train.py 14.3 KB
Newer Older
L
lifuchen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import division
C
chenfeiyu 已提交
16 17
import os
import argparse
18
import ruamel.yaml
C
chenfeiyu 已提交
19
import numpy as np
20 21
import matplotlib
matplotlib.use("agg")
C
chenfeiyu 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
from matplotlib import cm
import matplotlib.pyplot as plt
import tqdm
import librosa
from librosa import display
import soundfile as sf
from tensorboardX import SummaryWriter

from paddle import fluid
import paddle.fluid.layers as F
import paddle.fluid.dygraph as dg

from parakeet.g2p import en
from parakeet.data import FilterDataset, TransformDataset, FilterDataset
from parakeet.data import DataCargo, PartialyRandomizedSimilarTimeLengthSampler, SequentialSampler
37
from parakeet.models.deepvoice3 import Encoder, Decoder, Converter, DeepVoice3, ConvSpec
C
chenfeiyu 已提交
38 39
from parakeet.models.deepvoice3.loss import TTSLoss
from parakeet.utils.layer_tools import summary
40
from parakeet.utils import io
C
chenfeiyu 已提交
41 42

from data import LJSpeechMetaData, DataCollector, Transform
43
from utils import make_model, eval_model, save_state, make_output_tree, plot_alignment
C
chenfeiyu 已提交
44 45 46

if __name__ == "__main__":
    parser = argparse.ArgumentParser(
47
        description="Train a Deep Voice 3 model with LJSpeech dataset.")
C
chenfeiyu 已提交
48
    parser.add_argument("-c", "--config", type=str, help="experimrnt config")
49 50 51 52 53 54
    parser.add_argument(
        "-s",
        "--data",
        type=str,
        default="/workspace/datasets/LJSpeech-1.1/",
        help="The path of the LJSpeech dataset.")
55
    parser.add_argument("--checkpoint", type=str, help="checkpoint to load")
56 57 58 59 60 61 62 63
    parser.add_argument(
        "-o",
        "--output",
        type=str,
        default="result",
        help="The directory to save result.")
    parser.add_argument(
        "-g", "--device", type=int, default=-1, help="device to use")
C
chenfeiyu 已提交
64 65 66 67
    args, _ = parser.parse_known_args()
    with open(args.config, 'rt') as f:
        config = ruamel.yaml.safe_load(f)

68 69 70 71
    print("Command Line Args: ")
    for k, v in vars(args).items():
        print("{}: {}".format(k, v))

C
chenfeiyu 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
    # =========================dataset=========================
    # construct meta data
    data_root = args.data
    meta = LJSpeechMetaData(data_root)

    # filter it!
    min_text_length = config["meta_data"]["min_text_length"]
    meta = FilterDataset(meta, lambda x: len(x[2]) >= min_text_length)

    # transform meta data into meta data
    transform_config = config["transform"]
    replace_pronounciation_prob = transform_config[
        "replace_pronunciation_prob"]
    sample_rate = transform_config["sample_rate"]
    preemphasis = transform_config["preemphasis"]
    n_fft = transform_config["n_fft"]
    win_length = transform_config["win_length"]
    hop_length = transform_config["hop_length"]
    fmin = transform_config["fmin"]
    fmax = transform_config["fmax"]
    n_mels = transform_config["n_mels"]
    min_level_db = transform_config["min_level_db"]
    ref_level_db = transform_config["ref_level_db"]
    max_norm = transform_config["max_norm"]
    clip_norm = transform_config["clip_norm"]
    transform = Transform(replace_pronounciation_prob, sample_rate,
                          preemphasis, n_fft, win_length, hop_length, fmin,
                          fmax, n_mels, min_level_db, ref_level_db, max_norm,
                          clip_norm)
    ljspeech = TransformDataset(meta, transform)

    # =========================dataiterator=========================
    # use meta data's text length as a sort key for the sampler
    train_config = config["train"]
    batch_size = train_config["batch_size"]
    text_lengths = [len(example[2]) for example in meta]
108 109
    sampler = PartialyRandomizedSimilarTimeLengthSampler(text_lengths,
                                                         batch_size)
C
chenfeiyu 已提交
110 111 112 113 114 115

    # some hyperparameters affect how we process data, so create a data collector!
    model_config = config["model"]
    downsample_factor = model_config["downsample_factor"]
    r = model_config["outputs_per_step"]
    collector = DataCollector(downsample_factor=downsample_factor, r=r)
116 117
    ljspeech_loader = DataCargo(
        ljspeech, batch_fn=collector, batch_size=batch_size, sampler=sampler)
C
chenfeiyu 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148

