__init__.py 14.4 KB
Newer Older
G
guru4elephant 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
# pylint: disable=doc-string-missing
G
guru4elephant 已提交
15

M
MRXLT 已提交
16 17
import paddle_serving_client
import os
18 19 20
from .proto import sdk_configure_pb2 as sdk
from .proto import general_model_config_pb2 as m_config
import google.protobuf.text_format
D
dongdaxiang 已提交
21 22
import numpy as np
import time
23
import sys
G
guru4elephant 已提交
24

G
guru4elephant 已提交
25 26 27
int_type = 0
float_type = 1

M
MRXLT 已提交
28

W
WangXi 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
class _NOPProfiler(object):
    def record(self, name):
        pass

    def print_profile(self):
        pass


class _TimeProfiler(object):
    def __init__(self):
        self.pid = os.getpid()
        self.print_head = 'PROFILE\tpid:{}\t'.format(self.pid)
        self.time_record = [self.print_head]

    def record(self, name):
        self.time_record.append('{}:{} '.format(
            name, int(round(time.time() * 1000000))))

    def print_profile(self):
        self.time_record.append('\n')
        sys.stderr.write(''.join(self.time_record))
        self.time_record = [self.print_head]


_is_profile = int(os.environ.get('FLAGS_profile_client', 0))
_Profiler = _TimeProfiler if _is_profile else _NOPProfiler


G
guru4elephant 已提交
57 58 59
class SDKConfig(object):
    def __init__(self):
        self.sdk_desc = sdk.SDKConf()
60 61 62
        self.tag_list = []
        self.cluster_list = []
        self.variant_weight_list = []
G
guru4elephant 已提交
63

64 65 66 67
    def add_server_variant(self, tag, cluster, variant_weight):
        self.tag_list.append(tag)
        self.cluster_list.append(cluster)
        self.variant_weight_list.append(variant_weight)
G
guru4elephant 已提交
68 69 70 71 72 73 74

    def gen_desc(self):
        predictor_desc = sdk.Predictor()
        predictor_desc.name = "general_model"
        predictor_desc.service_name = \
            "baidu.paddle_serving.predictor.general_model.GeneralModelService"
        predictor_desc.endpoint_router = "WeightedRandomRender"
75 76
        predictor_desc.weighted_random_render_conf.variant_weight_list = "|".join(
            self.variant_weight_list)
G
guru4elephant 已提交
77

78 79 80 81 82 83
        for idx, tag in enumerate(self.tag_list):
            variant_desc = sdk.VariantConf()
            variant_desc.tag = tag
            variant_desc.naming_conf.cluster = "list://{}".format(",".join(
                self.cluster_list[idx]))
            predictor_desc.variants.extend([variant_desc])
G
guru4elephant 已提交
84 85 86 87 88 89 90 91 92 93

        self.sdk_desc.predictors.extend([predictor_desc])
        self.sdk_desc.default_variant_conf.tag = "default"
        self.sdk_desc.default_variant_conf.connection_conf.connect_timeout_ms = 2000
        self.sdk_desc.default_variant_conf.connection_conf.rpc_timeout_ms = 20000
        self.sdk_desc.default_variant_conf.connection_conf.connect_retry_count = 2
        self.sdk_desc.default_variant_conf.connection_conf.max_connection_per_host = 100
        self.sdk_desc.default_variant_conf.connection_conf.hedge_request_timeout_ms = -1
        self.sdk_desc.default_variant_conf.connection_conf.hedge_fetch_retry_count = 2
        self.sdk_desc.default_variant_conf.connection_conf.connection_type = "pooled"
M
MRXLT 已提交
94

G
guru4elephant 已提交
95 96 97 98 99 100 101 102
        self.sdk_desc.default_variant_conf.naming_conf.cluster_filter_strategy = "Default"
        self.sdk_desc.default_variant_conf.naming_conf.load_balance_strategy = "la"

        self.sdk_desc.default_variant_conf.rpc_parameter.compress_type = 0
        self.sdk_desc.default_variant_conf.rpc_parameter.package_size = 20
        self.sdk_desc.default_variant_conf.rpc_parameter.protocol = "baidu_std"
        self.sdk_desc.default_variant_conf.rpc_parameter.max_channel_per_request = 3

