general_model.cpp 21.3 KB
Newer Older
G
guru4elephant 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

G
guru4elephant 已提交
15
#include "core/general-client/include/general_model.h"
M
MRXLT 已提交
16
#include <fstream>
G
guru4elephant 已提交
17 18 19
#include "core/sdk-cpp/builtin_format.pb.h"
#include "core/sdk-cpp/include/common.h"
#include "core/sdk-cpp/include/predictor_sdk.h"
G
guru4elephant 已提交
20
#include "core/util/include/timer.h"
G
guru4elephant 已提交
21

22 23 24
DEFINE_bool(profile_client, false, "");
DEFINE_bool(profile_server, false, "");

G
guru4elephant 已提交
25
using baidu::paddle_serving::Timer;
G
guru4elephant 已提交
26 27 28 29 30 31
using baidu::paddle_serving::predictor::general_model::Request;
using baidu::paddle_serving::predictor::general_model::Response;
using baidu::paddle_serving::predictor::general_model::Tensor;
using baidu::paddle_serving::predictor::general_model::FeedInst;
using baidu::paddle_serving::predictor::general_model::FetchInst;

32
std::once_flag gflags_init_flag;
M
MRXLT 已提交
33
namespace py = pybind11;
34

G
guru4elephant 已提交
35 36 37
namespace baidu {
namespace paddle_serving {
namespace general_model {
38
using configure::GeneralModelConfig;
G
guru4elephant 已提交
39

40 41
void PredictorClient::init_gflags(std::vector<std::string> argv) {
  std::call_once(gflags_init_flag, [&]() {
M
MRXLT 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54
    FLAGS_logtostderr = true;
    argv.insert(argv.begin(), "dummy");
    int argc = argv.size();
    char **arr = new char *[argv.size()];
    std::string line;
    for (size_t i = 0; i < argv.size(); i++) {
      arr[i] = &argv[i][0];
      line += argv[i];
      line += ' ';
    }
    google::ParseCommandLineFlags(&argc, &arr, true);
    VLOG(2) << "Init commandline: " << line;
  });
55 56
}

57 58 59
int PredictorClient::init(const std::string &conf_file) {
  try {
    GeneralModelConfig model_config;
M
MRXLT 已提交
60
    if (configure::read_proto_conf(conf_file.c_str(), &model_config) != 0) {
61 62 63 64
      LOG(ERROR) << "Failed to load general model config"
                 << ", file path: " << conf_file;
      return -1;
    }
65

66 67 68 69 70
    _feed_name_to_idx.clear();
    _fetch_name_to_idx.clear();
    _shape.clear();
    int feed_var_num = model_config.feed_var_size();
    int fetch_var_num = model_config.fetch_var_size();
71 72
    VLOG(2) << "feed var num: " << feed_var_num
            << "fetch_var_num: " << fetch_var_num;
73 74
    for (int i = 0; i < feed_var_num; ++i) {
      _feed_name_to_idx[model_config.feed_var(i).alias_name()] = i;
75 76
      VLOG(2) << "feed alias name: " << model_config.feed_var(i).alias_name()
              << " index: " << i;
77
      std::vector<int> tmp_feed_shape;
M
MRXLT 已提交
78 79
      VLOG(2) << "feed"
              << "[" << i << "] shape:";
80 81
      for (int j = 0; j < model_config.feed_var(i).shape_size(); ++j) {
        tmp_feed_shape.push_back(model_config.feed_var(i).shape(j));
M
MRXLT 已提交
82
        VLOG(2) << "shape[" << j << "]: " << model_config.feed_var(i).shape(j);
83 84
      }
      _type.push_back(model_config.feed_var(i).feed_type());
M
MRXLT 已提交
85 86 87
      VLOG(2) << "feed"
              << "[" << i
              << "] feed type: " << model_config.feed_var(i).feed_type();
88
      _shape.push_back(tmp_feed_shape);
G
guru4elephant 已提交
89 90
    }

