and the output and making it easy to view the changes in the intermediate process. |
|             [Audio](#Audio--Audio-Play)             |      Audio Play      | Play the audio during the training process, making it easy to monitor the process of speech recognition and text-to-speech. |
走神的阿圆's avatar
走神的阿圆 已提交
18
| [Text](#Text) | Text Visualization | Visualize the text output of NLP models within any stage, aiding developers to compare the changes of outputs so as to deeply understand the training process and simply evaluate the performance of the model. |
19 20 21
|              [Graph](#Graph--Network-Structure)              |       Network Structure       | Visualize network structures, node attributes and data flow, assisting developers to learn and to optimize network structures. |
|       [Histogram](#Histogram--Distribution-of-Tensors)       |    Distribution of Tensors    | Present the changes of distributions of tensors, such as weights/gradients/bias, during the training process. |
|                   [PR Curve](#PR-Curve)                   |   Precision & Recall Curve    | Display precision-recall curves across training steps, clarifying the tradeoff between precision and recall when comparing models. |
走神的阿圆's avatar
走神的阿圆 已提交
22
|                   [ROC Curve](#ROC-Curve)                   |   Receiver Operating Characteristic curve    | Show the performance of a classification model at all classification thresholds. |
23
| [High Dimensional](#High-Dimensional--Data-Dimensionality-Reduction) | Data Dimensionality Reduction | Project high-dimensional data into 2D/3D space for embedding visualization, making it convenient to observe the correlation between data. |
走神的阿圆's avatar
走神的阿圆 已提交
24
| [Hyper Parameters](#hyperparameters--hyperparameter-visualization) |  HyperParameter Visualization  | Visualize the relationship between hyperparameters and model metrics (such as accuracy and loss) in a rich view, helping you identify the best hyperparameters in an efficient way. |
25

26
At the same time, VisualDL provides [VDL.service](#vdlservice) , which allows developers to easily save, track and share visualization results of experiments with anyone for free.
27

28
## Scalar--Line Chart
29

30 31 32 33 34 35 36
### Introduction

The data type of the input is scalar values. Scalar is used to present the training parameters in the form of a line chart. By using Scalar to record loss and accuracy, developers are able to track the trend of changes easily through line charts.

### Record Interface

The interface of the Scalar is shown as follows:
37 38 39 40

```python
add_scalar(tag, value, step, walltime=None)
```
41 42 43 44 45 46 47
The interface parameters are described as follows:
| parameter | format | meaning                                                      |
| --------- | ------ | ------------------------------------------------------------ |
| tag       | string | Record the name of the scalar data,e.g.train/loss. Notice that the name cannot contain `%` |
| value     | float  | Record the data, can't be `None`                                              |
| step      | int    | Record the training steps. The data will be sampled, meaning that only part of data will be displayed. (the sampling algorithm is reservoir sampling, details can be refered to [VisualDL sampling algorithm](../faq.md/#what-are-the-sampling-rules-of-visualdl))                                      |
| walltime  | int    | Record the time-stamp of the data, the default is the current time-stamp |
48

49
*Note that the rules of specifying tags (e.g.train/acc) are:
Y
YixinKristy 已提交
50

51 52 53
1. The tag before the first  `/` is the parent tag and serves as the tag of the same raw
2. The tag after the first `/` is a child tag, the charts with child tag will be displayed under the parent tag. The data of the same parent tag but different child tags will be displayed in the same column, but not in the same picture.
3. Users can use multiple `/`, but the tag of a raw is the parent tag--the tag before the first `/`
Y
YixinKristy 已提交
54

55
Here are three examples:
Y
YixinKristy 已提交
56

57
- When 'train' is created as the parent tag and 'acc' and 'loss' are created as child tags:`train/acc``train/loss`,the tag of a raw is 'train' , which includes two sub charts--'acc' and 'loss':
Y
YixinKristy 已提交
58 59

<p align="center">
60
  <img src="https://user-images.githubusercontent.com/48054808/90884030-88c54d80-e3e1-11ea-9ba7-4b8df7b3496e.png" width="100%"/>
Y
YixinKristy 已提交
61 62
</p>

63
- When 'train' is created as the parent tag, and 'test/acc' and 'test/loss' are created as child tags:`train/test/acc``train/test/loss`, the tag of a raw is 'train', which includes two sub charts--'test/acc' and 'test/loss': 
Y
YixinKristy 已提交
64 65

<p align="center">
66
  <img src="https://user-images.githubusercontent.com/48054808/90884098-a692b280-e3e1-11ea-8c0b-380b970b50b2.png" width="100%"/>
Y
YixinKristy 已提交
67 68
</p>

69
- When two parent tags are created:`acc``loss`, two rows of charts are named as 'acc' and 'loss' respectively.
Y
YixinKristy 已提交
70 71

<p align="center">
72
  <img src="https://user-images.githubusercontent.com/48054808/90884122-b3afa180-e3e1-11ea-90b0-93a75543f253.png" width="100%"/>
Y
YixinKristy 已提交
73 74
</p>

Y
YixinKristy 已提交
75
### Demo
Y
YixinKristy 已提交
76

77
- Fundamental Methods
Y
YixinKristy 已提交
78

79
The following shows an example of using Scalar to record data, and the script can be found in [Scalar Demo](../../demo/components/scalar_test.py)
80 81 82 83 84
```python
from visualdl import LogWriter

if __name__ == '__main__':
    value = [i/1000.0 for i in range(1000)]
85
    # initialize a recorder
86 87
    with LogWriter(logdir="./log/scalar_test/train") as writer:
        for step in range(1000):
88
            # add accuracy with tag of 'acc' to the recorder
89
            writer.add_scalar(tag="acc", step=step, value=value[step])
90
            # add loss with tag of 'loss' to the recorder
91 92
            writer.add_scalar(tag="loss", step=step, value=1/(value[step] + 1))
```
93
After running the above program, developers can launch the panel by:
94 95 96 97
```shell
visualdl --logdir ./log --port 8080
```

98
Then, open the browser and enter the address: `http://127.0.0.1:8080`to view line charts:
99 100

<p align="center">
101
  <img src="https://user-images.githubusercontent.com/48054808/90871520-c9b36700-e3cd-11ea-9063-ca692b1d3917.png" width="100%"/>
Y
YixinKristy 已提交
102 103
</p>