G
guru4elephant 已提交
103
        return self.sdk_desc
G
guru4elephant 已提交
104

G
guru4elephant 已提交
105 106 107 108 109 110

class Client(object):
    def __init__(self):
        self.feed_names_ = []
        self.fetch_names_ = []
        self.client_handle_ = None
111
        self.result_handle_ = None
M
MRXLT 已提交
112
        self.feed_shapes_ = {}
G
guru4elephant 已提交
113
        self.feed_types_ = {}
G
guru4elephant 已提交
114
        self.feed_names_to_idx_ = {}
M
MRXLT 已提交
115
        self.rpath()
M
MRXLT 已提交
116
        self.pid = os.getpid()
B
barrierye 已提交
117
        self.predictor_sdk_ = None
G
guru4elephant 已提交
118 119
        self.producers = []
        self.consumer = None
W
WangXi 已提交
120
        self.profile_ = _Profiler()
M
MRXLT 已提交
121 122
        self.all_numpy_input = True
        self.has_numpy_input = False
M
MRXLT 已提交
123 124 125 126 127

    def rpath(self):
        lib_path = os.path.dirname(paddle_serving_client.__file__)
        client_path = os.path.join(lib_path, 'serving_client.so')
        lib_path = os.path.join(lib_path, 'lib')
M
MRXLT 已提交
128
        os.system('patchelf --set-rpath {} {}'.format(lib_path, client_path))
M
MRXLT 已提交
129

G
guru4elephant 已提交
130
    def load_client_config(self, path):
M
MRXLT 已提交
131
        from .serving_client import PredictorClient
132
        from .serving_client import PredictorRes
133 134 135 136 137
        model_conf = m_config.GeneralModelConfig()
        f = open(path, 'r')
        model_conf = google.protobuf.text_format.Merge(
            str(f.read()), model_conf)

G
guru4elephant 已提交
138 139 140 141
        # load configuraion here
        # get feed vars, fetch vars
        # get feed shapes, feed types
        # map feed names to index
142
        self.result_handle_ = PredictorRes()
G
guru4elephant 已提交
143 144
        self.client_handle_ = PredictorClient()
        self.client_handle_.init(path)
M
bug fix  
MRXLT 已提交
145 146
        if "FLAGS_max_body_size" not in os.environ:
            os.environ["FLAGS_max_body_size"] = str(512 * 1024 * 1024)
M
MRXLT 已提交
147
        read_env_flags = ["profile_client", "profile_server", "max_body_size"]
M
MRXLT 已提交
148 149
        self.client_handle_.init_gflags([sys.argv[
            0]] + ["--tryfromenv=" + ",".join(read_env_flags)])
150 151
        self.feed_names_ = [var.alias_name for var in model_conf.feed_var]
        self.fetch_names_ = [var.alias_name for var in model_conf.fetch_var]
G
guru4elephant 已提交
152
        self.feed_names_to_idx_ = {}
G
guru4elephant 已提交
153 154
        self.fetch_names_to_type_ = {}
        self.fetch_names_to_idx_ = {}
M
MRXLT 已提交
155
        self.lod_tensor_set = set()
M
MRXLT 已提交
156
        self.feed_tensor_len = {}
157

158 159 160
        for i, var in enumerate(model_conf.feed_var):
            self.feed_names_to_idx_[var.alias_name] = i
            self.feed_types_[var.alias_name] = var.feed_type
M
MRXLT 已提交
161
            self.feed_shapes_[var.alias_name] = var.shape
M
MRXLT 已提交
162

M
MRXLT 已提交
163 164
            if var.is_lod_tensor:
                self.lod_tensor_set.add(var.alias_name)
M
MRXLT 已提交
165 166 167 168 169
            else:
                counter = 1
                for dim in self.feed_shapes_[var.alias_name]:
                    counter *= dim
                self.feed_tensor_len[var.alias_name] = counter
G
guru4elephant 已提交
170 171 172
        for i, var in enumerate(model_conf.fetch_var):
            self.fetch_names_to_idx_[var.alias_name] = i
            self.fetch_names_to_type_[var.alias_name] = var.fetch_type
173 174
            if var.is_lod_tensor:
                self.lod_tensor_set.add(var.alias_name)
G
guru4elephant 已提交
175 176
        return

177
    def add_variant(self, tag, cluster, variant_weight):
B
barrierye 已提交
178 179
        if self.predictor_sdk_ is None:
            self.predictor_sdk_ = SDKConfig()
180 181 182
        self.predictor_sdk_.add_server_variant(tag, cluster,
                                               str(variant_weight))