91 92
    for (int i = 0; i < fetch_var_num; ++i) {
      _fetch_name_to_idx[model_config.fetch_var(i).alias_name()] = i;
M
MRXLT 已提交
93 94
      VLOG(2) << "fetch [" << i << "]"
              << " alias name: " << model_config.fetch_var(i).alias_name();
95 96
      _fetch_name_to_var_name[model_config.fetch_var(i).alias_name()] =
          model_config.fetch_var(i).name();
97 98
      _fetch_name_to_type[model_config.fetch_var(i).alias_name()] =
          model_config.fetch_var(i).fetch_type();
99
    }
M
MRXLT 已提交
100
  } catch (std::exception &e) {
101 102
    LOG(ERROR) << "Failed load general model config" << e.what();
    return -1;
G
guru4elephant 已提交
103
  }
104
  return 0;
G
guru4elephant 已提交
105 106
}

M
MRXLT 已提交
107 108
void PredictorClient::set_predictor_conf(const std::string &conf_path,
                                         const std::string &conf_file) {
G
guru4elephant 已提交
109 110 111
  _predictor_path = conf_path;
  _predictor_conf = conf_file;
}
112 113 114
int PredictorClient::destroy_predictor() {
  _api.thrd_finalize();
  _api.destroy();
B
barrierye 已提交
115
  return 0;
116 117
}

M
MRXLT 已提交
118
int PredictorClient::create_predictor_by_desc(const std::string &sdk_desc) {
G
guru4elephant 已提交
119 120 121 122
  if (_api.create(sdk_desc) != 0) {
    LOG(ERROR) << "Predictor Creation Failed";
    return -1;
  }
D
dongdaxiang 已提交
123
  // _api.thrd_initialize();
B
barrierye 已提交
124
  return 0;
G
guru4elephant 已提交
125 126
}

G
guru4elephant 已提交
127
int PredictorClient::create_predictor() {
G
guru4elephant 已提交
128 129
  VLOG(2) << "Predictor path: " << _predictor_path
          << " predictor file: " << _predictor_conf;
G
guru4elephant 已提交
130 131 132 133
  if (_api.create(_predictor_path.c_str(), _predictor_conf.c_str()) != 0) {
    LOG(ERROR) << "Predictor Creation Failed";
    return -1;
  }
D
dongdaxiang 已提交
134
  // _api.thrd_initialize();
B
barrierye 已提交
135
  return 0;
G
guru4elephant 已提交
136 137
}

M
MRXLT 已提交
138
int PredictorClient::batch_predict(
M
MRXLT 已提交
139 140
    const std::vector<std::vector<std::vector<float>>> &float_feed_batch,
    const std::vector<std::string> &float_feed_name,
D
dongdaxiang 已提交
141
    const std::vector<std::vector<int>> &float_shape,
M
MRXLT 已提交
142 143
    const std::vector<std::vector<std::vector<int64_t>>> &int_feed_batch,
    const std::vector<std::string> &int_feed_name,
D
dongdaxiang 已提交
144
    const std::vector<std::vector<int>> &int_shape,
M
MRXLT 已提交
145
    const std::vector<std::string> &fetch_name,
M
MRXLT 已提交
146
    PredictorRes &predict_res_batch,
M
MRXLT 已提交
147
    const int &pid) {
M
MRXLT 已提交
148
  int batch_size = std::max(float_feed_batch.size(), int_feed_batch.size());
M
MRXLT 已提交
149

B
barrierye 已提交
150
  predict_res_batch.clear();
M
MRXLT 已提交
151 152 153
  Timer timeline;
  int64_t preprocess_start = timeline.TimeStampUS();

M
MRXLT 已提交
154 155
  int fetch_name_num = fetch_name.size();

D
dongdaxiang 已提交
156
  _api.thrd_initialize();
157 158 159
  std::string variant_tag;
  _predictor = _api.fetch_predictor("general_model", &variant_tag);
  predict_res_batch.set_variant_tag(variant_tag);
160 161 162
  VLOG(2) << "fetch general model predictor done.";
  VLOG(2) << "float feed name size: " << float_feed_name.size();
  VLOG(2) << "int feed name size: " << int_feed_name.size();
M
bug fix  
MRXLT 已提交
163
  VLOG(2) << "max body size : " << brpc::fLU64::FLAGS_max_body_size;
M
MRXLT 已提交
164
  Request req;
M
MRXLT 已提交
165
  for (auto &name : fetch_name) {
166 167
    req.add_fetch_var_names(name);
  }
B
barrierye 已提交
168