104
- Advanced Usage--Comparison of Multiple Experiments
Y
YixinKristy 已提交
105

106
The following shows the comparison of multiple sets of experiments using Scalar.
Y
YixinKristy 已提交
107

108
There are two steps to achieve this function:
Y
YixinKristy 已提交
109

110 111
1. Create sub-log files to store the parameter data of each group of experiments
2. When recording data to the scalar component,developers can compare **the same type of parameters for different experiments**  by **using the same tag**. Note that the log files you want to display must be placed in different directories because only one log file in a directory is valid and displayed.
Y
YixinKristy 已提交
112 113 114 115 116 117

```python
from visualdl import LogWriter

if __name__ == '__main__':
    value = [i/1000.0 for i in range(1000)]
118
    # Step 1: Create a parent folder: log and a child folder: scalar_test
Y
YixinKristy 已提交
119 120
    with LogWriter(logdir="./log/scalar_test") as writer:
        for step in range(1000):
121
            # Step 2: Add data with tag train/acc to the recorder
Y
YixinKristy 已提交
122
            writer.add_scalar(tag="train/acc", step=step, value=value[step])
123
            # Step 2: Add data with tag train/loss to the recorder
Y
YixinKristy 已提交
124
            writer.add_scalar(tag="train/loss", step=step, value=1/(value[step] + 1))
125
    # Step 1: Create a second child folder: scalar_test2    
Y
YixinKristy 已提交
126 127 128
    value = [i/500.0 for i in range(1000)]
    with LogWriter(logdir="./log/scalar_test2") as writer:
        for step in range(1000):
129
            # Step 2: Add the accuracy data of scalar_test2 under the same name `train/acc`
Y
YixinKristy 已提交
130
            writer.add_scalar(tag="train/acc", step=step, value=value[step])
131
            # Step 2: Add the loss data of scalar_test2 under the same name as `train/loss`
Y
YixinKristy 已提交
132 133 134
            writer.add_scalar(tag="train/loss", step=step, value=1/(value[step] + 1))
```

135
After running the above program, developers can launch the panel by:
Y
YixinKristy 已提交
136 137 138 139 140

```shell
visualdl --logdir ./log --port 8080
```

141
Then, open the browser and enter the address: `http://127.0.0.1:8080` to view line charts:
Y
YixinKristy 已提交
142 143

<p align="center">
144
  <img src="https://user-images.githubusercontent.com/48054808/90884963-4dc41980-e3e3-11ea-824a-277a8d71823e.png" width="100%"/>
Y
YixinKristy 已提交
145
</p>
146 147
*For more specific details of how to compare multiple experiments, pleas refer to the project on AI Studio:[VisualDL 2.0--Visualization of eye disease recognition training](https://aistudio.baidu.com/aistudio/projectdetail/502834)
It can be seen that the data of different experiments (determined by the path) are displayed in different pictures, and the data of the same tag is displayed on the same picture for comparison.
Y
YixinKristy 已提交
148

149
### Functional Instruction
Y
YixinKristy 已提交
150

151
* Developers are allowed to zoom in, restore, transform of the coordinate axis (y-axis logarithmic coordinates), download the line chart.
Y
YixinKristy 已提交
152 153

<p align="center">
154
  <img src="https://visualdl.bj.bcebos.com/images/scalar-icon.png" width="45%"/>
Y
YixinKristy 已提交
155 156 157 158
</p>



159
* Details can be shown by hovering on specific data points.
Y
YixinKristy 已提交
160 161

<p align="center">
162
  <img src="https://user-images.githubusercontent.com/48054808/90872099-b785f880-e3ce-11ea-9ebe-8083c893d88b.png" width="60%"/>
Y
YixinKristy 已提交
163 164 165 166
</p>



167
* Developers can find target scalar charts by searching corresponded tags.
Y
YixinKristy 已提交
168 169

<p align="center">
170
  <img src="https://user-images.githubusercontent.com/48054808/90872849-cfaa4780-e3cf-11ea-985d-b4c382acf773.png" width="90%"/>
Y
YixinKristy 已提交
171 172 173 174
</p>



175
* Specific runs can be selected by searching for the corresponded  experiment tags.
Y
YixinKristy 已提交
176 177

<p align="center">
178
  <img src="https://user-images.githubusercontent.com/48054808/90873112-2b74d080-e3d0-11ea-8a69-24b7b4abae96.png" width="40%"/>
Y
YixinKristy 已提交
179 180
</p>

181
* Display the global extrema
182 183

<p align="center">
184
  <img src="https://user-images.githubusercontent.com/48054808/93732753-46bc4100-fc05-11ea-92ca-35c89467815b.png" width="30%"/>
185 186 187
</p>

<p align="center">
188
  <img src="https://user-images.githubusercontent.com/48054808/93732766-58054d80-fc05-11ea-89e0-bc00a283f559.png" width="60%"/>
189 190
</p>

191
* Only display smoothed data 
192 193

<p align="center">
194
  <img src="https://user-images.githubusercontent.com/48054808/93732799-7f5c1a80-fc05-11ea-886f-193c3bcc9b5f.png" width="30%"/>
195 196 197
</p>

<p align="center">
198
  <img src="https://user-images.githubusercontent.com/48054808/93732815-9569db00-fc05-11ea-8353-ffa5086d3d52.png" width="60%"/>
199
</p>
Y
YixinKristy 已提交
200

201
* There are three measurement scales of X axis
Y
YixinKristy 已提交
202

203 204 205
1. Step: number of iterations
2. Walltime: absolute training time
3. Relative: training time
Y
YixinKristy 已提交
206 207

<p align="center">
208
  <img src="https://user-images.githubusercontent.com/48054808/90873502-da191100-e3d0-11ea-8b03-c8fea0b65388.png" width="40%"/>
Y
YixinKristy 已提交
209
</p>
210 211

* The smoothness of the curve can be adjusted to better show the change of the overall trend.
Y
YixinKristy 已提交
212 213

<p align="center">
214
  <img src="https://user-images.githubusercontent.com/48054808/90873564-edc47780-e3d0-11ea-909c-161e9fd8eeef.png" width="37%"/>
215 216 217
</p>


218
## Image--Image Visualization
219

220
### Introduction
221

222
The Image is used to present the change of image data during training. Developers can view images in different training stages by adding few lines of codes to record images in a log file.
223

224
### Record Interface
225

226
The interface of the Image is shown as follows:
227 228

```python
229
add_image(tag, img, step, walltime=None, dataformats="HWC")
230
```
231 232 233 234 235 236 237 238
The interface parameters are described as follows:
| parameter | format        | meaning                                                      |
| --------- | ------------- | ------------------------------------------------------------ |
| tag       | string        | Record the name of the image data,e.g.train/loss. Notice that the name cannot contain `%` |
| img       | numpy.ndarray | Images in ndarray format. The default `HWC` format dimension is [h, w, c], h and w are the height and width of the images, and c is the number of channels, which can be 1, 3, 4. Floating point data will be clipped to the range[0, 1), and note that the image data cannot be None.                                     |
| step      | int           | Record the training steps                                    |
| walltime  | int           | Record the time-stamp of the data, the default is the current time-stamp |
| dataformats| string       | Format of image,include `NCHW`、`NHWC`、`HWC`、`CHW`、`HW`,default is `HWC`. It will be converted to `HWC` format when stored.|
239

Y
YixinKristy 已提交
240
### Demo
241
The following shows an example of using Image to record data, and the script can be found in [Image Demo](https://github.com/PaddlePaddle/VisualDL/blob/develop/demo/components/image_test.py).
242 243 244 245 246 247 248
```python
import numpy as np
from PIL import Image
from visualdl import LogWriter


def random_crop(img):
249
    """get random 100x100 slices of image
250 251 252 253 254 255 256 257 258 259
    """
    img = Image.open(img)
    w, h = img.size
    random_w = np.random.randint(0, w - 100)
    random_h = np.random.randint(0, h - 100)
    r = img.crop((random_w, random_h, random_w + 100, random_h + 100))
    return np.asarray(r)


if __name__ == '__main__':
260
    # initialize a recorder
261 262
    with LogWriter(logdir="./log/image_test/train") as writer:
        for step in range(6):
263
            # add image data
Y
YixinKristy 已提交
264
            writer.add_image(tag="eye",
Y
YixinKristy 已提交
265
                             img=random_crop("../../docs/images/eye.jpg"),
266 267
                             step=step)
```
268
After running the above program, developers can launch the panel by:
269 270 271 272
```shell
visualdl --logdir ./log --port 8080
```