B
barrierye 已提交
183
    def connect(self, endpoints=None):
G
guru4elephant 已提交
184 185 186
        # check whether current endpoint is available
        # init from client config
        # create predictor here
B
barrierye 已提交
187 188 189 190 191 192 193
        if endpoints is None:
            if self.predictor_sdk_ is None:
                raise SystemExit(
                    "You must set the endpoints parameter or use add_variant function to create a variant."
                )
        else:
            if self.predictor_sdk_ is None:
194
                self.add_variant('default_tag_{}'.format(id(self)), endpoints,
195
                                 100)
B
barrierye 已提交
196 197
            else:
                print(
198
                    "parameter endpoints({}) will not take effect, because you use the add_variant function.".
B
barrierye 已提交
199
                    format(endpoints))
200
        sdk_desc = self.predictor_sdk_.gen_desc()
M
MRXLT 已提交
201 202
        self.client_handle_.create_predictor_by_desc(sdk_desc.SerializeToString(
        ))
G
guru4elephant 已提交
203 204 205 206 207 208 209

    def get_feed_names(self):
        return self.feed_names_

    def get_fetch_names(self):
        return self.fetch_names_

M
MRXLT 已提交
210 211 212
    def shape_check(self, feed, key):
        if key in self.lod_tensor_set:
            return
M
MRXLT 已提交
213
        if len(feed[key]) != self.feed_tensor_len[key]:
M
MRXLT 已提交
214 215 216
            raise SystemExit("The shape of feed tensor {} not match.".format(
                key))

217
    def predict(self, feed=None, fetch=None, need_variant_tag=False):
W
WangXi 已提交
218 219
        self.profile_.record('py_prepro_0')

G
guru4elephant 已提交
220 221 222
        if feed is None or fetch is None:
            raise ValueError("You should specify feed and fetch for prediction")

223 224 225 226 227 228
        fetch_list = []
        if isinstance(fetch, str):
            fetch_list = [fetch]
        elif isinstance(fetch, list):
            fetch_list = fetch
        else:
M
MRXLT 已提交
229
            raise ValueError("Fetch only accepts string and list of string")
230 231 232 233 234 235 236

        feed_batch = []
        if isinstance(feed, dict):
            feed_batch.append(feed)
        elif isinstance(feed, list):
            feed_batch = feed
        else:
M
MRXLT 已提交
237
            raise ValueError("Feed only accepts dict and list of dict")
G
guru4elephant 已提交
238

M
MRXLT 已提交
239 240 241 242
        int_slot_batch = []
        float_slot_batch = []
        int_feed_names = []
        float_feed_names = []
D
dongdaxiang 已提交
243 244
        int_shape = []
        float_shape = []
M
MRXLT 已提交
245
        fetch_names = []
M
MRXLT 已提交
246
        counter = 0
M
MRXLT 已提交
247
        batch_size = len(feed_batch)
248 249 250 251 252 253 254

        for key in fetch_list:
            if key in self.fetch_names_:
                fetch_names.append(key)

        if len(fetch_names) == 0:
            raise ValueError(
M
MRXLT 已提交
255
                "Fetch names should not be empty or out of saved fetch list.")
256 257
            return {}

G
guru4elephant 已提交
258
        for i, feed_i in enumerate(feed_batch):
M
MRXLT 已提交
259 260
            int_slot = []
            float_slot = []
261
            for key in feed_i:
M
MRXLT 已提交
262
                if key not in self.feed_names_:
M
MRXLT 已提交
263
                    raise ValueError("Wrong feed name: {}.".format(key))
264 265
                if not isinstance(feed_i[key], np.ndarray):
                    self.shape_check(feed_i, key)
M
MRXLT 已提交
266
                if self.feed_types_[key] == int_type:
G
guru4elephant 已提交
267
                    if i == 0:
M
MRXLT 已提交
268
                        int_feed_names.append(key)
D
dongdaxiang 已提交
269
                        if isinstance(feed_i[key], np.ndarray):
270
                            int_shape.append(list(feed_i[key].shape))
D
dongdaxiang 已提交
271 272
                        else:
                            int_shape.append(self.feed_shapes_[key])
D
dongdaxiang 已提交
273
                    if isinstance(feed_i[key], np.ndarray):
M
MRXLT 已提交
274 275
                        #int_slot.append(np.reshape(feed_i[key], (-1)).tolist())
                        int_slot.append(feed_i[key])
M
MRXLT 已提交
276
                        self.has_numpy_input = True
D
dongdaxiang 已提交
277 278
                    else:
                        int_slot.append(feed_i[key])
M
MRXLT 已提交
279
                        self.all_numpy_input = False
M
MRXLT 已提交
280
                elif self.feed_types_[key] == float_type:
G
guru4elephant 已提交
281
                    if i == 0:
M
MRXLT 已提交
282
                        float_feed_names.append(key)
D
dongdaxiang 已提交
283
                        if isinstance(feed_i[key], np.ndarray):
284
                            float_shape.append(list(feed_i[key].shape))
D
dongdaxiang 已提交
285 286
                        else:
                            float_shape.append(self.feed_shapes_[key])
D
dongdaxiang 已提交
287
                    if isinstance(feed_i[key], np.ndarray):
M
MRXLT 已提交
288 289
                        #float_slot.append(np.reshape(feed_i[key], (-1)).tolist())
                        float_slot.append(feed_i[key])
M
MRXLT 已提交
290
                        self.has_numpy_input = True
D
dongdaxiang 已提交
291 292
                    else:
                        float_slot.append(feed_i[key])
M
MRXLT 已提交
293
                        self.all_numpy_input = False
M
MRXLT 已提交
294 295 296
            int_slot_batch.append(int_slot)
            float_slot_batch.append(float_slot)

