__init__.py 14.1 KB
Newer Older
G
guru4elephant 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
# pylint: disable=doc-string-missing
G
guru4elephant 已提交
15

M
MRXLT 已提交
16 17
import paddle_serving_client
import os
18 19 20
from .proto import sdk_configure_pb2 as sdk
from .proto import general_model_config_pb2 as m_config
import google.protobuf.text_format
D
dongdaxiang 已提交
21 22
import numpy as np
import time
23
import sys
G
guru4elephant 已提交
24

G
guru4elephant 已提交
25 26 27
int_type = 0
float_type = 1

M
MRXLT 已提交
28

W
WangXi 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
class _NOPProfiler(object):
    def record(self, name):
        pass

    def print_profile(self):
        pass


class _TimeProfiler(object):
    def __init__(self):
        self.pid = os.getpid()
        self.print_head = 'PROFILE\tpid:{}\t'.format(self.pid)
        self.time_record = [self.print_head]

    def record(self, name):
        self.time_record.append('{}:{} '.format(
            name, int(round(time.time() * 1000000))))

    def print_profile(self):
        self.time_record.append('\n')
        sys.stderr.write(''.join(self.time_record))
        self.time_record = [self.print_head]


_is_profile = int(os.environ.get('FLAGS_profile_client', 0))
_Profiler = _TimeProfiler if _is_profile else _NOPProfiler


G
guru4elephant 已提交
57 58 59
class SDKConfig(object):
    def __init__(self):
        self.sdk_desc = sdk.SDKConf()
60 61 62
        self.tag_list = []
        self.cluster_list = []
        self.variant_weight_list = []
G
guru4elephant 已提交
63

64 65 66 67
    def add_server_variant(self, tag, cluster, variant_weight):
        self.tag_list.append(tag)
        self.cluster_list.append(cluster)
        self.variant_weight_list.append(variant_weight)
G
guru4elephant 已提交
68 69 70 71 72 73 74

    def gen_desc(self):
        predictor_desc = sdk.Predictor()
        predictor_desc.name = "general_model"
        predictor_desc.service_name = \
            "baidu.paddle_serving.predictor.general_model.GeneralModelService"
        predictor_desc.endpoint_router = "WeightedRandomRender"
75 76
        predictor_desc.weighted_random_render_conf.variant_weight_list = "|".join(
            self.variant_weight_list)
G
guru4elephant 已提交
77

78 79 80 81 82 83
        for idx, tag in enumerate(self.tag_list):
            variant_desc = sdk.VariantConf()
            variant_desc.tag = tag
            variant_desc.naming_conf.cluster = "list://{}".format(",".join(
                self.cluster_list[idx]))
            predictor_desc.variants.extend([variant_desc])
G
guru4elephant 已提交
84 85 86 87 88 89 90 91 92 93

        self.sdk_desc.predictors.extend([predictor_desc])
        self.sdk_desc.default_variant_conf.tag = "default"
        self.sdk_desc.default_variant_conf.connection_conf.connect_timeout_ms = 2000
        self.sdk_desc.default_variant_conf.connection_conf.rpc_timeout_ms = 20000
        self.sdk_desc.default_variant_conf.connection_conf.connect_retry_count = 2
        self.sdk_desc.default_variant_conf.connection_conf.max_connection_per_host = 100
        self.sdk_desc.default_variant_conf.connection_conf.hedge_request_timeout_ms = -1
        self.sdk_desc.default_variant_conf.connection_conf.hedge_fetch_retry_count = 2
        self.sdk_desc.default_variant_conf.connection_conf.connection_type = "pooled"
M
MRXLT 已提交
94

G
guru4elephant 已提交
95 96 97 98 99 100 101 102
        self.sdk_desc.default_variant_conf.naming_conf.cluster_filter_strategy = "Default"
        self.sdk_desc.default_variant_conf.naming_conf.load_balance_strategy = "la"

        self.sdk_desc.default_variant_conf.rpc_parameter.compress_type = 0
        self.sdk_desc.default_variant_conf.rpc_parameter.package_size = 20
        self.sdk_desc.default_variant_conf.rpc_parameter.protocol = "baidu_std"
        self.sdk_desc.default_variant_conf.rpc_parameter.max_channel_per_request = 3