273
Then, open the browser and enter the address: `http://127.0.0.1:8080`to view:
Y
YixinKristy 已提交
274 275

<p align="center">
276
  <img src="https://user-images.githubusercontent.com/48054808/90874434-4a746200-e3d2-11ea-9395-a039d9e83470.png" width="90%"/>
Y
YixinKristy 已提交
277 278 279
</p>


280
### Functional Instructions
Y
YixinKristy 已提交
281

282
- Developers can find target images by searching corresponded tags.
Y
YixinKristy 已提交
283 284

<p align="center">
285
  <img src="https://user-images.githubusercontent.com/48054808/90875589-f8344080-e3d3-11ea-9020-52a5a88324ab.png" width="90%"/>
Y
YixinKristy 已提交
286 287 288
</p>


289
- Developers are allowed to view image data under different iterations by scrolling the Step/iteration slider.
走神的阿圆's avatar
走神的阿圆 已提交
290 291

<p align="center">
292
  <img src="https://user-images.githubusercontent.com/48054808/90875652-10a45b00-e3d4-11ea-9fd9-3c79f22829f7.gif" width="60%"/>
走神的阿圆's avatar
走神的阿圆 已提交
293 294
</p>

295
## Audio--Audio Play
走神的阿圆's avatar
走神的阿圆 已提交
296

297
### Introduction
Y
YixinKristy 已提交
298

299
Audio aims to allow developers to listen to the audio in real-time during the training process, helping developers to monitor the process of speech recognition and text-to-speech.
Y
YixinKristy 已提交
300

301
### Record Interface
Y
YixinKristy 已提交
302

303
The interface of the Image is shown as follows:
Y
YixinKristy 已提交
304 305 306 307

```python
add_audio(tag, audio_array, step, sample_rate)
```
308 309 310 311 312 313 314
The interface parameters are described as follows:
| parameter | format        | meaning                                                      |
| --------- | ------------- | ------------------------------------------------------------ |
| tag      | string        | Record the name of the audio,e.g.audoi/sample. Notice that the name cannot contain `%` |
| audio_arry      | numpy.ndarray | Audio in ndarray format, whose elements are float values, and the range should be normalized in [-1, 1]                     |
| step     | int           | Record the training steps                                  |
| sample_rate | int           | Sample rate,the default sampling rate is 8000. **Please note that the rate should be the rate of the original audio**          |
Y
YixinKristy 已提交
315 316

### Demo
317 318
The following shows an example of using Audio to record data, and the script can be found in [Audio Demo](https://github.com/PaddlePaddle/VisualDL/blob/develop/demo/components/audio_test.py).

Y
YixinKristy 已提交
319 320
```python
from visualdl import LogWriter
Y
YixinKristy 已提交
321
from scipy.io import wavfile
Y
YixinKristy 已提交
322 323 324


if __name__ == '__main__':
Y
YixinKristy 已提交
325 326
    with LogWriter(logdir="./log/audio_test/train") as writer:
        sample_rate, audio_data = wavfile.read('./test.wav')
Y
YixinKristy 已提交
327 328 329
        writer.add_audio(tag="audio_tag",
                         audio_array=audio_data,
                         step=0,
Y
YixinKristy 已提交
330
                         sample_rate=sample_rate)
Y
YixinKristy 已提交
331
```
332
After running the above program, developers can launch the panel by:
Y
YixinKristy 已提交
333 334 335 336
```shell
visualdl --logdir ./log --port 8080
```

337
Then, open the browser and enter the address: `http://127.0.0.1:8080`to view:
Y
YixinKristy 已提交
338 339

<p align="center">
340
  <img src="https://user-images.githubusercontent.com/48054808/88753858-eaeab400-d18f-11ea-87c6-46ab7d5a5fd0.png" width="90%"/>
Y
YixinKristy 已提交
341 342
</p>

343
### Functional Instructions
Y
YixinKristy 已提交
344

345
- Developers can find the target audio by searching corresponded tags.
Y
YixinKristy 已提交
346 347

<p align="center">
348
  <img src="https://user-images.githubusercontent.com/48054808/88755034-c6dca200-d192-11ea-8349-1414bcf9d38d.png" width="80%"/>
Y
YixinKristy 已提交
349 350
</p>

351
- Developers are allowed to listen to the audio under different iterations by scrolling the Step/iteration slider.
Y
YixinKristy 已提交
352 353

<p align="center">
354
  <img src="https://user-images.githubusercontent.com/48054808/88755220-33f03780-d193-11ea-9b0f-a283d9f3a78a.png" width="40%"/>
Y
YixinKristy 已提交
355 356
</p>

357
- Play/Pause the audio
Y
YixinKristy 已提交
358 359

<p align="center">
360
  <img src="https://user-images.githubusercontent.com/48054808/88755240-41a5bd00-d193-11ea-9780-7ae7c7792070.png" width="40%"/>
Y
YixinKristy 已提交
361 362
</p>

363
- Adjust the volume
Y
YixinKristy 已提交
364 365

<p align="center">
366
  <img src="https://user-images.githubusercontent.com/48054808/88755258-53876000-d193-11ea-96b2-9ed698423202.png" width="40%"/>
Y
YixinKristy 已提交
367 368
</p>

369
- Download the audio
Y
YixinKristy 已提交
370 371

<p align="center">
372
  <img src="https://user-images.githubusercontent.com/48054808/88755377-9a755580-d193-11ea-947e-4275b9d3aa54.png" width="40%"/>
Y
YixinKristy 已提交
373 374
</p>

375
## Text
走神的阿圆's avatar
走神的阿圆 已提交
376

377
### Introduction
走神的阿圆's avatar
走神的阿圆 已提交
378

379
visualizes the text output of NLP models within any stage, aiding developers to compare the changes of outputs so as to deeply understand the training process and simply evaluate the performance of the model.
走神的阿圆's avatar
走神的阿圆 已提交
380

381
### Record Interface
走神的阿圆's avatar
走神的阿圆 已提交
382

383
The interface of the Text is shown as follows:
走神的阿圆's avatar
走神的阿圆 已提交
384 385

```python
Y
YixinKristy 已提交
386
add_text(tag, text_string, step=None, walltime=None)
走神的阿圆's avatar
走神的阿圆 已提交
387 388
```

389
The interface parameters are described as follows:
走神的阿圆's avatar
走神的阿圆 已提交
390

391
| parameter          | format                  | meaning                                        |
走神的阿圆's avatar
走神的阿圆 已提交
392
| -------------- | --------------------- | ------------------------------------------- |
393 394 395 396
| tag            | string                | Record the name of the text data,e.g.train/loss. Notice that the name cannot contain `%` |
| text_string    | string                | Value of text |
| step           | int                   | Record the training steps                                  |
| walltime       | int                   | Record the time-stamp of the data, and the default is the current time-stamp      |
走神的阿圆's avatar
走神的阿圆 已提交
397 398 399

