README.md 44.9 KB
Newer Older
1
[**中文**](./README_CN.md)
Y
YixinKristy 已提交
2

3
# VisualDL Guide
Y
YixinKristy 已提交
4

5
### Overview
Y
YixinKristy 已提交
6

7
VisualDL is a visualization tool designed for Deep Learning. VisualDL provides a variety of charts to show the trends of parameters. It enables users to understand the training process and model structures of Deep Learning models more clearly and intuitively so as to optimize models efficiently.
Y
YixinKristy 已提交
8

9
Currently, VisualDL provides **Ten Components**: scalar, image, audio, text, graph, histogram, pr curve, ROC curve, high dimensional and hyperparameters. VisualDL iterates rapidly and new functions will be continuously added.
走神的阿圆's avatar
走神的阿圆 已提交
10

11 12


13 14 15 16 17
|                        Component Name                        |         Display Chart         | Function                                                     |
| :----------------------------------------------------------: | :---------------------------: | :----------------------------------------------------------- |
|                [ Scalar](#Scalar--Line-Chart)                |          Line Chart           | Display scalar data such as loss and accuracy dynamically.   |
|             [Image](#Image--Image-Visualization)             |      Image Visualization      | Display images, visualizing the input and the output and making it easy to view the changes in the intermediate process. |
|             [Audio](#Audio--Audio-Play)             |      Audio Play      | Play the audio during the training process, making it easy to monitor the process of speech recognition and text-to-speech. |
走神的阿圆's avatar
走神的阿圆 已提交
18
| [Text](#Text) | Text Visualization | Visualize the text output of NLP models within any stage, aiding developers to compare the changes of outputs so as to deeply understand the training process and simply evaluate the performance of the model. |
19 20 21
|              [Graph](#Graph--Network-Structure)              |       Network Structure       | Visualize network structures, node attributes and data flow, assisting developers to learn and to optimize network structures. |
|       [Histogram](#Histogram--Distribution-of-Tensors)       |    Distribution of Tensors    | Present the changes of distributions of tensors, such as weights/gradients/bias, during the training process. |
|                   [PR Curve](#PR-Curve)                   |   Precision & Recall Curve    | Display precision-recall curves across training steps, clarifying the tradeoff between precision and recall when comparing models. |
走神的阿圆's avatar
走神的阿圆 已提交
22
|                   [ROC Curve](#ROC-Curve)                   |   Receiver Operating Characteristic curve    | Show the performance of a classification model at all classification thresholds. |
23
| [High Dimensional](#High-Dimensional--Data-Dimensionality-Reduction) | Data Dimensionality Reduction | Project high-dimensional data into 2D/3D space for embedding visualization, making it convenient to observe the correlation between data. |
走神的阿圆's avatar
走神的阿圆 已提交
24
| [Hyper Parameters](#hyperparameters--hyperparameter-visualization) |  HyperParameter Visualization  | Visualize the relationship between hyperparameters and model metrics (such as accuracy and loss) in a rich view, helping you identify the best hyperparameters in an efficient way. |
25

26
At the same time, VisualDL provides [VDL.service](#vdlservice) , which allows developers to easily save, track and share visualization results of experiments with anyone for free.
27

28
## Scalar--Line Chart
29

30 31 32 33 34 35 36
### Introduction

The data type of the input is scalar values. Scalar is used to present the training parameters in the form of a line chart. By using Scalar to record loss and accuracy, developers are able to track the trend of changes easily through line charts.

### Record Interface

The interface of the Scalar is shown as follows:
37 38 39 40

```python
add_scalar(tag, value, step, walltime=None)
```
41 42 43 44 45 46 47
The interface parameters are described as follows:
| parameter | format | meaning                                                      |
| --------- | ------ | ------------------------------------------------------------ |
| tag       | string | Record the name of the scalar data,e.g.train/loss. Notice that the name cannot contain `%` |
| value     | float  | Record the data, can't be `None`                                              |
| step      | int    | Record the training steps. The data will be sampled, meaning that only part of data will be displayed. (the sampling algorithm is reservoir sampling, details can be refered to [VisualDL sampling algorithm](../faq.md/#what-are-the-sampling-rules-of-visualdl))                                      |
| walltime  | int    | Record the time-stamp of the data, the default is the current time-stamp |
48

49
*Note that the rules of specifying tags (e.g.train/acc) are:
Y
YixinKristy 已提交
50

51 52 53
1. The tag before the first  `/` is the parent tag and serves as the tag of the same raw
2. The tag after the first `/` is a child tag, the charts with child tag will be displayed under the parent tag. The data of the same parent tag but different child tags will be displayed in the same column, but not in the same picture.
3. Users can use multiple `/`, but the tag of a raw is the parent tag--the tag before the first `/`
Y
YixinKristy 已提交
54

55
Here are three examples:
Y
YixinKristy 已提交
56

57
- When 'train' is created as the parent tag and 'acc' and 'loss' are created as child tags:`train/acc``train/loss`,the tag of a raw is 'train' , which includes two sub charts--'acc' and 'loss':
Y
YixinKristy 已提交
58 59

<p align="center">
60
  <img src="https://user-images.githubusercontent.com/48054808/90884030-88c54d80-e3e1-11ea-9ba7-4b8df7b3496e.png" width="100%"/>
Y
YixinKristy 已提交
61 62
</p>

63
- When 'train' is created as the parent tag, and 'test/acc' and 'test/loss' are created as child tags:`train/test/acc``train/test/loss`, the tag of a raw is 'train', which includes two sub charts--'test/acc' and 'test/loss': 
Y
YixinKristy 已提交
64 65

<p align="center">
66
  <img src="https://user-images.githubusercontent.com/48054808/90884098-a692b280-e3e1-11ea-8c0b-380b970b50b2.png" width="100%"/>
Y
YixinKristy 已提交
67 68
</p>

69
- When two parent tags are created:`acc``loss`, two rows of charts are named as 'acc' and 'loss' respectively.
Y
YixinKristy 已提交
70 71

<p align="center">
72
  <img src="https://user-images.githubusercontent.com/48054808/90884122-b3afa180-e3e1-11ea-90b0-93a75543f253.png" width="100%"/>
Y
YixinKristy 已提交
73 74
</p>

Y
YixinKristy 已提交
75
### Demo
Y
YixinKristy 已提交
76

77
- Fundamental Methods
Y
YixinKristy 已提交
78

79
The following shows an example of using Scalar to record data, and the script can be found in [Scalar Demo](../../demo/components/scalar_test.py)
80 81 82 83 84
```python
from visualdl import LogWriter

if __name__ == '__main__':
    value = [i/1000.0 for i in range(1000)]
85
    # initialize a recorder
86 87
    with LogWriter(logdir="./log/scalar_test/train") as writer:
        for step in range(1000):
88
            # add accuracy with tag of 'acc' to the recorder
89
            writer.add_scalar(tag="acc", step=step, value=value[step])
90
            # add loss with tag of 'loss' to the recorder
91 92
            writer.add_scalar(tag="loss", step=step, value=1/(value[step] + 1))
```
93
After running the above program, developers can launch the panel by:
94 95 96 97
```shell
visualdl --logdir ./log --port 8080
```

