README.md 9.8 KB
Newer Older
1 2


Y
YixinKristy 已提交
3 4 5 6 7 8 9 10
# VisualDL 使用指南

### 概述

VisualDL 是一个面向深度学习任务设计的可视化工具。VisualDL 利用了丰富的图表来展示数据,用户可以更直观、清晰地查看数据的特征与变化趋势,有助于分析数据、及时发现错误,进而改进神经网络模型的设计。

目前,VisualDL 支持 scalar, image, high dimensional 三个组件,项目正处于高速迭代中,敬请期待新组件的加入。

11 12 13 14
|                               组件名称                               |  展示图表  |                               作用                                |
| :------------------------------------------------------------------: | :--------: | :---------------------------------------------------------------- |
|            <a href="#1">[Scalar](#Scalar--折线图组件)</a>            |   折线图   | 动态展示损失函数值、准确率等标量数据                              |
|           <a href="#3">[Image](#Image--图片可视化组件)</a>           | 图片可视化 | 显示图片,可显示输入图片和处理后的结果,便于查看中间过程的变化    |
Y
YixinKristy 已提交
15
| <a href="#6">[High Dimensional](#High-Dimensional--数据降维组件)</a> |  数据降维  | 将高维数据映射到 2D/3D 空间来可视化嵌入,便于观察不同数据的相关性 |
Y
YixinKristy 已提交
16 17


18

Y
YixinKristy 已提交
19
## Scalar--折线图组件
20 21 22

### 介绍

Y
YixinKristy 已提交
23
Scalar 组件的输入数据类型为标量,该组件的作用是将训练参数以折线图形式呈现。将损失函数值、准确率等标量数据作为参数传入 scalar 组件,即可画出折线图,便于观察变化趋势。
24 25 26 27 28 29 30 31 32

### 记录接口

Scalar 组件的记录接口如下:

```python
add_scalar(tag, value, step, walltime=None)
```
接口参数说明如下:
33 34 35 36 37 38
|   参数   |  格式  |                    含义                     |
| -------- | ------ | ------------------------------------------- |
| tag      | string | 记录指标的标志,如`train/loss`,不能含有`%` |
| value    | float  | 要记录的数据值                              |
| step     | int    | 记录的步数                                  |
| walltime | int    | 记录数据的时间戳,默认为当前时间戳          |
39

Y
YixinKristy 已提交
40
### Demo
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
下面展示了使用 Scalar 组件记录数据的示例,代码见[Scalar组件](../../demo/components/scalar_test.py)
```python
from visualdl import LogWriter

if __name__ == '__main__':
    value = [i/1000.0 for i in range(1000)]
    # 初始化一个记录器
    with LogWriter(logdir="./log/scalar_test/train") as writer:
        for step in range(1000):
            # 向记录器添加一个tag为`acc`的数据
            writer.add_scalar(tag="acc", step=step, value=value[step])
            # 向记录器添加一个tag为`loss`的数据
            writer.add_scalar(tag="loss", step=step, value=1/(value[step] + 1))
```
运行上述程序后,在命令行执行
```shell
visualdl --logdir ./log --port 8080
```

接着在浏览器打开`http://127.0.0.1:8080`,即可查看以下折线图。

<p align="center">
Y
YixinKristy 已提交
63
  <img src="https://user-images.githubusercontent.com/48054808/82397559-478c6d00-9a83-11ea-80db-a0844dcaca35.png" width="100%"/>
Y
YixinKristy 已提交
64 65 66 67 68 69 70 71 72
</p>



### 功能操作说明

* 支持数据卡片「最大化」、「还原」、「坐标系转化」(y轴对数坐标)、「下载」折线图

<p align="center">
73
  <img src="https://visualdl.bj.bcebos.com/images/scalar-icon.png" width="55%"/>
Y
YixinKristy 已提交
74 75 76 77 78 79 80
</p>