M
MRXLT 已提交
169
  for (int bi = 0; bi < batch_size; bi++) {
170
    VLOG(2) << "prepare batch " << bi;
M
MRXLT 已提交
171 172 173 174 175 176 177 178 179 180 181
    std::vector<Tensor *> tensor_vec;
    FeedInst *inst = req.add_insts();
    std::vector<std::vector<float>> float_feed = float_feed_batch[bi];
    std::vector<std::vector<int64_t>> int_feed = int_feed_batch[bi];
    for (auto &name : float_feed_name) {
      tensor_vec.push_back(inst->add_tensor_array());
    }

    for (auto &name : int_feed_name) {
      tensor_vec.push_back(inst->add_tensor_array());
    }
182

M
bug fix  
MRXLT 已提交
183
    VLOG(2) << "batch [" << bi << "] int_feed_name and float_feed_name "
184
            << "prepared";
M
MRXLT 已提交
185
    int vec_idx = 0;
M
bug fix  
MRXLT 已提交
186 187
    VLOG(2) << "tensor_vec size " << tensor_vec.size() << " float shape "
            << float_shape.size();
M
MRXLT 已提交
188 189 190
    for (auto &name : float_feed_name) {
      int idx = _feed_name_to_idx[name];
      Tensor *tensor = tensor_vec[idx];
M
bug fix  
MRXLT 已提交
191 192
      VLOG(2) << "prepare float feed " << name << " shape size "
              << float_shape[vec_idx].size();
B
barrierye 已提交
193
      for (uint32_t j = 0; j < float_shape[vec_idx].size(); ++j) {
194
        tensor->add_shape(float_shape[vec_idx][j]);
M
MRXLT 已提交
195 196
      }
      tensor->set_elem_type(1);
B
barrierye 已提交
197
      for (uint32_t j = 0; j < float_feed[vec_idx].size(); ++j) {
198
        tensor->add_float_data(float_feed[vec_idx][j]);
M
MRXLT 已提交
199 200 201 202
      }
      vec_idx++;
    }

M
MRXLT 已提交
203 204
    VLOG(2) << "batch [" << bi << "] "
            << "float feed value prepared";
205

M
MRXLT 已提交
206 207 208 209
    vec_idx = 0;
    for (auto &name : int_feed_name) {
      int idx = _feed_name_to_idx[name];
      Tensor *tensor = tensor_vec[idx];
M
bug fix  
MRXLT 已提交
210 211
      VLOG(2) << "prepare int feed " << name << " shape size "
              << int_shape[vec_idx].size();
B
barrierye 已提交
212
      for (uint32_t j = 0; j < int_shape[vec_idx].size(); ++j) {
213
        tensor->add_shape(int_shape[vec_idx][j]);
M
MRXLT 已提交
214 215
      }
      tensor->set_elem_type(0);
M
MRXLT 已提交
216 217
      VLOG(3) << "feed var name " << name << " index " << vec_idx
              << "first data " << int_feed[vec_idx][0];
B
barrierye 已提交
218
      for (uint32_t j = 0; j < int_feed[vec_idx].size(); ++j) {
219
        tensor->add_int64_data(int_feed[vec_idx][j]);
M
MRXLT 已提交
220 221 222
      }
      vec_idx++;
    }
223

M
MRXLT 已提交
224
    VLOG(2) << "batch [" << bi << "] "
M
MRXLT 已提交
225
            << "int feed value prepared";
M
MRXLT 已提交
226 227
  }

M
MRXLT 已提交
228 229 230 231
  int64_t preprocess_end = timeline.TimeStampUS();

  int64_t client_infer_start = timeline.TimeStampUS();

M
MRXLT 已提交
232 233
  Response res;

M
MRXLT 已提交
234 235 236 237 238 239 240 241 242 243
  int64_t client_infer_end = 0;
  int64_t postprocess_start = 0;
  int64_t postprocess_end = 0;

  if (FLAGS_profile_client) {
    if (FLAGS_profile_server) {
      req.set_profile_server(true);
    }
  }