98
Then, open the browser and enter the address: `http://127.0.0.1:8080`to view line charts:
99 100

<p align="center">
101
  <img src="https://user-images.githubusercontent.com/48054808/90871520-c9b36700-e3cd-11ea-9063-ca692b1d3917.png" width="100%"/>
Y
YixinKristy 已提交
102 103
</p>

104
- Advanced Usage--Comparison of Multiple Experiments
Y
YixinKristy 已提交
105

106
The following shows the comparison of multiple sets of experiments using Scalar.
Y
YixinKristy 已提交
107

108
There are two steps to achieve this function:
Y
YixinKristy 已提交
109

110 111
1. Create sub-log files to store the parameter data of each group of experiments
2. When recording data to the scalar component,developers can compare **the same type of parameters for different experiments**  by **using the same tag**. Note that the log files you want to display must be placed in different directories because only one log file in a directory is valid and displayed.
Y
YixinKristy 已提交
112 113 114 115 116 117

```python
from visualdl import LogWriter

if __name__ == '__main__':
    value = [i/1000.0 for i in range(1000)]
118
    # Step 1: Create a parent folder: log and a child folder: scalar_test
Y
YixinKristy 已提交
119 120
    with LogWriter(logdir="./log/scalar_test") as writer:
        for step in range(1000):
121
            # Step 2: Add data with tag train/acc to the recorder
Y
YixinKristy 已提交
122
            writer.add_scalar(tag="train/acc", step=step, value=value[step])
123
            # Step 2: Add data with tag train/loss to the recorder
Y
YixinKristy 已提交
124
            writer.add_scalar(tag="train/loss", step=step, value=1/(value[step] + 1))
125
    # Step 1: Create a second child folder: scalar_test2    
Y
YixinKristy 已提交
126 127 128
    value = [i/500.0 for i in range(1000)]
    with LogWriter(logdir="./log/scalar_test2") as writer:
        for step in range(1000):
129
            # Step 2: Add the accuracy data of scalar_test2 under the same name `train/acc`
Y
YixinKristy 已提交
130
            writer.add_scalar(tag="train/acc", step=step, value=value[step])
131
            # Step 2: Add the loss data of scalar_test2 under the same name as `train/loss`
Y
YixinKristy 已提交
132 133 134
            writer.add_scalar(tag="train/loss", step=step, value=1/(value[step] + 1))
```

135
After running the above program, developers can launch the panel by:
Y
YixinKristy 已提交
136 137 138 139 140

```shell
visualdl --logdir ./log --port 8080
```

141
Then, open the browser and enter the address: `http://127.0.0.1:8080` to view line charts:
Y
YixinKristy 已提交
142 143

<p align="center">
144
  <img src="https://user-images.githubusercontent.com/48054808/90884963-4dc41980-e3e3-11ea-824a-277a8d71823e.png" width="100%"/>
Y
YixinKristy 已提交
145
</p>
146 147
*For more specific details of how to compare multiple experiments, pleas refer to the project on AI Studio:[VisualDL 2.0--Visualization of eye disease recognition training](https://aistudio.baidu.com/aistudio/projectdetail/502834)
It can be seen that the data of different experiments (determined by the path) are displayed in different pictures, and the data of the same tag is displayed on the same picture for comparison.
Y
YixinKristy 已提交
148

149
### Functional Instruction
Y
YixinKristy 已提交
150

151
* Developers are allowed to zoom in, restore, transform of the coordinate axis (y-axis logarithmic coordinates), download the line chart.
Y
YixinKristy 已提交
152 153

<p align="center">
154
  <img src="https://visualdl.bj.bcebos.com/images/scalar-icon.png" width="45%"/>
Y
YixinKristy 已提交
155 156 157 158
</p>



159
* Details can be shown by hovering on specific data points.
Y
YixinKristy 已提交
160 161

<p align="center">
162
  <img src="https://user-images.githubusercontent.com/48054808/90872099-b785f880-e3ce-11ea-9ebe-8083c893d88b.png" width="60%"/>
Y
YixinKristy 已提交
163 164 165 166
</p>



167
* Developers can find target scalar charts by searching corresponded tags.
Y
YixinKristy 已提交
168 169

<p align="center">
170
  <img src="https://user-images.githubusercontent.com/48054808/90872849-cfaa4780-e3cf-11ea-985d-b4c382acf773.png" width="90%"/>
Y
YixinKristy 已提交
171 172 173 174
</p>



175
* Specific runs can be selected by searching for the corresponded  experiment tags.
Y
YixinKristy 已提交
176 177

<p align="center">
178
  <img src="https://user-images.githubusercontent.com/48054808/90873112-2b74d080-e3d0-11ea-8a69-24b7b4abae96.png" width="40%"/>
Y
YixinKristy 已提交
179 180
</p>

181
* Display the global extrema
182 183

<p align="center">
184
  <img src="https://user-images.githubusercontent.com/48054808/93732753-46bc4100-fc05-11ea-92ca-35c89467815b.png" width="30%"/>
185 186 187
</p>

<p align="center">
188
  <img src="https://user-images.githubusercontent.com/48054808/93732766-58054d80-fc05-11ea-89e0-bc00a283f559.png" width="60%"/>
189 190
</p>

191
* Only display smoothed data 
192 193

<p align="center">
194
  <img src="https://user-images.githubusercontent.com/48054808/93732799-7f5c1a80-fc05-11ea-886f-193c3bcc9b5f.png" width="30%"/>
195 196 197
</p>

<p align="center">
198
  <img src="https://user-images.githubusercontent.com/48054808/93732815-9569db00-fc05-11ea-8353-ffa5086d3d52.png" width="60%"/>
199
</p>
Y
YixinKristy 已提交
200

201
* There are three measurement scales of X axis
Y
YixinKristy 已提交
202

203 204 205
1. Step: number of iterations
2. Walltime: absolute training time
3. Relative: training time
Y
YixinKristy 已提交
206 207

<p align="center">
208
  <img src="https://user-images.githubusercontent.com/48054808/90873502-da191100-e3d0-11ea-8b03-c8fea0b65388.png" width="40%"/>
Y
YixinKristy 已提交
209
</p>
210 211

* The smoothness of the curve can be adjusted to better show the change of the overall trend.
Y
YixinKristy 已提交
212 213