### Demo

400
The following shows an example of how to use Text component, and script can be found in [Text Demo](../../demo/components/text_test.py)
走神的阿圆's avatar
走神的阿圆 已提交
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417

```python
from visualdl import LogWriter
if __name__ == '__main__':
    texts = [
        '上联: 众 佛 群 灵 光 圣 地	下联: 众 生 一 念 证 菩 提',
        '上联: 乡 愁 何 处 解	下联: 故 事 几 时 休',
        '上联: 清 池 荷 试 墨	下联: 碧 水 柳 含 情',
        '上联: 既 近 浅 流 安 笔 砚	下联: 欲 将 直 气 定 乾 坤',
        '上联: 日 丽 萱 闱 祝 无 量 寿	下联: 月 明 桂 殿 祝 有 余 龄',
        '上联: 一 地 残 红 风 拾 起	下联: 半 窗 疏 影 月 窥 来'
    ]
    with LogWriter(logdir="./log/text_test/train") as writer:
        for step in range(len(texts)):
            writer.add_text(tag="output", step=step, text_string=texts[step])
```

418
After running the above program, developers can launch the panel by:
走神的阿圆's avatar
走神的阿圆 已提交
419 420 421 422 423

```shell
visualdl --logdir ./log --port 8080
```

424
Then, open the browser and enter the address`http://127.0.0.1:8080` to view:
走神的阿圆's avatar
走神的阿圆 已提交
425 426 427 428 429

<p align="center">
  <img src="https://user-images.githubusercontent.com/28444161/106248340-cdd09400-624b-11eb-8ea9-5a07a239c365.png" width="95%"/>
</p>

430
### Functional Instrucions
走神的阿圆's avatar
走神的阿圆 已提交
431

432
- Developers can find the target text by searching corresponded tags.
走神的阿圆's avatar
走神的阿圆 已提交
433

434 435 436
  <p align="center">
    <img src="https://user-images.githubusercontent.com/48054808/86536503-baaa4f80-bf1a-11ea-80ab-cd988617d018.png" width="40%"/>
  </p>
走神的阿圆's avatar
走神的阿圆 已提交
437

438
- Developers can find the target runs by searching corresponded tags.
走神的阿圆's avatar
走神的阿圆 已提交
439

440 441 442
  <p align="center">
    <img src="https://user-images.githubusercontent.com/28444161/106256983-f4e09300-6256-11eb-9acc-a24a2ac9b70c.png" width="40%"/>
  </p>
走神的阿圆's avatar
走神的阿圆 已提交
443

444
- Developers can fold the tab of text.
走神的阿圆's avatar
走神的阿圆 已提交
445

446 447 448
 <p align="center">
   <img src="https://user-images.githubusercontent.com/28444161/106252364-28202380-6251-11eb-934c-d8893c2eaeca.png" width="80%"/>
 </p>
Y
YixinKristy 已提交
449

Y
YixinKristy 已提交
450

451
## Graph--Network Structure
Y
YixinKristy 已提交
452

453 454 455
### Introduction

Graph can visualize the network structure of the model by one click. It enables developers to view the model attributes, node information, searching node and so on. These functions help developers analyze model structures and understand the directions of data flow quickly.
Y
YixinKristy 已提交
456

C
chenjian 已提交
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
### Record Interface

The interface of the Graph is shown as follows:

```python
add_graph(model, input_spec, verbose=False):
```

The interface parameters are described as follows:

| parameter          | format                  | meaning                                        |
| -------------- | --------------------- | ------------------------------------------- |
| model          | paddle.nn.Layer              | Dynamic model of paddle |
| input_spec     | list\[paddle.static.InputSpec\|Tensor\]   | Describes the input of the saved model's [forward arguments](https://www.paddlepaddle.org.cn/documentation/docs/zh/api/paddle/static/InputSpec_cn.html)        |
| verbose           | bool             | Whether to print graph statistic information in console.       |

**Note**

If you want to use add_graph interface, paddle package is required. Please refer to website of [PaddlePaddle](https://www.paddlepaddle.org.cn/install/quick?docurl=/documentation/docs/en/install/pip/linux-pip_en.html)

Y
YixinKristy 已提交
477
### Demo
C
chenjian 已提交
478
The following shows an example of how to use Graph component, and script can be found in [Graph Demo](https://github.com/PaddlePaddle/VisualDL/blob/develop/demo/components/graph_test.py)
479
There are two methods to launch this component:
Y
YixinKristy 已提交
480

C
chenjian 已提交
481 482 483 484
```python
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
Y
YixinKristy 已提交
485

C
chenjian 已提交
486
from visualdl import LogWriter
Y
YixinKristy 已提交
487 488


C
chenjian 已提交
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
class MyNet(nn.Layer):
    def __init__(self):
        super(MyNet, self).__init__()
        self.conv1 = nn.Conv2D(
            in_channels=1, out_channels=20, kernel_size=5, stride=1, padding=2)
        self.max_pool1 = nn.MaxPool2D(kernel_size=2, stride=2)
        self.conv2 = nn.Conv2D(
            in_channels=20,
            out_channels=20,
            kernel_size=5,
            stride=1,
            padding=2)
        self.max_pool2 = nn.MaxPool2D(kernel_size=2, stride=2)
        self.fc = nn.Linear(in_features=980, out_features=10)

    def forward(self, inputs):
        x = self.conv1(inputs)
        x = F.relu(x)
        x = self.max_pool1(x)
        x = self.conv2(x)
        x = F.relu(x)
        x = self.max_pool2(x)
        x = paddle.reshape(x, [x.shape[0], -1])
        x = self.fc(x)
        return x


net = MyNet()
with LogWriter(logdir="./log/graph_test/") as writer:
    writer.add_graph(
        model=net,
        input_spec=[paddle.static.InputSpec([-1, 1, 28, 28], 'float32')],
        verbose=True)
```
Y
YixinKristy 已提交
523

Y
YixinKristy 已提交
524 525


C
chenjian 已提交
526
After running the above program, developers can launch the panel by:
Y
YixinKristy 已提交
527

C
chenjian 已提交
528 529 530
```shell
visualdl --logdir ./log/graph_test/ --port 8080
```
531

C
chenjian 已提交
532
Then, open the browser and enter the address`http://127.0.0.1:8080` to view:
Y
YixinKristy 已提交
533 534

<p align="center">
C
chenjian 已提交
535
  <img src="https://user-images.githubusercontent.com/22424850/175811156-a80ca0c4-207d-44d7-bd5a-9701a7875722.gif" width="80%"/>
Y
YixinKristy 已提交
536 537
</p>

C
chenjian 已提交
538 539 540 541 542 543 544 545 546 547 548 549 550 551
**Note**

We provide option --model to specify model structure file in previous versions, and this option is still supported now. You can specify model exported by `add_graph` interface ("vdlgraph" contained in filename), which will be shown in dynamic graph page, and we use string "manual_input_model" in the page to denote the model you specify by this option. Other supported file formats are presented in static graph page.

For example
```shell
visualdl --model ./log/model.pdmodel --port 8080
```
which will be shown in static graph page. And
```shell
visualdl --model ./log/vdlgraph.1655783158.log --port 8080
```
shown in dynamic graph page.