M
MRXLT 已提交
244 245 246
  res.Clear();
  if (_predictor->inference(&req, &res) != 0) {
    LOG(ERROR) << "failed call predictor with req: " << req.ShortDebugString();
B
barrierye 已提交
247
    _api.thrd_clear();
D
dongdaxiang 已提交
248
    return -1;
M
MRXLT 已提交
249
  } else {
M
MRXLT 已提交
250 251
    client_infer_end = timeline.TimeStampUS();
    postprocess_start = client_infer_end;
D
dongdaxiang 已提交
252
    VLOG(2) << "get model output num";
B
barrierye 已提交
253
    uint32_t model_num = res.outputs_size();
D
dongdaxiang 已提交
254
    VLOG(2) << "model num: " << model_num;
M
MRXLT 已提交
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
    for (uint32_t m_idx = 0; m_idx < model_num; ++m_idx) {
      VLOG(2) << "process model output index: " << m_idx;
      auto output = res.outputs(m_idx);
      ModelRes model;
      model.set_engine_name(output.engine_name());

      for (auto &name : fetch_name) {
        // int idx = _fetch_name_to_idx[name];
        int idx = 0;
        int shape_size = output.insts(0).tensor_array(idx).shape_size();
        VLOG(2) << "fetch var " << name << " index " << idx << " shape size "
                << shape_size;
        model._shape_map[name].resize(shape_size);
        for (int i = 0; i < shape_size; ++i) {
          model._shape_map[name][i] =
              output.insts(0).tensor_array(idx).shape(i);
        }
        int lod_size = output.insts(0).tensor_array(idx).lod_size();
        if (lod_size > 0) {
          model._lod_map[name].resize(lod_size);
          for (int i = 0; i < lod_size; ++i) {
            model._lod_map[name][i] = output.insts(0).tensor_array(idx).lod(i);
          }
        }
        idx += 1;
      }

      for (auto &name : fetch_name) {
        // int idx = _fetch_name_to_idx[name];
        int idx = 0;
        if (_fetch_name_to_type[name] == 0) {
          VLOG(2) << "ferch var " << name << "type int";
          model._int64_value_map[name].resize(
              output.insts(0).tensor_array(idx).int64_data_size());
          int size = output.insts(0).tensor_array(idx).int64_data_size();
          for (int i = 0; i < size; ++i) {
            model._int64_value_map[name][i] =
                output.insts(0).tensor_array(idx).int64_data(i);
          }
        } else {
          VLOG(2) << "fetch var " << name << "type float";
          model._float_value_map[name].resize(
              output.insts(0).tensor_array(idx).float_data_size());
          int size = output.insts(0).tensor_array(idx).float_data_size();
          for (int i = 0; i < size; ++i) {
            model._float_value_map[name][i] =
                output.insts(0).tensor_array(idx).float_data(i);
          }
        }
        idx += 1;
      }
      predict_res_batch.add_model_res(std::move(model));
    }
    postprocess_end = timeline.TimeStampUS();
  }

  if (FLAGS_profile_client) {
    std::ostringstream oss;
    oss << "PROFILE\t"
        << "pid:" << pid << "\t"
        << "prepro_0:" << preprocess_start << " "
        << "prepro_1:" << preprocess_end << " "
        << "client_infer_0:" << client_infer_start << " "
        << "client_infer_1:" << client_infer_end << " ";
    if (FLAGS_profile_server) {
      int op_num = res.profile_time_size() / 2;
      for (int i = 0; i < op_num; ++i) {
        oss << "op" << i << "_0:" << res.profile_time(i * 2) << " ";
        oss << "op" << i << "_1:" << res.profile_time(i * 2 + 1) << " ";
      }
    }

    oss << "postpro_0:" << postprocess_start << " ";
    oss << "postpro_1:" << postprocess_end;