<p align="center">
214
  <img src="https://user-images.githubusercontent.com/48054808/90873564-edc47780-e3d0-11ea-909c-161e9fd8eeef.png" width="37%"/>
215 216 217
</p>


218
## Image--Image Visualization
219

220
### Introduction
221

222
The Image is used to present the change of image data during training. Developers can view images in different training stages by adding few lines of codes to record images in a log file.
223

224
### Record Interface
225

226
The interface of the Image is shown as follows:
227 228

```python
229
add_image(tag, img, step, walltime=None, dataformats="HWC")
230
```
231 232 233 234 235 236 237 238
The interface parameters are described as follows:
| parameter | format        | meaning                                                      |
| --------- | ------------- | ------------------------------------------------------------ |
| tag       | string        | Record the name of the image data,e.g.train/loss. Notice that the name cannot contain `%` |
| img       | numpy.ndarray | Images in ndarray format. The default `HWC` format dimension is [h, w, c], h and w are the height and width of the images, and c is the number of channels, which can be 1, 3, 4. Floating point data will be clipped to the range[0, 1), and note that the image data cannot be None.                                     |
| step      | int           | Record the training steps                                    |
| walltime  | int           | Record the time-stamp of the data, the default is the current time-stamp |
| dataformats| string       | Format of image,include `NCHW`、`NHWC`、`HWC`、`CHW`、`HW`,default is `HWC`. It will be converted to `HWC` format when stored.|
239

Y
YixinKristy 已提交
240
### Demo
241
The following shows an example of using Image to record data, and the script can be found in [Image Demo](https://github.com/PaddlePaddle/VisualDL/blob/develop/demo/components/image_test.py).
242 243 244 245 246 247 248
```python
import numpy as np
from PIL import Image
from visualdl import LogWriter


def random_crop(img):
249
    """get random 100x100 slices of image
250 251 252 253 254 255 256 257 258 259
    """
    img = Image.open(img)
    w, h = img.size
    random_w = np.random.randint(0, w - 100)
    random_h = np.random.randint(0, h - 100)
    r = img.crop((random_w, random_h, random_w + 100, random_h + 100))
    return np.asarray(r)


if __name__ == '__main__':
260
    # initialize a recorder
261 262
    with LogWriter(logdir="./log/image_test/train") as writer:
        for step in range(6):
263
            # add image data
Y
YixinKristy 已提交
264
            writer.add_image(tag="eye",
Y
YixinKristy 已提交
265
                             img=random_crop("../../docs/images/eye.jpg"),
266 267
                             step=step)
```
268
After running the above program, developers can launch the panel by:
269 270 271 272
```shell
visualdl --logdir ./log --port 8080
```

273
Then, open the browser and enter the address: `http://127.0.0.1:8080`to view:
Y
YixinKristy 已提交
274 275

<p align="center">
276
  <img src="https://user-images.githubusercontent.com/48054808/90874434-4a746200-e3d2-11ea-9395-a039d9e83470.png" width="90%"/>
Y
YixinKristy 已提交
277 278 279
</p>


280
### Functional Instructions
Y
YixinKristy 已提交
281

282
- Developers can find target images by searching corresponded tags.
Y
YixinKristy 已提交
283 284

<p align="center">
285
  <img src="https://user-images.githubusercontent.com/48054808/90875589-f8344080-e3d3-11ea-9020-52a5a88324ab.png" width="90%"/>
Y
YixinKristy 已提交
286 287 288
</p>


289
- Developers are allowed to view image data under different iterations by scrolling the Step/iteration slider.
走神的阿圆's avatar
走神的阿圆 已提交
290 291

<p align="center">
292
  <img src="https://user-images.githubusercontent.com/48054808/90875652-10a45b00-e3d4-11ea-9fd9-3c79f22829f7.gif" width="60%"/>
走神的阿圆's avatar
走神的阿圆 已提交
293 294
</p>

295
## Audio--Audio Play
走神的阿圆's avatar
走神的阿圆 已提交
296

297
### Introduction
Y
YixinKristy 已提交
298

299
Audio aims to allow developers to listen to the audio in real-time during the training process, helping developers to monitor the process of speech recognition and text-to-speech.
Y
YixinKristy 已提交
300

301
### Record Interface
Y
YixinKristy 已提交
302

303
The interface of the Image is shown as follows:
Y
YixinKristy 已提交
304 305 306 307

```python
add_audio(tag, audio_array, step, sample_rate)
```
308 309 310 311 312 313 314
The interface parameters are described as follows:
| parameter | format        | meaning                                                      |
| --------- | ------------- | ------------------------------------------------------------ |
| tag      | string        | Record the name of the audio,e.g.audoi/sample. Notice that the name cannot contain `%` |
| audio_arry      | numpy.ndarray | Audio in ndarray format, whose elements are float values, and the range should be normalized in [-1, 1]                     |
| step     | int           | Record the training steps                                  |
| sample_rate | int           | Sample rate,the default sampling rate is 8000. **Please note that the rate should be the rate of the original audio**          |
Y
YixinKristy 已提交
315 316

### Demo
317 318
The following shows an example of using Audio to record data, and the script can be found in [Audio Demo](https://github.com/PaddlePaddle/VisualDL/blob/develop/demo/components/audio_test.py).

Y
YixinKristy 已提交
319 320
```python
from visualdl import LogWriter
Y
YixinKristy 已提交
321
from scipy.io import wavfile
Y
YixinKristy 已提交
322 323 324


if __name__ == '__main__':
Y
YixinKristy 已提交
325 326
    with LogWriter(logdir="./log/audio_test/train") as writer:
        sample_rate, audio_data = wavfile.read('./test.wav')
Y
YixinKristy 已提交
327 328 329
        writer.add_audio(tag="audio_tag",
                         audio_array=audio_data,
                         step=0,
Y
YixinKristy 已提交
330
                         sample_rate=sample_rate)
Y
YixinKristy 已提交
331
```
332
After running the above program, developers can launch the panel by:
Y
YixinKristy 已提交
333 334 335 336
```shell
visualdl --logdir ./log --port 8080
```

337
Then, open the browser and enter the address: `http://127.0.0.1:8080`to view:
Y
YixinKristy 已提交
338 339

<p align="center">
340
  <img src="https://user-images.githubusercontent.com/48054808/88753858-eaeab400-d18f-11ea-87c6-46ab7d5a5fd0.png" width="90%"/>
Y
YixinKristy 已提交
341 342
</p>

343
### Functional Instructions
Y
YixinKristy 已提交
344

345
- Developers can find the target audio by searching corresponded tags.
Y
YixinKristy 已提交
346 347

<p align="center">
348
  <img src="https://user-images.githubusercontent.com/48054808/88755034-c6dca200-d192-11ea-8349-1414bcf9d38d.png" width="80%"/>
Y
YixinKristy 已提交
349 350
</p>