552
### Functional Instructions
Y
YixinKristy 已提交
553

C
chenjian 已提交
554 555 556
Graph page is divided into dynamic and static version currently. Dynamic version is used to visualize dynamic model of paddle, which is exported by add_graph interface.
The other is used to visualize static model of paddle, which is exported by [paddle.jit.save](https://www.paddlepaddle.org.cn/documentation/docs/en/api/paddle/jit/save_en.html) interface and other supported formats.

Y
YixinKristy 已提交
557 558

<p align="center">
C
chenjian 已提交
559
  <img src="https://user-images.githubusercontent.com/22424850/175810574-d3526ef5-859f-4ea9-b705-f55bfc8ed5af.png" width="80%"/>
Y
YixinKristy 已提交
560 561
</p>

C
chenjian 已提交
562 563 564
**Common functions**


565
- Developers are allowed to drag the model up and down,left and right,zoom in and zoom out.
Y
YixinKristy 已提交
566 567

<p align="center">
568
  <img src="https://user-images.githubusercontent.com/48054808/90878058-a097d400-e3d7-11ea-9543-bcef67ace675.gif" width="80%"/>
Y
YixinKristy 已提交
569 570
</p>

571
- Search to locate the specific node
Y
YixinKristy 已提交
572 573

<p align="center">
574
  <img src="https://user-images.githubusercontent.com/48054808/90878136-c0c79300-e3d7-11ea-9a14-1c1e809af442.png" width="30%"/>
Y
YixinKristy 已提交
575 576
</p>

577
- Click to view the model properties
Y
YixinKristy 已提交
578 579

<p align="center">
580
  <img src="https://user-images.githubusercontent.com/48054808/90878623-5531f580-e3d8-11ea-89cc-1be3500bff66.png" width="30%"/>
Y
YixinKristy 已提交
581 582
</p>

583
- Display the model information by selecting corresponded attributes
Y
YixinKristy 已提交
584 585

<p align="center">
586
  <img src="https://user-images.githubusercontent.com/48054808/90878712-6ed33d00-e3d8-11ea-85b9-48bf57867d30.png" width="23%"/>
Y
YixinKristy 已提交
587 588
</p>

589
- Files can be ex as PNG or SVG format
Y
YixinKristy 已提交
590 591

<p align="center">
592
  <img src="https://user-images.githubusercontent.com/48054808/90878893-b35ed880-e3d8-11ea-8c22-badee805bfff.png" width="30%"/>
Y
YixinKristy 已提交
593 594
</p>

595
- Click nodes to view attribute information
Y
YixinKristy 已提交
596 597

<p align="center">
598
  <img src="https://user-images.githubusercontent.com/48054808/90878944-c5407b80-e3d8-11ea-9db2-10e1dd1de5bf.png" width="30%"/>
Y
YixinKristy 已提交
599 600
</p>

601
- Switch the model by one-click
Y
YixinKristy 已提交
602 603

<p align="center">
604
  <img src="https://user-images.githubusercontent.com/48054808/90879247-34b66b00-e3d9-11ea-94ef-a26b1ba07dd0.png" width="25%"/>
Y
YixinKristy 已提交
605
</p>
606

C
chenjian 已提交
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
**Specific feature in dynamic version**

- Fold and unfold one node
<p align="center">
  <img src="https://user-images.githubusercontent.com/22424850/175810800-4823b9f1-3d59-44e8-aaa5-a80577624452.png" width="80%"/>
</p>
<p align="center">
  <img src="https://user-images.githubusercontent.com/22424850/175810790-a35f83bf-a23c-4a28-afb7-2e0cf7711b9c.png" width="80%"/>
</p>

- Fold and unfold all nodes
<p align="center">
  <img src="https://user-images.githubusercontent.com/22424850/175810856-ff98a1ed-2a4f-4cc1-bc9b-3085857c0b81.png" width="80%"/>
</p>
<p align="center">
  <img src="https://user-images.githubusercontent.com/22424850/175810837-a0953956-7320-4e78-9c52-72ad13962216.png" width="80%"/>
</p>

- Link api specification of paddle

  If you use paddle.nn components to construct your network model, you can use alt+click mouse to direct to corresponding api specification.
<p align="center">
  <img src="https://user-images.githubusercontent.com/22424850/175810992-b86e9aef-e700-4c2d-bcd0-21fc96fc2564.png" width="80%"/>
</p>
<p align="center">
  <img src="https://user-images.githubusercontent.com/22424850/175810997-0672d836-4d7c-432d-b5de-187f97c421ae.png" width="80%"/>
</p>

**Specific feature in static version**

- Upload the model file by one-click
  - Supported model:PaddlePaddle、ONNX、Keras、Core ML、Caffe、Caffe2、Darknet、MXNet、ncnn、TensorFlow Lite
  - Experimental supported model:TorchScript、PyTorch、Torch、 ArmNN、BigDL、Chainer、CNTK、Deeplearning4j、MediaPipe、ML.NET、MNN、OpenVINO、Scikit-learn、Tengine、TensorFlow.js、TensorFlow

<p align="center">
  <img src="https://user-images.githubusercontent.com/48054808/90877449-a80aad80-e3d6-11ea-8016-0a2f3afe6f5e.png" width="80%"/>
</p>

645
## Histogram--Distribution of Tensors 
Y
YixinKristy 已提交
646

647
### Introduction
Y
YixinKristy 已提交
648

649
Histogram displays how the trend of tensors (weight, bias, gradient, etc.) changes during the training process in the form of histogram. Developers can adjust the model structures accurately by having an in-depth understanding of the effect of each layer.
Y
YixinKristy 已提交
650

651
### Record Interface
Y
YixinKristy 已提交
652

653
The interface of the Histogram is shown as follows: 
Y
YixinKristy 已提交
654 655 656 657

```python
add_histogram(tag, values, step, walltime=None, buckets=10)
```
658 659 660 661 662 663 664 665 666 667

The interface parameters are described as follows:

| parameter | format                | meaning                                                      |
| --------- | --------------------- | ------------------------------------------------------------ |
| tag       | string                | Record the name of the image data,e.g.train/loss. Notice that the name cannot contain `%` |
| values    | numpy.ndarray or list | Data is in ndarray or list format, which shape is (N, )        |
| step      | int                   | Record the training steps                                    |
| walltime  | int                   | Record the time-stamp of the data, and the default is the current time-stamp |
| buckets   | int                   | The number of segments to generate the histogram and the default value is 10 |
Y
YixinKristy 已提交
668

Y
YixinKristy 已提交
669 670
### Demo

671
The following shows an example of using  Histogram to record data, and the script can be found in [Histogram Demo](https://github.com/PaddlePaddle/VisualDL/blob/develop/demo/components/histogram_test.py)
Y
YixinKristy 已提交
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690

```python
from visualdl import LogWriter
import numpy as np


if __name__ == '__main__':
    values = np.arange(0, 1000)
    with LogWriter(logdir="./log/histogram_test/train") as writer:
        for index in range(1, 101):
            interval_start = 1 + 2 * index / 100.0
            interval_end = 6 - 2 * index / 100.0
            data = np.random.uniform(interval_start, interval_end, size=(10000))
            writer.add_histogram(tag='default tag',
                                 values=data,
                                 step=index,
                                 buckets=10)
```