    fprintf(stderr, "%s\n", oss.str().c_str());
  }

  _api.thrd_clear();
  return 0;
}

int PredictorClient::numpy_predict(
    const std::vector<std::vector<py::array_t<float>>> &float_feed_batch,
    const std::vector<std::string> &float_feed_name,
    const std::vector<std::vector<int>> &float_shape,
    const std::vector<std::vector<py::array_t<int64_t>>> &int_feed_batch,
    const std::vector<std::string> &int_feed_name,
    const std::vector<std::vector<int>> &int_shape,
    const std::vector<std::string> &fetch_name,
    PredictorRes &predict_res_batch,
    const int &pid) {
  int batch_size = std::max(float_feed_batch.size(), int_feed_batch.size());
D
dongdaxiang 已提交
348
  VLOG(2) << "batch size: " << batch_size;
M
MRXLT 已提交
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
  predict_res_batch.clear();
  Timer timeline;
  int64_t preprocess_start = timeline.TimeStampUS();

  int fetch_name_num = fetch_name.size();

  _api.thrd_initialize();
  std::string variant_tag;
  _predictor = _api.fetch_predictor("general_model", &variant_tag);
  predict_res_batch.set_variant_tag(variant_tag);
  VLOG(2) << "fetch general model predictor done.";
  VLOG(2) << "float feed name size: " << float_feed_name.size();
  VLOG(2) << "int feed name size: " << int_feed_name.size();
  VLOG(2) << "max body size : " << brpc::fLU64::FLAGS_max_body_size;
  Request req;
  for (auto &name : fetch_name) {
    req.add_fetch_var_names(name);
  }

  for (int bi = 0; bi < batch_size; bi++) {
    VLOG(2) << "prepare batch " << bi;
    std::vector<Tensor *> tensor_vec;
    FeedInst *inst = req.add_insts();
    std::vector<py::array_t<float>> float_feed = float_feed_batch[bi];
    std::vector<py::array_t<int64_t>> int_feed = int_feed_batch[bi];
    for (auto &name : float_feed_name) {
      tensor_vec.push_back(inst->add_tensor_array());
    }

    for (auto &name : int_feed_name) {
      tensor_vec.push_back(inst->add_tensor_array());
    }

    VLOG(2) << "batch [" << bi << "] int_feed_name and float_feed_name "
            << "prepared";

    int vec_idx = 0;
    VLOG(2) << "tensor_vec size " << tensor_vec.size() << " float shape "
            << float_shape.size();
    for (auto &name : float_feed_name) {
      int idx = _feed_name_to_idx[name];
      Tensor *tensor = tensor_vec[idx];
      VLOG(2) << "prepare float feed " << name << " shape size "
              << float_shape[vec_idx].size();
      for (uint32_t j = 0; j < float_shape[vec_idx].size(); ++j) {
        tensor->add_shape(float_shape[vec_idx][j]);
      }
      tensor->set_elem_type(1);
      const int float_shape_size = float_shape[vec_idx].size();
      switch (float_shape_size) {
M
bug fix  
MRXLT 已提交
399 400 401 402 403 404 405 406 407 408 409 410 411
        case 4: {
          auto float_array = float_feed[vec_idx].unchecked<4>();
          for (ssize_t i = 0; i < float_array.shape(0); i++) {
            for (ssize_t j = 0; j < float_array.shape(1); j++) {
              for (ssize_t k = 0; k < float_array.shape(2); k++) {
                for (ssize_t l = 0; l < float_array.shape(3); l++) {
                  tensor->add_float_data(float_array(i, j, k, l));
                }
              }
            }
          }
          break;
        }
M
MRXLT 已提交
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
        case 3: {
          auto float_array = float_feed[vec_idx].unchecked<3>();
          for (ssize_t i = 0; i < float_array.shape(0); i++) {
            for (ssize_t j = 0; j < float_array.shape(1); j++) {
              for (ssize_t k = 0; k < float_array.shape(2); k++) {
                tensor->add_float_data(float_array(i, j, k));
              }
            }
          }
          break;
        }
        case 2: {
          auto float_array = float_feed[vec_idx].unchecked<2>();
          for (ssize_t i = 0; i < float_array.shape(0); i++) {
            for (ssize_t j = 0; j < float_array.shape(1); j++) {
              tensor->add_float_data(float_array(i, j));
            }
          }
          break;
        }
M
bug fix  
MRXLT 已提交
432 433 434 435 436 437 438
        case 1: {
          auto float_array = float_feed[vec_idx].unchecked<1>();
          for (ssize_t i = 0; i < float_array.shape(0); i++) {
            tensor->add_float_data(float_array(i));
          }
          break;
        }
M
MRXLT 已提交
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
      }
      vec_idx++;
    }