G
guru4elephant 已提交
103
        return self.sdk_desc
G
guru4elephant 已提交
104

G
guru4elephant 已提交
105 106 107 108 109 110

class Client(object):
    def __init__(self):
        self.feed_names_ = []
        self.fetch_names_ = []
        self.client_handle_ = None
111
        self.result_handle_ = None
M
MRXLT 已提交
112
        self.feed_shapes_ = {}
G
guru4elephant 已提交
113
        self.feed_types_ = {}
G
guru4elephant 已提交
114
        self.feed_names_to_idx_ = {}
M
MRXLT 已提交
115
        self.pid = os.getpid()
B
barrierye 已提交
116
        self.predictor_sdk_ = None
G
guru4elephant 已提交
117 118
        self.producers = []
        self.consumer = None
W
WangXi 已提交
119
        self.profile_ = _Profiler()
M
MRXLT 已提交
120 121
        self.all_numpy_input = True
        self.has_numpy_input = False
M
MRXLT 已提交
122

G
guru4elephant 已提交
123
    def load_client_config(self, path):
M
MRXLT 已提交
124
        from .serving_client import PredictorClient
125
        from .serving_client import PredictorRes
126 127 128 129 130
        model_conf = m_config.GeneralModelConfig()
        f = open(path, 'r')
        model_conf = google.protobuf.text_format.Merge(
            str(f.read()), model_conf)

G
guru4elephant 已提交
131 132 133 134
        # load configuraion here
        # get feed vars, fetch vars
        # get feed shapes, feed types
        # map feed names to index
135
        self.result_handle_ = PredictorRes()
G
guru4elephant 已提交
136 137
        self.client_handle_ = PredictorClient()
        self.client_handle_.init(path)
M
bug fix  
MRXLT 已提交
138 139
        if "FLAGS_max_body_size" not in os.environ:
            os.environ["FLAGS_max_body_size"] = str(512 * 1024 * 1024)
M
MRXLT 已提交
140
        read_env_flags = ["profile_client", "profile_server", "max_body_size"]
M
MRXLT 已提交
141 142
        self.client_handle_.init_gflags([sys.argv[
            0]] + ["--tryfromenv=" + ",".join(read_env_flags)])
143 144
        self.feed_names_ = [var.alias_name for var in model_conf.feed_var]
        self.fetch_names_ = [var.alias_name for var in model_conf.fetch_var]
G
guru4elephant 已提交
145
        self.feed_names_to_idx_ = {}
G
guru4elephant 已提交
146 147
        self.fetch_names_to_type_ = {}
        self.fetch_names_to_idx_ = {}
M
MRXLT 已提交
148
        self.lod_tensor_set = set()
M
MRXLT 已提交
149
        self.feed_tensor_len = {}
150

151 152 153
        for i, var in enumerate(model_conf.feed_var):
            self.feed_names_to_idx_[var.alias_name] = i
            self.feed_types_[var.alias_name] = var.feed_type
M
MRXLT 已提交
154
            self.feed_shapes_[var.alias_name] = var.shape
M
MRXLT 已提交
155

M
MRXLT 已提交
156 157
            if var.is_lod_tensor:
                self.lod_tensor_set.add(var.alias_name)
M
MRXLT 已提交
158 159 160 161 162
            else:
                counter = 1
                for dim in self.feed_shapes_[var.alias_name]:
                    counter *= dim
                self.feed_tensor_len[var.alias_name] = counter
G
guru4elephant 已提交
163 164 165
        for i, var in enumerate(model_conf.fetch_var):
            self.fetch_names_to_idx_[var.alias_name] = i
            self.fetch_names_to_type_[var.alias_name] = var.fetch_type
166 167
            if var.is_lod_tensor:
                self.lod_tensor_set.add(var.alias_name)
G
guru4elephant 已提交
168 169
        return

170
    def add_variant(self, tag, cluster, variant_weight):
B
barrierye 已提交
171 172
        if self.predictor_sdk_ is None:
            self.predictor_sdk_ = SDKConfig()
173 174 175
        self.predictor_sdk_.add_server_variant(tag, cluster,
                                               str(variant_weight))