691
After running the above program, developers can launch the panel by:
Y
YixinKristy 已提交
692 693 694 695 696

```shell
visualdl --logdir ./log --port 8080
```

697
Then, open the browser and enter the address: `http://127.0.0.1:8080`to view the histogram.
Y
YixinKristy 已提交
698

699 700 701
### Functional Instructions

- Developers are allowed to zoom in and download the histogram.
Y
YixinKristy 已提交
702 703 704 705 706

  <p align="center">
    <img src="https://user-images.githubusercontent.com/48054808/86535351-42d82700-bf12-11ea-89f0-171280e7c526.png" width="60%"/>
  </p>

707
- Provide two modes: Offset and Overlay.
Y
YixinKristy 已提交
708 709

  <p align="center">
710
    <img src="https://user-images.githubusercontent.com/48054808/90879332-56175700-e3d9-11ea-87c3-24682191ddd4.png" width="30%"/>
Y
YixinKristy 已提交
711 712
  </p>

713 714

  - Offset mode
Y
YixinKristy 已提交
715 716 717 718 719

  <p align="center">
    <img src="https://user-images.githubusercontent.com/48054808/86536435-2b9d3780-bf1a-11ea-9981-92f837d22ae5.png" width="60%"/>
  </p>

720 721

  - Overlay mode
Y
YixinKristy 已提交
722 723 724 725 726

  <p align="center">
    <img src="https://user-images.githubusercontent.com/48054808/86536458-5ab3a900-bf1a-11ea-985e-05f06c1b762b.png" width="60%"/>
  </p>

727 728 729
- Display the parameters、training steps and frequency by hovering on specific data points.

  - In the 240th training step, the weight is -0.0031and the frequency is 2734
Y
YixinKristy 已提交
730 731 732 733 734

  <p align="center">
    <img src="https://user-images.githubusercontent.com/48054808/86536482-80d94900-bf1a-11ea-9e12-5bea9f382b34.png" width="60%"/>
  </p>

735
- Developers can find target histogram by searching corresponded tags.
Y
YixinKristy 已提交
736 737

  <p align="center">
738
    <img src="https://user-images.githubusercontent.com/48054808/90879724-ebb2e680-e3d9-11ea-9e05-9bc06691ed9c.png" width="85%"/>
Y
YixinKristy 已提交
739 740
  </p>

741
- Search tags to show the histograms generated by corresponded experiments.
Y
YixinKristy 已提交
742 743

  <p align="center">
744
    <img src="https://user-images.githubusercontent.com/48054808/90879868-26b51a00-e3da-11ea-8c1d-83fb019ec668.png" width="40%"/>
Y
YixinKristy 已提交
745 746
  </p>

747
## PR Curve
Y
YixinKristy 已提交
748

749
### Introduction
Y
YixinKristy 已提交
750

751
PR Curve presents precision-recall curves in line charts, describing the tradeoff relationship between precision and recall in order to choose a best threshold.
Y
YixinKristy 已提交
752

753
### Record Interface
Y
YixinKristy 已提交
754

755
The interface of the PR Curve is shown as follows:
Y
YixinKristy 已提交
756 757 758 759 760

```python
add_pr_curve(tag, labels, predictions, step=None, num_thresholds=10)
```

761
The interface parameters are described as follows:
Y
YixinKristy 已提交
762

763
| parameter          | format                  | meaning                                        |
Y
YixinKristy 已提交
764
| -------------- | --------------------- | ------------------------------------------- |
765 766 767 768 769 770 771
| tag            | string                | Record the name of the image data,e.g.train/loss. Notice that the name cannot contain `%` |
| labels         | numpy.ndarray or list | Data is in ndarray or list format, which shape should be (N, ) and value should be 0 or 1            |
| predictions    | numpy.ndarray or list | Prediction data is in ndarray or list format, which shape should be (N, ) and value should in [0, 1]           |
| step           | int                   | Record the training steps                                  |
| num_thresholds | int                   | Set the number of thresholds, default as 10, maximum as 127      |
| weights        | float                 | Set the weights of TN/FN/TP/FP to calculate precision and recall      |
| walltime       | int                   | Record the time-stamp of the data, and the default is the current time-stamp      |
Y
YixinKristy 已提交
772 773 774

### Demo

775
The following shows an example of how to use PR Curve component, and script can be found in [PR Curve Demo](../../demo/components/pr_curve_test.py)
Y
YixinKristy 已提交
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791

```python
from visualdl import LogWriter
import numpy as np

with LogWriter("./log/pr_curve_test/train") as writer:
    for step in range(3):
        labels = np.random.randint(2, size=100)
        predictions = np.random.rand(100)
        writer.add_pr_curve(tag='pr_curve',
                            labels=labels,
                            predictions=predictions,
                            step=step,
                            num_thresholds=5)
```

792
After running the above program, developers can launch the panel by:
Y
YixinKristy 已提交
793 794 795 796 797

```shell
visualdl --logdir ./log --port 8080
```

798
Then, open the browser and enter the address`http://127.0.0.1:8080` to view:
Y
YixinKristy 已提交
799 800

<p align="center">
801
  <img src="https://user-images.githubusercontent.com/48054808/90879904-37fe2680-e3da-11ea-9369-2513620bf541.png" width="85%"/>
Y
YixinKristy 已提交
802 803
</p>

804
### Functional Instrucions
Y
YixinKristy 已提交
805

806
- Developers can zoom in, restore, and download PR Curves
Y
YixinKristy 已提交
807 808 809 810 811

  <p align="center">
    <img src="https://user-images.githubusercontent.com/48054808/86740067-f18e7b80-c068-11ea-96bf-52cb7da1f799.png" width="40%"/>
  </p>

812
- Developers hover on the specific data point to learn about the detailed information: TP, TN, FP, FN and the corresponded thresholds
Y
YixinKristy 已提交
813 814

    <p align="center">
815
      <img src="https://user-images.githubusercontent.com/48054808/90879971-4e0be700-e3da-11ea-989a-777b977c271d.png" width="50%"/>
Y
YixinKristy 已提交
816 817
    </p>

818
- The targeted PR Curves can be displayed by searching tags
Y
YixinKristy 已提交
819 820

  <p align="center">
821
    <img src="https://user-images.githubusercontent.com/48054808/90880145-8e6b6500-e3da-11ea-8f06-28248ee2eb84.png" width="80%"/>
Y
YixinKristy 已提交
822 823
  </p>

824
- Developers can find specific labels by searching tags or view the all labels
Y
YixinKristy 已提交
825 826

<p align="center">
827
  <img src="https://user-images.githubusercontent.com/48054808/90880173-9fb47180-e3da-11ea-8704-34cc55c0a844.png" width="30%"/>
Y
YixinKristy 已提交
828 829
</p>

830
- Developers is able to observe the changes of PR Curves across training steps
Y
YixinKristy 已提交
831 832

  <p align="center">
833
    <img src="https://user-images.githubusercontent.com/48054808/90880301-d2f70080-e3da-11ea-97e0-952b389f8010.png" width="30%"/>
Y
YixinKristy 已提交
834 835
  </p>