* 数据点Hover展示详细信息

<p align="center">
81
  <img src="https://visualdl.bj.bcebos.com/images/scalar-tooltip.png" width="60%"/>
Y
YixinKristy 已提交
82 83 84 85 86 87 88
</p>



* 可搜索卡片标签,展示目标图像

<p align="center">
89
  <img src="https://visualdl.bj.bcebos.com/images/scalar-searchlabel.png" width="90%"/>
Y
YixinKristy 已提交
90 91 92 93 94 95 96
</p>



* 可搜索打点数据标签,展示特定数据

<p align="center">
97
  <img src="https://visualdl.bj.bcebos.com/images/scalar-searchstream.png" width="40%"/>
Y
YixinKristy 已提交
98 99 100 101 102 103 104 105 106 107
</p>


* X轴有三种衡量尺度

1. Step:迭代次数
2. Walltime:训练绝对时间
3. Relative:训练时长

<p align="center">
108
  <img src="https://visualdl.bj.bcebos.com/images/x-axis.png" width="40%"/>
Y
YixinKristy 已提交
109 110 111 112
</p>
* 可调整曲线平滑度,以便更好的展现参数整体的变化趋势

<p align="center">
113
  <img src="https://visualdl.bj.bcebos.com/images/scalar-smooth.png" width="37%"/>
114 115 116
</p>


Y
YixinKristy 已提交
117
## Image--图片可视化组件
118 119 120

### 介绍

Y
YixinKristy 已提交
121
Image 组件用于显示图片数据随训练的变化。在模型训练过程中,将图片数据传入 Image 组件,就可在 VisualDL 的前端网页查看相应图片。
122 123 124 125 126 127 128 129 130

### 记录接口

Image 组件的记录接口如下:

```python
add_image(tag, img, step, walltime=None)
```
接口参数说明如下:
131 132 133 134 135 136
|   参数   |     格式      |                    含义                     |
| -------- | ------------- | ------------------------------------------- |
| tag      | string        | 记录指标的标志,如`train/loss`,不能含有`%` |
| img      | numpy.ndarray | 以ndarray格式表示的图片                     |
| step     | int           | 记录的步数                                  |
| walltime | int           | 记录数据的时间戳,默认为当前时间戳          |
137

Y
YixinKristy 已提交
138 139
### Demo
下面展示了使用 Image 组件记录数据的示例,代码文件请见[Image组件](../../demo/components/image_test.py)
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
```python
import numpy as np
from PIL import Image
from visualdl import LogWriter


def random_crop(img):
    """获取图片的随机 100x100 分片
    """
    img = Image.open(img)
    w, h = img.size
    random_w = np.random.randint(0, w - 100)
    random_h = np.random.randint(0, h - 100)
    r = img.crop((random_w, random_h, random_w + 100, random_h + 100))
    return np.asarray(r)


if __name__ == '__main__':
    # 初始化一个记录器
    with LogWriter(logdir="./log/image_test/train") as writer:
        for step in range(6):
            # 添加一个图片数据
            writer.add_image(tag="doge",
Y
YixinKristy 已提交
163
                             img=random_crop("../../docs/images/eye.jpg"),
164 165 166 167 168 169 170
                             step=step)
```
运行上述程序后,在命令行执行
```shell
visualdl --logdir ./log --port 8080
```

Y
YixinKristy 已提交
171 172 173
在浏览器输入`http://127.0.0.1:8080`,即可查看图片数据。

<p align="center">
Y
YixinKristy 已提交
174
  <img src="https://user-images.githubusercontent.com/48054808/82397685-86babe00-9a83-11ea-870e-502f313bdc7c.png" width="90%"/>
Y
YixinKristy 已提交
175 176 177 178 179 180 181 182
</p>


### 功能操作说明

可搜索图片标签显示对应图片数据

<p align="center">
183
  <img src="https://visualdl.bj.bcebos.com/images/image-search.png" width="90%"/>
Y
YixinKristy 已提交
184 185 186 187
</p>