B
barrierye 已提交
176
    def connect(self, endpoints=None):
G
guru4elephant 已提交
177 178 179
        # check whether current endpoint is available
        # init from client config
        # create predictor here
B
barrierye 已提交
180 181 182 183 184 185 186
        if endpoints is None:
            if self.predictor_sdk_ is None:
                raise SystemExit(
                    "You must set the endpoints parameter or use add_variant function to create a variant."
                )
        else:
            if self.predictor_sdk_ is None:
187
                self.add_variant('default_tag_{}'.format(id(self)), endpoints,
188
                                 100)
B
barrierye 已提交
189 190
            else:
                print(
191
                    "parameter endpoints({}) will not take effect, because you use the add_variant function.".
B
barrierye 已提交
192
                    format(endpoints))
193
        sdk_desc = self.predictor_sdk_.gen_desc()
M
MRXLT 已提交
194 195
        self.client_handle_.create_predictor_by_desc(sdk_desc.SerializeToString(
        ))
G
guru4elephant 已提交
196 197 198 199 200 201 202

    def get_feed_names(self):
        return self.feed_names_

    def get_fetch_names(self):
        return self.fetch_names_

M
MRXLT 已提交
203 204 205
    def shape_check(self, feed, key):
        if key in self.lod_tensor_set:
            return
M
MRXLT 已提交
206 207 208 209 210 211
        if isinstance(feed[key],
                      list) and len(feed[key]) != self.feed_tensor_len[key]:
            raise SystemExit("The shape of feed tensor {} not match.".format(
                key))
        if type(feed[key]).__module__ == np.__name__ and np.size(feed[
                key]) != self.feed_tensor_len[key]:
M
MRXLT 已提交
212 213 214
            raise SystemExit("The shape of feed tensor {} not match.".format(
                key))

215
    def predict(self, feed=None, fetch=None, need_variant_tag=False):
W
WangXi 已提交
216 217
        self.profile_.record('py_prepro_0')

G
guru4elephant 已提交
218 219 220
        if feed is None or fetch is None:
            raise ValueError("You should specify feed and fetch for prediction")

221 222 223 224 225 226
        fetch_list = []
        if isinstance(fetch, str):
            fetch_list = [fetch]
        elif isinstance(fetch, list):
            fetch_list = fetch
        else:
M
MRXLT 已提交
227
            raise ValueError("Fetch only accepts string and list of string")
228 229 230 231 232 233 234

        feed_batch = []
        if isinstance(feed, dict):
            feed_batch.append(feed)
        elif isinstance(feed, list):
            feed_batch = feed
        else:
M
MRXLT 已提交
235
            raise ValueError("Feed only accepts dict and list of dict")
G
guru4elephant 已提交
236

M
MRXLT 已提交
237 238 239 240
        int_slot_batch = []
        float_slot_batch = []
        int_feed_names = []
        float_feed_names = []
D
dongdaxiang 已提交
241 242
        int_shape = []
        float_shape = []
M
MRXLT 已提交
243
        fetch_names = []
M
MRXLT 已提交
244
        counter = 0
M
MRXLT 已提交
245
        batch_size = len(feed_batch)
246 247 248 249 250 251 252

        for key in fetch_list:
            if key in self.fetch_names_:
                fetch_names.append(key)

        if len(fetch_names) == 0:
            raise ValueError(
M
MRXLT 已提交
253
                "Fetch names should not be empty or out of saved fetch list.")
254 255
            return {}

G
guru4elephant 已提交
256
        for i, feed_i in enumerate(feed_batch):
M
MRXLT 已提交
257 258
            int_slot = []
            float_slot = []
259
            for key in feed_i:
M
MRXLT 已提交
260
                if key not in self.feed_names_:
M
MRXLT 已提交
261
                    raise ValueError("Wrong feed name: {}.".format(key))
M
MRXLT 已提交
262 263
                #if not isinstance(feed_i[key], np.ndarray):
                self.shape_check(feed_i, key)
M
MRXLT 已提交
264
                if self.feed_types_[key] == int_type:
G
guru4elephant 已提交
265
                    if i == 0:
M
MRXLT 已提交
266
                        int_feed_names.append(key)
D
dongdaxiang 已提交
267
                        if isinstance(feed_i[key], np.ndarray):
268
                            int_shape.append(list(feed_i[key].shape))
D
dongdaxiang 已提交
269 270
                        else:
                            int_shape.append(self.feed_shapes_[key])
D
dongdaxiang 已提交
271
                    if isinstance(feed_i[key], np.ndarray):
M
MRXLT 已提交
272
                        int_slot.append(feed_i[key])
M
MRXLT 已提交
273
                        self.has_numpy_input = True
D
dongdaxiang 已提交
274 275
                    else:
                        int_slot.append(feed_i[key])
M
MRXLT 已提交
276
                        self.all_numpy_input = False
M
MRXLT 已提交
277
                elif self.feed_types_[key] == float_type:
G
guru4elephant 已提交
278
                    if i == 0:
M
MRXLT 已提交
279
                        float_feed_names.append(key)
D
dongdaxiang 已提交
280
                        if isinstance(feed_i[key], np.ndarray):
281
                            float_shape.append(list(feed_i[key].shape))
D
dongdaxiang 已提交
282 283
                        else:
                            float_shape.append(self.feed_shapes_[key])
D
dongdaxiang 已提交
284
                    if isinstance(feed_i[key], np.ndarray):
M
MRXLT 已提交
285
                        float_slot.append(feed_i[key])
M
MRXLT 已提交
286
                        self.has_numpy_input = True
D
dongdaxiang 已提交
287 288
                    else:
                        float_slot.append(feed_i[key])
M
MRXLT 已提交
289
                        self.all_numpy_input = False
M
MRXLT 已提交
290 291 292
            int_slot_batch.append(int_slot)
            float_slot_batch.append(float_slot)