836 837 838 839 840 841
- There are three measurement scales of X axis

  1. Step: number of iterations
  2. Walltime: absolute training time
  3. Relative: training time

Y
YixinKristy 已提交
842
  <p align="center">
843
    <img src="https://user-images.githubusercontent.com/48054808/90880354-eace8480-e3da-11ea-921f-20f363eb1b1d.png" width="30%"/>
Y
YixinKristy 已提交
844 845
  </p>

846
## ROC Curve
847

848
### Introduction
849

850
ROC Curve shows the performance of a classification model at all classification thresholds; the larger the area under the curve, the better the model performs, aiding developers to evaluate the model performance and choose an appropriate threshold.
851

852
### Record Interface
853

854
The interface of the PR Curve is shown as follows:
855 856 857 858 859

```python
add_roc_curve(tag, labels, predictions, step=None, num_thresholds=10)
```

860
The interface parameters are described as follows:
861

862
| parameter          | format                  | meaning                                        |
863
| -------------- | --------------------- | ------------------------------------------- |
864 865 866 867 868 869 870
| tag            | string                | Record the name of the image data,e.g.train/loss. Notice that the name cannot contain `%` |
| values         | numpy.ndarray or list | Data is in ndarray or list format, which shape should be (N, ) and value should be 0 or 1            |
| predictions    | numpy.ndarray or list | Prediction data is in ndarray or list format, which shape should be (N, ) and value should in [0, 1]             |
| step           | int                   | Record the training steps                                  |
| num_thresholds | int                   | Set the number of thresholds, default as 10, maximum as 127      |
| weights        | float                 | Set the weights of TN/FN/TP/FP to calculate precision and recall      |
| walltime       | int                   | Record the time-stamp of the data, and the default is the current time-stamp      |
871 872 873

### Demo

874
The following shows an example of how to use ROC curve component, and script can be found in [ROC Curve Demo](../../demo/components/roc_curve_test.py)
875 876 877 878 879 880 881 882 883 884 885 886 887 888

```python
from visualdl import LogWriter
import numpy as np

with LogWriter("./log/roc_curve_test/train") as writer:
    for step in range(3):
        labels = np.random.randint(2, size=100)
        predictions = np.random.rand(100)
        writer.add_roc_curve(tag='roc_curve',
                             labels=labels,
                             predictions=predictions,
                             step=step,
                             num_thresholds=5)
889

890 891
```

892
After running the above program, developers can launch the panel by:
893 894 895 896 897

```shell
visualdl --logdir ./log --port 8080
```

898
Then, open the browser and enter the address`http://127.0.0.1:8080` to view:
899 900

<p align="center">
901
  <img src="https://user-images.githubusercontent.com/48054808/103344081-8928d000-4ac8-11eb-84d0-28f249886172.gif" width="85%"/>
902 903
</p>

904
*Note: the use of ROC Curve in the frontend is the same as that of PR Curve, please refer to the instructions in PR Curve section if needed.
905

906
## High Dimensional--Data Dimensionality Reduction
907

908
### Introduction
909

910
High Dimensional projects high-dimensional data into a low dimensional space, aiding users to have an in-depth analysis of the relationship between high-dimensional data. Three dimensionality reduction algorithms are supported:
911

912 913 914
 - PCA : Principle Component Analysis 
 - t-SNE : t-distributed Stochastic Neighbor Embedding 
 - umap: Uniform Manifold Approximation and Projection
915

916
### Record Interface
917

918
The interface of the High Dimensional is shown as follows:
919 920 921 922

```python
add_embeddings(tag, labels, hot_vectors, walltime=None)
```
923 924 925 926 927 928 929 930
The interface parameters are described as follows:
| parameter   | format              | meaning                                                      |
| ----------- | ------------------- | ------------------------------------------------------------ |
| tag         | string              | Record the name of the high dimensional data, e.g.`default`. Notice that the name cannot contain `%` |
| labels      | numpy.array or list | Represents the label of hot_vectors. The shape of `labels` should be (N, ) if only one dimension, and should be (M, N) if dimension of `labels` more than one, where each element is a one-dimensional label array. Each element is string type. |
| hot_vectors | numpy.array or list | Each element can be seen as a feature of the tag corresponding to the label. |
| labels_meta | numpy.array or list | The labels of parameter `labels` correspond to `labels` one-to-one. If not specified, the default value `__metadata__` will be used. When parameter `labels` is a one-dimensional array, there is no need to specify this parameter  |
| walltime    | int                 | Record the time stamp of the data, the default is the current time stamp. |
931

Y
YixinKristy 已提交
932
### Demo
933
The following shows an example of how to use High Dimensional component, and script can be found in [High Dimensional Demo](../../demo/components/high_dimensional_test.py)
934 935 936 937 938 939 940 941 942 943 944 945 946
```python
from visualdl import LogWriter


if __name__ == '__main__':
    hot_vectors = [
        [1.3561076367500755, 1.3116267195134017, 1.6785401875616097],
        [1.1039614644440658, 1.8891609992484688, 1.32030488587171],
        [1.9924524852447711, 1.9358920727142739, 1.2124401279391606],
        [1.4129542689796446, 1.7372166387197474, 1.7317806077076527],
        [1.3913371800587777, 1.4684674577930312, 1.5214136352476377]]

    labels = ["label_1", "label_2", "label_3", "label_4", "label_5"]
947
    # initialize a recorder
948
    with LogWriter(logdir="./log/high_dimensional_test/train") as writer:
949
        # recorde a set of labels and corresponding hot_vectors to the recorder 
950 951 952 953
        writer.add_embeddings(tag='default',
                              labels=labels,
                              hot_vectors=hot_vectors)
```
954
After running the above program, developers can launch the panel by:
955 956 957 958
```shell
visualdl --logdir ./log --port 8080
```

959
Then, open the browser and enter the address`http://127.0.0.1:8080` to view:
960 961

<p align="center">
962
  <img src="https://user-images.githubusercontent.com/48054808/103188111-1b32ac00-4902-11eb-914e-c2368bdb8373.gif" width="85%"/>
963
</p>
Y
YixinKristy 已提交
964

965
### Functional Instrucions
Y
YixinKristy 已提交
966

967
* Developers are allowed to select specific runs of data or certain labels of data to display
Y
YixinKristy 已提交
968 969

  <p align="center">
970
    <img src="https://user-images.githubusercontent.com/48054808/103191809-4e306c00-4911-11eb-853f-e143ef86e182.png" width="30%"/>
Y
YixinKristy 已提交
971 972
  </p>

973
* TSNE
Y
YixinKristy 已提交
974 975

  <p align="center">
976
    <img src="https://user-images.githubusercontent.com/48054808/103192762-cea49c00-4914-11eb-896c-070b0bf0e2ea.png" width="27%"/>
Y
YixinKristy 已提交
977 978
  </p>

979
* PCA
Y
YixinKristy 已提交
980 981

  <p align="center">
982
    <img src="https://user-images.githubusercontent.com/48054808/103192341-47a2f400-4913-11eb-9995-fdc0acadbdc9.png" width="27%"/>
Y
YixinKristy 已提交
983 984
  </p>

985
* UMAP
Y
YixinKristy 已提交
986 987

  <p align="center">
988
    <img src="https://user-images.githubusercontent.com/48054808/103192766-d2d0b980-4914-11eb-871e-e4b31542c5e9.png" width="27%"/>
Y
YixinKristy 已提交
989
  </p>
990

走神的阿圆's avatar
走神的阿圆 已提交
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
## HyperParameters--HyperParameter Visualization

### Introduction

HyperParameters visualize the relationship between hyperparameters and model metrics (such as accuracy and loss) in a rich view, helping you identify the best hyperparameters in an efficient way.