支持滑动Step/迭代次数查看不同迭代次数下的图片数据
188 189

<p align="center">
190
  <img src="https://visualdl.bj.bcebos.com/images/image-eye.gif" width="60%"/>
191 192 193
</p>


Y
YixinKristy 已提交
194
## High Dimensional--数据降维组件
195 196 197

### 介绍

Y
YixinKristy 已提交
198
High Dimensional 组件将高维数据进行降维展示,用于深入分析高维数据间的关系。目前支持以下两种降维算法:
199 200 201 202 203 204 205 206 207 208 209 210

 - PCA : Principle Component Analysis 主成分分析
 - t-SNE : t-distributed stochastic neighbor embedding t-分布式随机领域嵌入

### 记录接口

High Dimensional 组件的记录接口如下:

```python
add_embeddings(tag, labels, hot_vectors, walltime=None)
```
接口参数说明如下:
211 212 213 214 215 216
|    参数     |        格式         |                         含义                         |
| ----------- | ------------------- | ---------------------------------------------------- |
| tag         | string              | 记录指标的标志,如`default`,不能含有`%`             |
| labels      | numpy.array 或 list | 一维数组表示的标签,每个元素是一个string类型的字符串 |
| hot_vectors | numpy.array or list | 与labels一一对应,每个元素可以看作是某个标签的特征   |
| walltime    | int                 | 记录数据的时间戳,默认为当前时间戳                   |
217

Y
YixinKristy 已提交
218
### Demo
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
下面展示了使用 High Dimensional 组件记录数据的示例,代码见[High Dimensional组件](../../demo/components/high_dimensional_test.py)
```python
from visualdl import LogWriter


if __name__ == '__main__':
    hot_vectors = [
        [1.3561076367500755, 1.3116267195134017, 1.6785401875616097],
        [1.1039614644440658, 1.8891609992484688, 1.32030488587171],
        [1.9924524852447711, 1.9358920727142739, 1.2124401279391606],
        [1.4129542689796446, 1.7372166387197474, 1.7317806077076527],
        [1.3913371800587777, 1.4684674577930312, 1.5214136352476377]]

    labels = ["label_1", "label_2", "label_3", "label_4", "label_5"]
    # 初始化一个记录器
    with LogWriter(logdir="./log/high_dimensional_test/train") as writer:
        # 将一组labels和对应的hot_vectors传入记录器进行记录
        writer.add_embeddings(tag='default',
                              labels=labels,
                              hot_vectors=hot_vectors)
```
运行上述程序后,在命令行执行
```shell
visualdl --logdir ./log --port 8080
```

接着在浏览器打开`http://127.0.0.1:8080`,即可查看降维后的可视化数据。

<p align="center">
248
  <img src="https://visualdl.bj.bcebos.com/images/dynamic_high_dimensional.gif" width="80%"/>
249
</p>
Y
YixinKristy 已提交
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275

### 功能操作说明

* 支持展示特定打点数据

  <p align="center">
    <img src="https://user-images.githubusercontent.com/48054808/83006541-f6f9ae80-a044-11ea-82d9-03f1c99a310a.png" width="30%"/>
  </p>

* 可搜索展示特定数据标签或展示所有数据标签

  <p align="center">
    <img src="https://user-images.githubusercontent.com/48054808/83006580-0842bb00-a045-11ea-9f7b-776f80ae8b90.png" width="30%"/>
  </p>

* 支持「二维」或「三维」展示高维数据分布

  <p align="center">
    <img src="https://user-images.githubusercontent.com/48054808/83006687-2f998800-a045-11ea-888e-2b59e16a92b9.png" width="27%"/>
  </p>

* 可选择「PCA」或「T-SNE」作为降维方式

  <p align="center">
    <img src="https://user-images.githubusercontent.com/48054808/83006747-3fb16780-a045-11ea-83e0-a314b7765108.png" width="27%"/>
  </p>