    VLOG(2) << "batch [" << bi << "] "
            << "float feed value prepared";

    vec_idx = 0;
    for (auto &name : int_feed_name) {
      int idx = _feed_name_to_idx[name];
      Tensor *tensor = tensor_vec[idx];
      VLOG(2) << "prepare int feed " << name << " shape size "
              << int_shape[vec_idx].size();
      for (uint32_t j = 0; j < int_shape[vec_idx].size(); ++j) {
        tensor->add_shape(int_shape[vec_idx][j]);
      }
      tensor->set_elem_type(0);

      const int int_shape_size = int_shape[vec_idx].size();
      switch (int_shape_size) {
        case 4: {
M
bug fix  
MRXLT 已提交
460
          auto int_array = int_feed[vec_idx].unchecked<4>();
M
MRXLT 已提交
461 462 463 464
          for (ssize_t i = 0; i < int_array.shape(0); i++) {
            for (ssize_t j = 0; j < int_array.shape(1); j++) {
              for (ssize_t k = 0; k < int_array.shape(2); k++) {
                for (ssize_t l = 0; k < int_array.shape(3); l++) {
D
dongdaxiang 已提交
465
                  tensor->add_int64_data(int_array(i, j, k, l));
M
MRXLT 已提交
466 467 468 469 470 471 472 473 474 475 476
                }
              }
            }
          }
          break;
        }
        case 3: {
          auto int_array = int_feed[vec_idx].unchecked<3>();
          for (ssize_t i = 0; i < int_array.shape(0); i++) {
            for (ssize_t j = 0; j < int_array.shape(1); j++) {
              for (ssize_t k = 0; k < int_array.shape(2); k++) {
D
dongdaxiang 已提交
477
                tensor->add_int64_data(int_array(i, j, k));
M
MRXLT 已提交
478 479 480 481 482 483 484 485 486
              }
            }
          }
          break;
        }
        case 2: {
          auto int_array = int_feed[vec_idx].unchecked<2>();
          for (ssize_t i = 0; i < int_array.shape(0); i++) {
            for (ssize_t j = 0; j < int_array.shape(1); j++) {
D
dongdaxiang 已提交
487
              tensor->add_int64_data(int_array(i, j));
M
MRXLT 已提交
488 489 490 491 492
            }
          }
          break;
        }
        case 1: {
M
bug fix  
MRXLT 已提交
493
          auto int_array = int_feed[vec_idx].unchecked<1>();
M
MRXLT 已提交
494
          for (ssize_t i = 0; i < int_array.shape(0); i++) {
D
dongdaxiang 已提交
495
            tensor->add_int64_data(int_array(i));
M
MRXLT 已提交
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
          }
          break;
        }
      }
      vec_idx++;
    }

    VLOG(2) << "batch [" << bi << "] "
            << "int feed value prepared";
  }

  int64_t preprocess_end = timeline.TimeStampUS();

  int64_t client_infer_start = timeline.TimeStampUS();

  Response res;

  int64_t client_infer_end = 0;
  int64_t postprocess_start = 0;
  int64_t postprocess_end = 0;

  if (FLAGS_profile_client) {
    if (FLAGS_profile_server) {
      req.set_profile_server(true);
    }
  }

  res.Clear();
  if (_predictor->inference(&req, &res) != 0) {
    LOG(ERROR) << "failed call predictor with req: " << req.ShortDebugString();
    return -1;
  } else {
    client_infer_end = timeline.TimeStampUS();
    postprocess_start = client_infer_end;
    VLOG(2) << "get model output num";
    uint32_t model_num = res.outputs_size();
    VLOG(2) << "model num: " << model_num;
B
barrierye 已提交
533 534 535
    for (uint32_t m_idx = 0; m_idx < model_num; ++m_idx) {
      VLOG(2) << "process model output index: " << m_idx;
      auto output = res.outputs(m_idx);
B
barrierye 已提交
536 537
      ModelRes model;
      model.set_engine_name(output.engine_name());
B
barrierye 已提交
538