### Record Interface

The interface of the HyperParameters is slightly different from other components'. Firstly, you need to use the `add_hparams` to record the hyperparameter data(`hparams_dict`) and specify the name of the metrics(`metrics_list`). Then, for the metrics you just added, you need to record those metrics values by using `add_scalar`. In this way you can get all data for HpyerParameters Visualization.

```python
add_hparams(hparam_dict, metric_list, walltime=None):
```
The interface parameters are described as follows:
| parameter   | format              | meaning     |
| ----------- | ------------------- | ---------------------------------- |
| hparam_dict |       dict          | name and data of hparams.          |
| metric_list |       list          | The metrics name to be recorded later corresponds to the `tag` parameter in the `add_scalar` interface, and VisualDL corresponds to the indicator data through the `tag`. |
| walltime    |       int           | Record the time stamp of the data, the default is the current time stamp.  |

### Demo
The following shows an example of how to use HyperParameters component, and script can be found in [HyperParameters Demo](https://github.com/PaddlePaddle/VisualDL/blob/develop/demo/components/hparams_test.py)
```python
from visualdl import LogWriter

# This demo demonstrates the hyperparameter records of two experiments. Take the first
# experiment data as an example, First, record the data of the hyperparameter `hparams`
# in the `add_hparams` interface. Then specify the name of `metrics` to be recorded later.
# Finally, use `add_scalar` to specifically record the data of `metrics`. Note that the
# `metrics_list` parameter in the `add_hparams` interface needs to include the `tag`
# parameter of the `add_scalar` interface.
if __name__ == '__main__':
    # Record the data of the first experiment
    with LogWriter('./log/hparams_test/train/run1') as writer:
        # Record the value of `hparams` and the name of `metrics`
        writer.add_hparams(hparams_dict={'lr': 0.1, 'bsize': 1, 'opt': 'sgd'},
                           metrics_list=['hparam/accuracy', 'hparam/loss'])
        # Record the metrics values ​​of different steps in an experiment by matching
        # the `tag` in the `add_scalar` interface with `metrics_list` in `add_hparams` interface.
        for i in range(10):
            writer.add_scalar(tag='hparam/accuracy', value=i, step=i)
            writer.add_scalar(tag='hparam/loss', value=2*i, step=i)

    # Record the data of the second experiment
    with LogWriter('./log/hparams_test/train/run2') as writer:
        # Record the value of `hparams` and the name of `metrics`
        writer.add_hparams(hparams_dict={'lr': 0.2, 'bsize': 2, 'opt': 'relu'},
                           metrics_list=['hparam/accuracy', 'hparam/loss'])
        # Record the metrics values ​​of different steps in an experiment by matching
        # the `tag` in the `add_scalar` interface with `metrics_list` in `add_hparams` interface.
        for i in range(10):
            writer.add_scalar(tag='hparam/accuracy', value=1.0/(i+1), step=i)
            writer.add_scalar(tag='hparam/loss', value=5*i, step=i)
```
After running the above program, developers can launch the panel by:
```shell
visualdl --logdir ./log --port 8080
```

Then, open the browser and enter the address`http://127.0.0.1:8080` to view:

<p align="center">
<img src="https://user-images.githubusercontent.com/28444161/119247155-e9c0c280-bbb9-11eb-8175-58a9c7657a9c.gif" width="85%"/>
</p>

### Functional Instrucions

* Table View
  - The table view can be displayed in a sorted order.
  - Trial ID represents a specific experiment name, the column name displayed in other normal fonts is the hyperparameter name, and the column displayed in bold font is the metric name.
  - The position of hyperparameters and metrics can be customized by dragging.
  - The column width of the table view can be adjusted by dragging.
  - You can click to expand to view the scalar of the metrics.

  <p align="center">
    <img src="https://user-images.githubusercontent.com/28444161/119219705-75364700-bb19-11eb-9077-064337ae95be.png" width="85%"/>
  </p>

* Parallel Coordinates View
  - The specific values ​​of hyperparameters and metrics in a certain set of experiments can be displayed by hovering.
  - Scalar of the metrics in this group of experiments can be displayed by selecting a certain curve.

  <p align="center">
    <img src="https://user-images.githubusercontent.com/28444161/119221098-440d4500-bb20-11eb-8b26-d29f95147c04.png" width="85%"/>
  </p>

* Scatter Plot Matrix View
  - The specific values ​​of hyperparameters and metrics in a certain set of experiments can be displayed by hovering.
  - Scalar of the metrics in this group of experiments can be displayed by selecting a certain point.

  <p align="center">
    <img src="https://user-images.githubusercontent.com/28444161/119221108-54252480-bb20-11eb-9a8f-1d082c36402b.png" width="85%"/>
  </p>

* Scalar of Metrics
  - Can be viewed in table view, parallel coordinates view and scatter plot matrix view.
  - Scalar of the metrics viewed here can also be viewed under the `SCALARS` board.

  <p align="center">
    <img src="https://user-images.githubusercontent.com/28444161/119221127-6901b800-bb20-11eb-84f0-407bd7241bc7.png" width="85%"/>
  </p>

* Hyperparameter/metric range selection
  - Display part of the data by selecting the range of hyperparameters or metrics.

  <p align="center">
    <img src="https://user-images.githubusercontent.com/28444161/119221141-78810100-bb20-11eb-9e06-5b345459310a.png" width="20%"/>
  </p>

* download data
  - Two formats can be selected, CSV or TSV.

  <p align="center">
    <img src="https://user-images.githubusercontent.com/28444161/119221157-8b93d100-bb20-11eb-9c9e-7540b3cb92a1.png" width="20%"/>
  </p>
1106

1107 1108
## VDL.service

1109
### Introduction
1110

1111
VDL.service enables developers to easily save, track and share visualization results with anyone for free.
1112

1113
### Usage Steps
1114

1115
1. Make sure that your get the lastest version of VisualDL, if not, please update by:
1116 1117 1118 1119 1120 1121

```
pip install visualdl --upgrade

```

1122
2. Upload log/model to save, track and share the visualization results.
1123 1124 1125 1126 1127 1128

```
visualdl service upload --logdir ./log \
                        --model ./__model__
```                       
                       
1129
3. An unique URL will be given. Then you can view the visualization results by simply copying and pasting the URL to the browser. 
1130 1131 1132 1133 1134 1135

  <p align="center">
    <img src="https://user-images.githubusercontent.com/48054808/93733769-5ccc0080-fc09-11ea-88c0-6f17c04ebdce.png" width="100%"/>
  </p>
  
   <p align="center">
1136
    <img src="https://user-images.githubusercontent.com/48054808/93734496-057b5f80-fc0c-11ea-9b52-229ff8847bc0.png" width="100%"/>
1137
  </p>