W
WangXi 已提交
297 298 299
        self.profile_.record('py_prepro_1')
        self.profile_.record('py_client_infer_0')

M
MRXLT 已提交
300
        result_batch = self.result_handle_
M
MRXLT 已提交
301
        if self.all_numpy_input:
M
MRXLT 已提交
302 303 304
            res = self.client_handle_.numpy_predict(
                float_slot_batch, float_feed_names, float_shape, int_slot_batch,
                int_feed_names, int_shape, fetch_names, result_batch, self.pid)
M
MRXLT 已提交
305
        elif self.has_numpy_input == False:
M
MRXLT 已提交
306 307 308
            res = self.client_handle_.batch_predict(
                float_slot_batch, float_feed_names, float_shape, int_slot_batch,
                int_feed_names, int_shape, fetch_names, result_batch, self.pid)
M
MRXLT 已提交
309 310 311 312
        else:
            raise SystemExit(
                "Please make sure the inputs are all in list type or all in numpy.array type"
            )
M
MRXLT 已提交
313

W
WangXi 已提交
314 315 316
        self.profile_.record('py_client_infer_1')
        self.profile_.record('py_postpro_0')

317 318 319
        if res == -1:
            return None

B
barrierye 已提交
320
        multi_result_map = []
B
barrierye 已提交
321 322
        model_engine_names = result_batch.get_engine_names()
        for mi, engine_name in enumerate(model_engine_names):
B
barrierye 已提交
323
            result_map = {}
B
barrierye 已提交
324
            # result map needs to be a numpy array
B
barrierye 已提交
325 326
            for i, name in enumerate(fetch_names):
                if self.fetch_names_to_type_[name] == int_type:
B
barrierye 已提交
327
                    result_map[name] = result_batch.get_int64_by_name(mi, name)
B
barrierye 已提交
328
                    shape = result_batch.get_shape(mi, name)
W
WangXi 已提交
329
                    result_map[name] = np.array(result_map[name], dtype='int64')
B
barrierye 已提交
330 331 332 333
                    result_map[name].shape = shape
                    if name in self.lod_tensor_set:
                        result_map["{}.lod".format(
                            name)] = result_batch.get_lod(mi, name)
B
barrierye 已提交
334
                elif self.fetch_names_to_type_[name] == float_type:
B
barrierye 已提交
335
                    result_map[name] = result_batch.get_float_by_name(mi, name)
B
barrierye 已提交
336
                    shape = result_batch.get_shape(mi, name)
W
WangXi 已提交
337 338
                    result_map[name] = np.array(
                        result_map[name], dtype='float32')
B
barrierye 已提交
339 340 341 342 343
                    result_map[name].shape = shape
                    if name in self.lod_tensor_set:
                        result_map["{}.lod".format(
                            name)] = result_batch.get_lod(mi, name)
            multi_result_map.append(result_map)
B
barrierye 已提交
344

B
barrierye 已提交
345 346
        ret = None
        if len(model_engine_names) == 1:
B
barrierye 已提交
347 348
            # If only one model result is returned, the format of ret is result_map
            ret = multi_result_map[0]
G
guru4elephant 已提交
349
        else:
B
barrierye 已提交
350 351 352 353 354 355
            # If multiple model results are returned, the format of ret is {name: result_map}
            ret = {
                engine_name: multi_result_map[mi]
                for mi, engine_name in enumerate(model_engine_names)
            }

W
WangXi 已提交
356 357 358
        self.profile_.record('py_postpro_1')
        self.profile_.print_profile()

B
barrierye 已提交
359
        # When using the A/B test, the tag of variant needs to be returned
B
barrierye 已提交
360 361 362
        return ret if not need_variant_tag else [
            ret, self.result_handle_.variant_tag()
        ]
B
barrierye 已提交
363

364 365
    def release(self):
        self.client_handle_.destroy_predictor()
G
guru4elephant 已提交
366
        self.client_handle_ = None