351
- Developers are allowed to listen to the audio under different iterations by scrolling the Step/iteration slider.
Y
YixinKristy 已提交
352 353

<p align="center">
354
  <img src="https://user-images.githubusercontent.com/48054808/88755220-33f03780-d193-11ea-9b0f-a283d9f3a78a.png" width="40%"/>
Y
YixinKristy 已提交
355 356
</p>

357
- Play/Pause the audio
Y
YixinKristy 已提交
358 359

<p align="center">
360
  <img src="https://user-images.githubusercontent.com/48054808/88755240-41a5bd00-d193-11ea-9780-7ae7c7792070.png" width="40%"/>
Y
YixinKristy 已提交
361 362
</p>

363
- Adjust the volume
Y
YixinKristy 已提交
364 365

<p align="center">
366
  <img src="https://user-images.githubusercontent.com/48054808/88755258-53876000-d193-11ea-96b2-9ed698423202.png" width="40%"/>
Y
YixinKristy 已提交
367 368
</p>

369
- Download the audio
Y
YixinKristy 已提交
370 371

<p align="center">
372
  <img src="https://user-images.githubusercontent.com/48054808/88755377-9a755580-d193-11ea-947e-4275b9d3aa54.png" width="40%"/>
Y
YixinKristy 已提交
373 374
</p>

375
## Text
走神的阿圆's avatar
走神的阿圆 已提交
376

377
### Introduction
走神的阿圆's avatar
走神的阿圆 已提交
378

379
visualizes the text output of NLP models within any stage, aiding developers to compare the changes of outputs so as to deeply understand the training process and simply evaluate the performance of the model.
走神的阿圆's avatar
走神的阿圆 已提交
380

381
### Record Interface
走神的阿圆's avatar
走神的阿圆 已提交
382

383
The interface of the Text is shown as follows:
走神的阿圆's avatar
走神的阿圆 已提交
384 385

```python
Y
YixinKristy 已提交
386
add_text(tag, text_string, step=None, walltime=None)
走神的阿圆's avatar
走神的阿圆 已提交
387 388
```

389
The interface parameters are described as follows:
走神的阿圆's avatar
走神的阿圆 已提交
390

391
| parameter          | format                  | meaning                                        |
走神的阿圆's avatar
走神的阿圆 已提交
392
| -------------- | --------------------- | ------------------------------------------- |
393 394 395 396
| tag            | string                | Record the name of the text data,e.g.train/loss. Notice that the name cannot contain `%` |
| text_string    | string                | Value of text |
| step           | int                   | Record the training steps                                  |
| walltime       | int                   | Record the time-stamp of the data, and the default is the current time-stamp      |
走神的阿圆's avatar
走神的阿圆 已提交
397 398 399

### Demo

400
The following shows an example of how to use Text component, and script can be found in [Text Demo](../../demo/components/text_test.py)
走神的阿圆's avatar
走神的阿圆 已提交
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417

```python
from visualdl import LogWriter
if __name__ == '__main__':
    texts = [
        '上联: 众 佛 群 灵 光 圣 地	下联: 众 生 一 念 证 菩 提',
        '上联: 乡 愁 何 处 解	下联: 故 事 几 时 休',
        '上联: 清 池 荷 试 墨	下联: 碧 水 柳 含 情',
        '上联: 既 近 浅 流 安 笔 砚	下联: 欲 将 直 气 定 乾 坤',
        '上联: 日 丽 萱 闱 祝 无 量 寿	下联: 月 明 桂 殿 祝 有 余 龄',
        '上联: 一 地 残 红 风 拾 起	下联: 半 窗 疏 影 月 窥 来'
    ]
    with LogWriter(logdir="./log/text_test/train") as writer:
        for step in range(len(texts)):
            writer.add_text(tag="output", step=step, text_string=texts[step])
```

418
After running the above program, developers can launch the panel by:
走神的阿圆's avatar
走神的阿圆 已提交
419 420 421 422 423

```shell
visualdl --logdir ./log --port 8080
```

424
Then, open the browser and enter the address`http://127.0.0.1:8080` to view:
走神的阿圆's avatar
走神的阿圆 已提交
425 426 427 428 429

<p align="center">
  <img src="https://user-images.githubusercontent.com/28444161/106248340-cdd09400-624b-11eb-8ea9-5a07a239c365.png" width="95%"/>
</p>

430
### Functional Instrucions
走神的阿圆's avatar
走神的阿圆 已提交
431

432
- Developers can find the target text by searching corresponded tags.
走神的阿圆's avatar
走神的阿圆 已提交
433

434 435 436
  <p align="center">
    <img src="https://user-images.githubusercontent.com/48054808/86536503-baaa4f80-bf1a-11ea-80ab-cd988617d018.png" width="40%"/>
  </p>
走神的阿圆's avatar
走神的阿圆 已提交
437

438
- Developers can find the target runs by searching corresponded tags.
走神的阿圆's avatar
走神的阿圆 已提交
439

440 441 442
  <p align="center">
    <img src="https://user-images.githubusercontent.com/28444161/106256983-f4e09300-6256-11eb-9acc-a24a2ac9b70c.png" width="40%"/>
  </p>
走神的阿圆's avatar
走神的阿圆 已提交
443

444
- Developers can fold the tab of text.
走神的阿圆's avatar
走神的阿圆 已提交
445

446 447 448
 <p align="center">
   <img src="https://user-images.githubusercontent.com/28444161/106252364-28202380-6251-11eb-934c-d8893c2eaeca.png" width="80%"/>
 </p>
Y
YixinKristy 已提交
449

Y
YixinKristy 已提交
450

451
## Graph--Network Structure
Y
YixinKristy 已提交
452

453 454 455
### Introduction

Graph can visualize the network structure of the model by one click. It enables developers to view the model attributes, node information, searching node and so on. These functions help developers analyze model structures and understand the directions of data flow quickly.
Y
YixinKristy 已提交
456 457

### Demo
458
There are two methods to launch this component:
Y
YixinKristy 已提交
459

460
- By the front end:
Y
YixinKristy 已提交
461

462 463
  - If developers only need to use Graph, developers can launch VisualDL (Graph) by executing `visualdl`on the command line.
  - If developers need to use Graph and other functions at the same time, they need to specify the log file path (using `./log` as an example):
Y
YixinKristy 已提交
464 465 466 467 468 469

  ```shell
  visualdl --logdir ./log --port 8080
  ```


470
- By the backend:
Y
YixinKristy 已提交
471

472
  - Add the parameter `--model` and specify the **model file** path (not the folder path) to launch the panel:
Y
YixinKristy 已提交
473

Y
YixinKristy 已提交
474 475 476
  ```shell
  visualdl --model ./log/model --port 8080
  ```
Y
YixinKristy 已提交
477