M
MRXLT 已提交
539
      for (auto &name : fetch_name) {
B
barrierye 已提交
540 541
        // int idx = _fetch_name_to_idx[name];
        int idx = 0;
B
barrierye 已提交
542
        int shape_size = output.insts(0).tensor_array(idx).shape_size();
B
barrierye 已提交
543 544
        VLOG(2) << "fetch var " << name << " index " << idx << " shape size "
                << shape_size;
B
barrierye 已提交
545 546 547 548 549 550 551 552 553 554 555
        model._shape_map[name].resize(shape_size);
        for (int i = 0; i < shape_size; ++i) {
          model._shape_map[name][i] =
              output.insts(0).tensor_array(idx).shape(i);
        }
        int lod_size = output.insts(0).tensor_array(idx).lod_size();
        if (lod_size > 0) {
          model._lod_map[name].resize(lod_size);
          for (int i = 0; i < lod_size; ++i) {
            model._lod_map[name][i] = output.insts(0).tensor_array(idx).lod(i);
          }
556
        }
B
barrierye 已提交
557
        idx += 1;
B
barrierye 已提交
558
      }
559

B
barrierye 已提交
560
      for (auto &name : fetch_name) {
B
barrierye 已提交
561 562
        // int idx = _fetch_name_to_idx[name];
        int idx = 0;
B
barrierye 已提交
563
        if (_fetch_name_to_type[name] == 0) {
B
barrierye 已提交
564
          VLOG(2) << "ferch var " << name << "type int";
B
barrierye 已提交
565 566 567 568 569 570 571 572
          model._int64_value_map[name].resize(
              output.insts(0).tensor_array(idx).int64_data_size());
          int size = output.insts(0).tensor_array(idx).int64_data_size();
          for (int i = 0; i < size; ++i) {
            model._int64_value_map[name][i] =
                output.insts(0).tensor_array(idx).int64_data(i);
          }
        } else {
B
barrierye 已提交
573
          VLOG(2) << "fetch var " << name << "type float";
B
barrierye 已提交
574 575 576 577 578 579
          model._float_value_map[name].resize(
              output.insts(0).tensor_array(idx).float_data_size());
          int size = output.insts(0).tensor_array(idx).float_data_size();
          for (int i = 0; i < size; ++i) {
            model._float_value_map[name][i] =
                output.insts(0).tensor_array(idx).float_data(i);
M
MRXLT 已提交
580 581
          }
        }
B
barrierye 已提交
582
        idx += 1;
M
MRXLT 已提交
583
      }
B
barrierye 已提交
584
      predict_res_batch.add_model_res(std::move(model));
M
MRXLT 已提交
585
    }
586
    postprocess_end = timeline.TimeStampUS();
M
MRXLT 已提交
587 588
  }

M
MRXLT 已提交
589 590 591
  if (FLAGS_profile_client) {
    std::ostringstream oss;
    oss << "PROFILE\t"
M
MRXLT 已提交
592
        << "pid:" << pid << "\t"
M
MRXLT 已提交
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
        << "prepro_0:" << preprocess_start << " "
        << "prepro_1:" << preprocess_end << " "
        << "client_infer_0:" << client_infer_start << " "
        << "client_infer_1:" << client_infer_end << " ";
    if (FLAGS_profile_server) {
      int op_num = res.profile_time_size() / 2;
      for (int i = 0; i < op_num; ++i) {
        oss << "op" << i << "_0:" << res.profile_time(i * 2) << " ";
        oss << "op" << i << "_1:" << res.profile_time(i * 2 + 1) << " ";
      }
    }

    oss << "postpro_0:" << postprocess_start << " ";
    oss << "postpro_1:" << postprocess_end;

    fprintf(stderr, "%s\n", oss.str().c_str());
  }
D
dongdaxiang 已提交
610 611

  _api.thrd_clear();
M
MRXLT 已提交
612
  return 0;
M
MRXLT 已提交
613 614
}

G
guru4elephant 已提交
615 616 617
}  // namespace general_model
}  // namespace paddle_serving
}  // namespace baidu