W
WangXi 已提交
293 294 295
        self.profile_.record('py_prepro_1')
        self.profile_.record('py_client_infer_0')

M
MRXLT 已提交
296
        result_batch = self.result_handle_
M
MRXLT 已提交
297
        if self.all_numpy_input:
M
MRXLT 已提交
298 299 300
            res = self.client_handle_.numpy_predict(
                float_slot_batch, float_feed_names, float_shape, int_slot_batch,
                int_feed_names, int_shape, fetch_names, result_batch, self.pid)
M
MRXLT 已提交
301
        elif self.has_numpy_input == False:
M
MRXLT 已提交
302 303 304
            res = self.client_handle_.batch_predict(
                float_slot_batch, float_feed_names, float_shape, int_slot_batch,
                int_feed_names, int_shape, fetch_names, result_batch, self.pid)
M
MRXLT 已提交
305 306 307 308
        else:
            raise SystemExit(
                "Please make sure the inputs are all in list type or all in numpy.array type"
            )
M
MRXLT 已提交
309

W
WangXi 已提交
310 311 312
        self.profile_.record('py_client_infer_1')
        self.profile_.record('py_postpro_0')

313 314 315
        if res == -1:
            return None

B
barrierye 已提交
316
        multi_result_map = []
B
barrierye 已提交
317 318
        model_engine_names = result_batch.get_engine_names()
        for mi, engine_name in enumerate(model_engine_names):
B
barrierye 已提交
319
            result_map = {}
B
barrierye 已提交
320
            # result map needs to be a numpy array
B
barrierye 已提交
321 322
            for i, name in enumerate(fetch_names):
                if self.fetch_names_to_type_[name] == int_type:
B
barrierye 已提交
323
                    # result_map[name] will be py::array(numpy array)
B
barrierye 已提交
324
                    result_map[name] = result_batch.get_int64_by_name(mi, name)
B
barrierye 已提交
325 326 327
                    shape = result_batch.get_shape(mi, name)
                    result_map[name].shape = shape
                    if name in self.lod_tensor_set:
M
MRXLT 已提交
328 329
                        result_map["{}.lod".format(name)] = np.array(
                            result_batch.get_lod(mi, name))
B
barrierye 已提交
330
                elif self.fetch_names_to_type_[name] == float_type:
B
barrierye 已提交
331
                    result_map[name] = result_batch.get_float_by_name(mi, name)
B
barrierye 已提交
332 333 334
                    shape = result_batch.get_shape(mi, name)
                    result_map[name].shape = shape
                    if name in self.lod_tensor_set:
M
MRXLT 已提交
335 336
                        result_map["{}.lod".format(name)] = np.array(
                            result_batch.get_lod(mi, name))
B
barrierye 已提交
337
            multi_result_map.append(result_map)
B
barrierye 已提交
338 339
        ret = None
        if len(model_engine_names) == 1:
B
barrierye 已提交
340 341
            # If only one model result is returned, the format of ret is result_map
            ret = multi_result_map[0]
G
guru4elephant 已提交
342
        else:
B
barrierye 已提交
343 344 345 346 347 348
            # If multiple model results are returned, the format of ret is {name: result_map}
            ret = {
                engine_name: multi_result_map[mi]
                for mi, engine_name in enumerate(model_engine_names)
            }

W
WangXi 已提交
349 350 351
        self.profile_.record('py_postpro_1')
        self.profile_.print_profile()

B
barrierye 已提交
352
        # When using the A/B test, the tag of variant needs to be returned
B
barrierye 已提交
353 354 355
        return ret if not need_variant_tag else [
            ret, self.result_handle_.variant_tag()
        ]
B
barrierye 已提交
356

357 358
    def release(self):
        self.client_handle_.destroy_predictor()
G
guru4elephant 已提交
359
        self.client_handle_ = None