478 479

After the launch, developers can view the network structure:
Y
YixinKristy 已提交
480 481

<p align="center">
482
  <img src="https://user-images.githubusercontent.com/48054808/90877274-6548d580-e3d6-11ea-9804-74a1ead47b30.png" width="80%"/>
Y
YixinKristy 已提交
483 484
</p>

485
### Functional Instructions
Y
YixinKristy 已提交
486

487 488 489
- Upload the model file by one-click
  - Supported model:PaddlePaddle、ONNX、Keras、Core ML、Caffe、Caffe2、Darknet、MXNet、ncnn、TensorFlow Lite
  - Experimental supported model:TorchScript、PyTorch、Torch、 ArmNN、BigDL、Chainer、CNTK、Deeplearning4j、MediaPipe、ML.NET、MNN、OpenVINO、Scikit-learn、Tengine、TensorFlow.js、TensorFlow
Y
YixinKristy 已提交
490 491

<p align="center">
492
  <img src="https://user-images.githubusercontent.com/48054808/90877449-a80aad80-e3d6-11ea-8016-0a2f3afe6f5e.png" width="80%"/>
Y
YixinKristy 已提交
493 494
</p>

495
- Developers are allowed to drag the model up and down,left and right,zoom in and zoom out.
Y
YixinKristy 已提交
496 497

<p align="center">
498
  <img src="https://user-images.githubusercontent.com/48054808/90878058-a097d400-e3d7-11ea-9543-bcef67ace675.gif" width="80%"/>
Y
YixinKristy 已提交
499 500
</p>

501
- Search to locate the specific node
Y
YixinKristy 已提交
502 503

<p align="center">
504
  <img src="https://user-images.githubusercontent.com/48054808/90878136-c0c79300-e3d7-11ea-9a14-1c1e809af442.png" width="30%"/>
Y
YixinKristy 已提交
505 506
</p>

507
- Click to view the model properties
Y
YixinKristy 已提交
508 509

<p align="center">
510
  <img src="https://user-images.githubusercontent.com/48054808/90878623-5531f580-e3d8-11ea-89cc-1be3500bff66.png" width="30%"/>
Y
YixinKristy 已提交
511 512
</p>

513
- Display the model information by selecting corresponded attributes
Y
YixinKristy 已提交
514 515

<p align="center">
516
  <img src="https://user-images.githubusercontent.com/48054808/90878712-6ed33d00-e3d8-11ea-85b9-48bf57867d30.png" width="23%"/>
Y
YixinKristy 已提交
517 518
</p>

519
- Files can be ex as PNG or SVG format
Y
YixinKristy 已提交
520 521

<p align="center">
522
  <img src="https://user-images.githubusercontent.com/48054808/90878893-b35ed880-e3d8-11ea-8c22-badee805bfff.png" width="30%"/>
Y
YixinKristy 已提交
523 524
</p>

525
- Click nodes to view attribute information
Y
YixinKristy 已提交
526 527

<p align="center">
528
  <img src="https://user-images.githubusercontent.com/48054808/90878944-c5407b80-e3d8-11ea-9db2-10e1dd1de5bf.png" width="30%"/>
Y
YixinKristy 已提交
529 530
</p>

531
- Switch the model by one-click
Y
YixinKristy 已提交
532 533

<p align="center">
534
  <img src="https://user-images.githubusercontent.com/48054808/90879247-34b66b00-e3d9-11ea-94ef-a26b1ba07dd0.png" width="25%"/>
Y
YixinKristy 已提交
535
</p>
536

537
## Histogram--Distribution of Tensors 
Y
YixinKristy 已提交
538

539
### Introduction
Y
YixinKristy 已提交
540

541
Histogram displays how the trend of tensors (weight, bias, gradient, etc.) changes during the training process in the form of histogram. Developers can adjust the model structures accurately by having an in-depth understanding of the effect of each layer.
Y
YixinKristy 已提交
542

543
### Record Interface
Y
YixinKristy 已提交
544

545
The interface of the Histogram is shown as follows: 
Y
YixinKristy 已提交
546 547 548 549

```python
add_histogram(tag, values, step, walltime=None, buckets=10)
```
550 551 552 553 554 555 556 557 558 559

The interface parameters are described as follows:

| parameter | format                | meaning                                                      |
| --------- | --------------------- | ------------------------------------------------------------ |
| tag       | string                | Record the name of the image data,e.g.train/loss. Notice that the name cannot contain `%` |
| values    | numpy.ndarray or list | Data is in ndarray or list format, which shape is (N, )        |
| step      | int                   | Record the training steps                                    |
| walltime  | int                   | Record the time-stamp of the data, and the default is the current time-stamp |
| buckets   | int                   | The number of segments to generate the histogram and the default value is 10 |
Y
YixinKristy 已提交
560

Y
YixinKristy 已提交
561 562
### Demo

563
The following shows an example of using  Histogram to record data, and the script can be found in [Histogram Demo](https://github.com/PaddlePaddle/VisualDL/blob/develop/demo/components/histogram_test.py)
Y
YixinKristy 已提交
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582

```python
from visualdl import LogWriter
import numpy as np


if __name__ == '__main__':
    values = np.arange(0, 1000)
    with LogWriter(logdir="./log/histogram_test/train") as writer:
        for index in range(1, 101):
            interval_start = 1 + 2 * index / 100.0
            interval_end = 6 - 2 * index / 100.0
            data = np.random.uniform(interval_start, interval_end, size=(10000))
            writer.add_histogram(tag='default tag',
                                 values=data,
                                 step=index,
                                 buckets=10)
```

583
After running the above program, developers can launch the panel by:
Y
YixinKristy 已提交
584 585 586 587 588

```shell
visualdl --logdir ./log --port 8080
```

589
Then, open the browser and enter the address: `http://127.0.0.1:8080`to view the histogram.
Y
YixinKristy 已提交
590

591 592 593
### Functional Instructions

- Developers are allowed to zoom in and download the histogram.
Y
YixinKristy 已提交
594 595 596 597 598

  <p align="center">
    <img src="https://user-images.githubusercontent.com/48054808/86535351-42d82700-bf12-11ea-89f0-171280e7c526.png" width="60%"/>
  </p>

599
- Provide two modes: Offset and Overlay.
Y
YixinKristy 已提交
600 601

  <p align="center">
602
    <img src="https://user-images.githubusercontent.com/48054808/90879332-56175700-e3d9-11ea-87c3-24682191ddd4.png" width="30%"/>
Y
YixinKristy 已提交
603 604
  </p>

605 606

  - Offset mode
Y
YixinKristy 已提交
607 608 609 610 611

  <p align="center">
    <img src="https://user-images.githubusercontent.com/48054808/86536435-2b9d3780-bf1a-11ea-9981-92f837d22ae5.png" width="60%"/>
  </p>

612 613

  - Overlay mode
Y
YixinKristy 已提交
614 615 616 617 618

  <p align="center">
    <img src="https://user-images.githubusercontent.com/48054808/86536458-5ab3a900-bf1a-11ea-985e-05f06c1b762b.png" width="60%"/>
  </p>

619 620 621
- Display the parameters、training steps and frequency by hovering on specific data points.

  - In the 240th training step, the weight is -0.0031and the frequency is 2734
Y
YixinKristy 已提交
622 623 624 625 626

  <p align="center">
    <img src="https://user-images.githubusercontent.com/48054808/86536482-80d94900-bf1a-11ea-9e12-5bea9f382b34.png" width="60%"/>
  </p>

627
- Developers can find target histogram by searching corresponded tags.
Y
YixinKristy 已提交
628 629

  <p align="center">
630
    <img src="https://user-images.githubusercontent.com/48054808/90879724-ebb2e680-e3d9-11ea-9e05-9bc06691ed9c.png" width="85%"/>
Y
YixinKristy 已提交
631 632
  </p>

633
- Search tags to show the histograms generated by corresponded experiments.
Y
YixinKristy 已提交
634 635

  <p align="center">
636
    <img src="https://user-images.githubusercontent.com/48054808/90879868-26b51a00-e3da-11ea-8c1d-83fb019ec668.png" width="40%"/>
Y
YixinKristy 已提交
637 638
  </p>

639
## PR Curve
Y
YixinKristy 已提交
640

641
### Introduction
Y
YixinKristy 已提交
642

643
PR Curve presents precision-recall curves in line charts, describing the tradeoff relationship between precision and recall in order to choose a best threshold.
Y
YixinKristy 已提交
644

645
### Record Interface
Y
YixinKristy 已提交
646

647
The interface of the PR Curve is shown as follows:
Y
YixinKristy 已提交
648 649 650 651 652

```python
add_pr_curve(tag, labels, predictions, step=None, num_thresholds=10)
```

653
The interface parameters are described as follows:
Y
YixinKristy 已提交
654

655
| parameter          | format                  | meaning                                        |
Y
YixinKristy 已提交
656
| -------------- | --------------------- | ------------------------------------------- |
657 658 659 660 661 662 663
| tag            | string                | Record the name of the image data,e.g.train/loss. Notice that the name cannot contain `%` |
| labels         | numpy.ndarray or list | Data is in ndarray or list format, which shape should be (N, ) and value should be 0 or 1            |
| predictions    | numpy.ndarray or list | Prediction data is in ndarray or list format, which shape should be (N, ) and value should in [0, 1]           |
| step           | int                   | Record the training steps                                  |
| num_thresholds | int                   | Set the number of thresholds, default as 10, maximum as 127      |
| weights        | float                 | Set the weights of TN/FN/TP/FP to calculate precision and recall      |
| walltime       | int                   | Record the time-stamp of the data, and the default is the current time-stamp      |
Y
YixinKristy 已提交
664 665 666

### Demo

667
The following shows an example of how to use PR Curve component, and script can be found in [PR Curve Demo](../../demo/components/pr_curve_test.py)
Y
YixinKristy 已提交
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683

```python
from visualdl import LogWriter
import numpy as np

with LogWriter("./log/pr_curve_test/train") as writer:
    for step in range(3):
        labels = np.random.randint(2, size=100)
        predictions = np.random.rand(100)
        writer.add_pr_curve(tag='pr_curve',
                            labels=labels,
                            predictions=predictions,
                            step=step,
                            num_thresholds=5)
```

684
After running the above program, developers can launch the panel by:
Y
YixinKristy 已提交
685 686 687 688 689

```shell
visualdl --logdir ./log --port 8080
```

690
Then, open the browser and enter the address`http://127.0.0.1:8080` to view:
Y
YixinKristy 已提交
691 692

<p align="center">
693
  <img src="https://user-images.githubusercontent.com/48054808/90879904-37fe2680-e3da-11ea-9369-2513620bf541.png" width="85%"/>
Y
YixinKristy 已提交
694 695
</p>

696
### Functional Instrucions
Y
YixinKristy 已提交
697

698
- Developers can zoom in, restore, and download PR Curves
Y
YixinKristy 已提交
699 700 701 702 703

  <p align="center">
    <img src="https://user-images.githubusercontent.com/48054808/86740067-f18e7b80-c068-11ea-96bf-52cb7da1f799.png" width="40%"/>
  </p>

704
- Developers hover on the specific data point to learn about the detailed information: TP, TN, FP, FN and the corresponded thresholds
Y
YixinKristy 已提交
705 706

    <p align="center">
707
      <img src="https://user-images.githubusercontent.com/48054808/90879971-4e0be700-e3da-11ea-989a-777b977c271d.png" width="50%"/>
Y
YixinKristy 已提交
708 709
    </p>

710
- The targeted PR Curves can be displayed by searching tags
Y
YixinKristy 已提交
711 712

  <p align="center">
713
    <img src="https://user-images.githubusercontent.com/48054808/90880145-8e6b6500-e3da-11ea-8f06-28248ee2eb84.png" width="80%"/>
Y
YixinKristy 已提交
714 715
  </p>

716
- Developers can find specific labels by searching tags or view the all labels
Y
YixinKristy 已提交
717 718

<p align="center">
719
  <img src="https://user-images.githubusercontent.com/48054808/90880173-9fb47180-e3da-11ea-8704-34cc55c0a844.png" width="30%"/>
Y
YixinKristy 已提交
720 721
</p>

722
- Developers is able to observe the changes of PR Curves across training steps
Y
YixinKristy 已提交
723 724

  <p align="center">
725
    <img src="https://user-images.githubusercontent.com/48054808/90880301-d2f70080-e3da-11ea-97e0-952b389f8010.png" width="30%"/>
Y
YixinKristy 已提交
726 727
  </p>

728 729 730 731 732 733
- There are three measurement scales of X axis

  1. Step: number of iterations
  2. Walltime: absolute training time
  3. Relative: training time

Y
YixinKristy 已提交
734
  <p align="center">
735
    <img src="https://user-images.githubusercontent.com/48054808/90880354-eace8480-e3da-11ea-921f-20f363eb1b1d.png" width="30%"/>
Y
YixinKristy 已提交
736 737
  </p>

738
## ROC Curve
739

740
### Introduction
741

742
ROC Curve shows the performance of a classification model at all classification thresholds; the larger the area under the curve, the better the model performs, aiding developers to evaluate the model performance and choose an appropriate threshold.
743

744
### Record Interface
745

746
The interface of the PR Curve is shown as follows:
747 748 749 750 751

```python
add_roc_curve(tag, labels, predictions, step=None, num_thresholds=10)
```

752
The interface parameters are described as follows:
753

754
| parameter          | format                  | meaning                                        |
755
| -------------- | --------------------- | ------------------------------------------- |
756 757 758 759 760 761 762
| tag            | string                | Record the name of the image data,e.g.train/loss. Notice that the name cannot contain `%` |
| values         | numpy.ndarray or list | Data is in ndarray or list format, which shape should be (N, ) and value should be 0 or 1            |
| predictions    | numpy.ndarray or list | Prediction data is in ndarray or list format, which shape should be (N, ) and value should in [0, 1]             |
| step           | int                   | Record the training steps                                  |
| num_thresholds | int                   | Set the number of thresholds, default as 10, maximum as 127      |
| weights        | float                 | Set the weights of TN/FN/TP/FP to calculate precision and recall      |
| walltime       | int                   | Record the time-stamp of the data, and the default is the current time-stamp      |
763 764 765

### Demo

766
The following shows an example of how to use ROC curve component, and script can be found in [ROC Curve Demo](../../demo/components/roc_curve_test.py)
767 768 769 770 771 772 773 774 775 776 777 778 779 780

```python
from visualdl import LogWriter
import numpy as np

with LogWriter("./log/roc_curve_test/train") as writer:
    for step in range(3):
        labels = np.random.randint(2, size=100)
        predictions = np.random.rand(100)
        writer.add_roc_curve(tag='roc_curve',
                             labels=labels,
                             predictions=predictions,
                             step=step,
                             num_thresholds=5)
781

782 783
```

784
After running the above program, developers can launch the panel by:
785 786 787 788 789

```shell
visualdl --logdir ./log --port 8080
```

790
Then, open the browser and enter the address`http://127.0.0.1:8080` to view:
791 792

<p align="center">
793
  <img src="https://user-images.githubusercontent.com/48054808/103344081-8928d000-4ac8-11eb-84d0-28f249886172.gif" width="85%"/>
794 795
</p>

796
*Note: the use of ROC Curve in the frontend is the same as that of PR Curve, please refer to the instructions in PR Curve section if needed.
797

798
## High Dimensional--Data Dimensionality Reduction
799

800
### Introduction
801

802
High Dimensional projects high-dimensional data into a low dimensional space, aiding users to have an in-depth analysis of the relationship between high-dimensional data. Three dimensionality reduction algorithms are supported:
803

804 805 806
 - PCA : Principle Component Analysis 
 - t-SNE : t-distributed Stochastic Neighbor Embedding 
 - umap: Uniform Manifold Approximation and Projection
807

808
### Record Interface
809

810
The interface of the High Dimensional is shown as follows:
811 812 813 814

```python
add_embeddings(tag, labels, hot_vectors, walltime=None)
```
815 816 817 818 819 820 821 822
The interface parameters are described as follows:
| parameter   | format              | meaning                                                      |
| ----------- | ------------------- | ------------------------------------------------------------ |
| tag         | string              | Record the name of the high dimensional data, e.g.`default`. Notice that the name cannot contain `%` |
| labels      | numpy.array or list | Represents the label of hot_vectors. The shape of `labels` should be (N, ) if only one dimension, and should be (M, N) if dimension of `labels` more than one, where each element is a one-dimensional label array. Each element is string type. |
| hot_vectors | numpy.array or list | Each element can be seen as a feature of the tag corresponding to the label. |
| labels_meta | numpy.array or list | The labels of parameter `labels` correspond to `labels` one-to-one. If not specified, the default value `__metadata__` will be used. When parameter `labels` is a one-dimensional array, there is no need to specify this parameter  |
| walltime    | int                 | Record the time stamp of the data, the default is the current time stamp. |
823

Y
YixinKristy 已提交
824
### Demo
825
The following shows an example of how to use High Dimensional component, and script can be found in [High Dimensional Demo](../../demo/components/high_dimensional_test.py)
826 827 828 829 830 831 832 833 834 835 836 837 838
```python
from visualdl import LogWriter


if __name__ == '__main__':
    hot_vectors = [
        [1.3561076367500755, 1.3116267195134017, 1.6785401875616097],
        [1.1039614644440658, 1.8891609992484688, 1.32030488587171],
        [1.9924524852447711, 1.9358920727142739, 1.2124401279391606],
        [1.4129542689796446, 1.7372166387197474, 1.7317806077076527],
        [1.3913371800587777, 1.4684674577930312, 1.5214136352476377]]

    labels = ["label_1", "label_2", "label_3", "label_4", "label_5"]
839
    # initialize a recorder
840
    with LogWriter(logdir="./log/high_dimensional_test/train") as writer:
841
        # recorde a set of labels and corresponding hot_vectors to the recorder 
842 843 844 845
        writer.add_embeddings(tag='default',
                              labels=labels,
                              hot_vectors=hot_vectors)
```
846
After running the above program, developers can launch the panel by:
847 848 849 850
```shell
visualdl --logdir ./log --port 8080
```

851
Then, open the browser and enter the address`http://127.0.0.1:8080` to view:
852 853

<p align="center">
854
  <img src="https://user-images.githubusercontent.com/48054808/103188111-1b32ac00-4902-11eb-914e-c2368bdb8373.gif" width="85%"/>
855
</p>
Y
YixinKristy 已提交
856

857
### Functional Instrucions
Y
YixinKristy 已提交
858

859
* Developers are allowed to select specific runs of data or certain labels of data to display
Y
YixinKristy 已提交
860 861

  <p align="center">
862
    <img src="https://user-images.githubusercontent.com/48054808/103191809-4e306c00-4911-11eb-853f-e143ef86e182.png" width="30%"/>
Y
YixinKristy 已提交
863 864
  </p>

865
* TSNE
Y
YixinKristy 已提交
866 867

  <p align="center">
868
    <img src="https://user-images.githubusercontent.com/48054808/103192762-cea49c00-4914-11eb-896c-070b0bf0e2ea.png" width="27%"/>
Y
YixinKristy 已提交
869 870
  </p>

871
* PCA
Y
YixinKristy 已提交
872 873

  <p align="center">
874
    <img src="https://user-images.githubusercontent.com/48054808/103192341-47a2f400-4913-11eb-9995-fdc0acadbdc9.png" width="27%"/>
Y
YixinKristy 已提交
875 876
  </p>

877
* UMAP
Y
YixinKristy 已提交
878 879

  <p align="center">
880
    <img src="https://user-images.githubusercontent.com/48054808/103192766-d2d0b980-4914-11eb-871e-e4b31542c5e9.png" width="27%"/>
Y
YixinKristy 已提交
881
  </p>
882

走神的阿圆's avatar
走神的阿圆 已提交
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
## HyperParameters--HyperParameter Visualization

### Introduction

HyperParameters visualize the relationship between hyperparameters and model metrics (such as accuracy and loss) in a rich view, helping you identify the best hyperparameters in an efficient way.

### Record Interface

The interface of the HyperParameters is slightly different from other components'. Firstly, you need to use the `add_hparams` to record the hyperparameter data(`hparams_dict`) and specify the name of the metrics(`metrics_list`). Then, for the metrics you just added, you need to record those metrics values by using `add_scalar`. In this way you can get all data for HpyerParameters Visualization.

```python
add_hparams(hparam_dict, metric_list, walltime=None):
```
The interface parameters are described as follows:
| parameter   | format              | meaning     |
| ----------- | ------------------- | ---------------------------------- |
| hparam_dict |       dict          | name and data of hparams.          |
| metric_list |       list          | The metrics name to be recorded later corresponds to the `tag` parameter in the `add_scalar` interface, and VisualDL corresponds to the indicator data through the `tag`. |
| walltime    |       int           | Record the time stamp of the data, the default is the current time stamp.  |

### Demo
The following shows an example of how to use HyperParameters component, and script can be found in [HyperParameters Demo](https://github.com/PaddlePaddle/VisualDL/blob/develop/demo/components/hparams_test.py)
```python
from visualdl import LogWriter

# This demo demonstrates the hyperparameter records of two experiments. Take the first
# experiment data as an example, First, record the data of the hyperparameter `hparams`
# in the `add_hparams` interface. Then specify the name of `metrics` to be recorded later.
# Finally, use `add_scalar` to specifically record the data of `metrics`. Note that the
# `metrics_list` parameter in the `add_hparams` interface needs to include the `tag`
# parameter of the `add_scalar` interface.
if __name__ == '__main__':
    # Record the data of the first experiment
    with LogWriter('./log/hparams_test/train/run1') as writer:
        # Record the value of `hparams` and the name of `metrics`
        writer.add_hparams(hparams_dict={'lr': 0.1, 'bsize': 1, 'opt': 'sgd'},
                           metrics_list=['hparam/accuracy', 'hparam/loss'])
        # Record the metrics values ​​of different steps in an experiment by matching
        # the `tag` in the `add_scalar` interface with `metrics_list` in `add_hparams` interface.
        for i in range(10):
            writer.add_scalar(tag='hparam/accuracy', value=i, step=i)
            writer.add_scalar(tag='hparam/loss', value=2*i, step=i)

    # Record the data of the second experiment
    with LogWriter('./log/hparams_test/train/run2') as writer:
        # Record the value of `hparams` and the name of `metrics`
        writer.add_hparams(hparams_dict={'lr': 0.2, 'bsize': 2, 'opt': 'relu'},
                           metrics_list=['hparam/accuracy', 'hparam/loss'])
        # Record the metrics values ​​of different steps in an experiment by matching
        # the `tag` in the `add_scalar` interface with `metrics_list` in `add_hparams` interface.
        for i in range(10):
            writer.add_scalar(tag='hparam/accuracy', value=1.0/(i+1), step=i)
            writer.add_scalar(tag='hparam/loss', value=5*i, step=i)
```
After running the above program, developers can launch the panel by:
```shell
visualdl --logdir ./log --port 8080
```

Then, open the browser and enter the address`http://127.0.0.1:8080` to view:

<p align="center">
<img src="https://user-images.githubusercontent.com/28444161/119247155-e9c0c280-bbb9-11eb-8175-58a9c7657a9c.gif" width="85%"/>
</p>

### Functional Instrucions

* Table View
  - The table view can be displayed in a sorted order.
  - Trial ID represents a specific experiment name, the column name displayed in other normal fonts is the hyperparameter name, and the column displayed in bold font is the metric name.
  - The position of hyperparameters and metrics can be customized by dragging.
  - The column width of the table view can be adjusted by dragging.
  - You can click to expand to view the scalar of the metrics.

  <p align="center">
    <img src="https://user-images.githubusercontent.com/28444161/119219705-75364700-bb19-11eb-9077-064337ae95be.png" width="85%"/>
  </p>

* Parallel Coordinates View
  - The specific values ​​of hyperparameters and metrics in a certain set of experiments can be displayed by hovering.
  - Scalar of the metrics in this group of experiments can be displayed by selecting a certain curve.

  <p align="center">
    <img src="https://user-images.githubusercontent.com/28444161/119221098-440d4500-bb20-11eb-8b26-d29f95147c04.png" width="85%"/>
  </p>

* Scatter Plot Matrix View
  - The specific values ​​of hyperparameters and metrics in a certain set of experiments can be displayed by hovering.
  - Scalar of the metrics in this group of experiments can be displayed by selecting a certain point.

  <p align="center">
    <img src="https://user-images.githubusercontent.com/28444161/119221108-54252480-bb20-11eb-9a8f-1d082c36402b.png" width="85%"/>
  </p>

* Scalar of Metrics
  - Can be viewed in table view, parallel coordinates view and scatter plot matrix view.
  - Scalar of the metrics viewed here can also be viewed under the `SCALARS` board.

  <p align="center">
    <img src="https://user-images.githubusercontent.com/28444161/119221127-6901b800-bb20-11eb-84f0-407bd7241bc7.png" width="85%"/>
  </p>

* Hyperparameter/metric range selection
  - Display part of the data by selecting the range of hyperparameters or metrics.

  <p align="center">
    <img src="https://user-images.githubusercontent.com/28444161/119221141-78810100-bb20-11eb-9e06-5b345459310a.png" width="20%"/>
  </p>

* download data
  - Two formats can be selected, CSV or TSV.

  <p align="center">
    <img src="https://user-images.githubusercontent.com/28444161/119221157-8b93d100-bb20-11eb-9c9e-7540b3cb92a1.png" width="20%"/>
  </p>
998

999 1000
## VDL.service

1001
### Introduction
1002

1003
VDL.service enables developers to easily save, track and share visualization results with anyone for free.
1004

1005
### Usage Steps
1006

1007
1. Make sure that your get the lastest version of VisualDL, if not, please update by:
1008 1009 1010 1011 1012 1013

```
pip install visualdl --upgrade

```

1014
2. Upload log/model to save, track and share the visualization results.
1015 1016 1017 1018 1019 1020

```
visualdl service upload --logdir ./log \
                        --model ./__model__
```                       
                       
1021
3. An unique URL will be given. Then you can view the visualization results by simply copying and pasting the URL to the browser. 
1022 1023 1024 1025 1026 1027

  <p align="center">
    <img src="https://user-images.githubusercontent.com/48054808/93733769-5ccc0080-fc09-11ea-88c0-6f17c04ebdce.png" width="100%"/>
  </p>
  
   <p align="center">
1028
    <img src="https://user-images.githubusercontent.com/48054808/93734496-057b5f80-fc0c-11ea-9b52-229ff8847bc0.png" width="100%"/>
1029
  </p>