    # =========================model=========================
    if args.device == -1:
        place = fluid.CPUPlace()
    else:
        place = fluid.CUDAPlace(args.device)

    with dg.guard(place):
        # =========================model=========================
        n_speakers = model_config["n_speakers"]
        speaker_dim = model_config["speaker_embed_dim"]
        speaker_embed_std = model_config["speaker_embedding_weight_std"]
        n_vocab = en.n_vocab
        embed_dim = model_config["text_embed_dim"]
        linear_dim = 1 + n_fft // 2
        use_decoder_states = model_config[
            "use_decoder_state_for_postnet_input"]
        filter_size = model_config["kernel_size"]
        encoder_channels = model_config["encoder_channels"]
        decoder_channels = model_config["decoder_channels"]
        converter_channels = model_config["converter_channels"]
        dropout = model_config["dropout"]
        padding_idx = model_config["padding_idx"]
        embedding_std = model_config["embedding_weight_std"]
        max_positions = model_config["max_positions"]
        freeze_embedding = model_config["freeze_embedding"]
        trainable_positional_encodings = model_config[
            "trainable_positional_encodings"]
        use_memory_mask = model_config["use_memory_mask"]
        query_position_rate = model_config["query_position_rate"]
        key_position_rate = model_config["key_position_rate"]
149
        window_backward = model_config["window_backward"]
C
chenfeiyu 已提交
150 151 152
        window_ahead = model_config["window_ahead"]
        key_projection = model_config["key_projection"]
        value_projection = model_config["value_projection"]
153 154 155 156 157 158 159 160
        dv3 = make_model(
            n_speakers, speaker_dim, speaker_embed_std, embed_dim, padding_idx,
            embedding_std, max_positions, n_vocab, freeze_embedding,
            filter_size, encoder_channels, n_mels, decoder_channels, r,
            trainable_positional_encodings, use_memory_mask,
            query_position_rate, key_position_rate, window_backward,
            window_ahead, key_projection, value_projection, downsample_factor,
            linear_dim, use_decoder_states, converter_channels, dropout)
161
        summary(dv3)
C
chenfeiyu 已提交
162 163 164 165 166 167 168 169 170

        # =========================loss=========================
        loss_config = config["loss"]
        masked_weight = loss_config["masked_loss_weight"]
        priority_freq = loss_config["priority_freq"]  # Hz
        priority_bin = int(priority_freq / (0.5 * sample_rate) * linear_dim)
        priority_freq_weight = loss_config["priority_freq_weight"]
        binary_divergence_weight = loss_config["binary_divergence_weight"]
        guided_attention_sigma = loss_config["guided_attention_sigma"]
171 172 173 174 175 176 177 178
        criterion = TTSLoss(
            masked_weight=masked_weight,
            priority_bin=priority_bin,
            priority_weight=priority_freq_weight,
            binary_divergence_weight=binary_divergence_weight,
            guided_attention_sigma=guided_attention_sigma,
            downsample_factor=downsample_factor,
            r=r)
C
chenfeiyu 已提交
179 180 181 182 183 184 185 186 187 188 189 190 191

        # =========================lr_scheduler=========================
        lr_config = config["lr_scheduler"]
        warmup_steps = lr_config["warmup_steps"]
        peak_learning_rate = lr_config["peak_learning_rate"]
        lr_scheduler = dg.NoamDecay(
            1 / (warmup_steps * (peak_learning_rate)**2), warmup_steps)

        # =========================optimizer=========================
        optim_config = config["optimizer"]
        beta1 = optim_config["beta1"]
        beta2 = optim_config["beta2"]
        epsilon = optim_config["epsilon"]
192 193 194 195 196 197
        optim = fluid.optimizer.Adam(
            lr_scheduler,
            beta1,
            beta2,
            epsilon=epsilon,
            parameter_list=dv3.parameters())
C
chenfeiyu 已提交
198 199
        gradient_clipper = fluid.dygraph_grad_clip.GradClipByGlobalNorm(0.1)

200 201 202 203 204
        # generation
        synthesis_config = config["synthesis"]
        power = synthesis_config["power"]
        n_iter = synthesis_config["n_iter"]

C
chenfeiyu 已提交
205
        # =========================link(dataloader, paddle)=========================
206 207
        loader = fluid.io.DataLoader.from_generator(
            capacity=10, return_list=True)
C
chenfeiyu 已提交
208 209 210 211 212 213 214 215 216 217
        loader.set_batch_generator(ljspeech_loader, places=place)

        # tensorboard & checkpoint preparation
        output_dir = args.output
        ckpt_dir = os.path.join(output_dir, "checkpoints")
        log_dir = os.path.join(output_dir, "log")
        state_dir = os.path.join(output_dir, "states")
        make_output_tree(output_dir)
        writer = SummaryWriter(logdir=log_dir)

218 219 220 221 222 223
        # load parameters and optimizer, and opdate iterations done sofar
        io.load_parameters(ckpt_dir, 0, dv3, optim, file_path=args.checkpoint)
        if args.checkpoint is not None:
            iteration = int(os.path.basename(args.checkpoint).split("-")[-1])
        else:
            iteration = io.load_latest_checkpoint(ckpt_dir)
C
chenfeiyu 已提交
224 225

        # =========================train=========================
226
        max_iter = train_config["max_iteration"]
C
chenfeiyu 已提交
227 228 229 230
        snap_interval = train_config["snap_interval"]
        save_interval = train_config["save_interval"]
        eval_interval = train_config["eval_interval"]

231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
        global_step = iteration + 1
        iterator = iter(tqdm.tqdm(loader))
        while global_step <= max_iter:
            try:
                batch = next(iterator)
            except StopIteration as e:
                iterator = iter(tqdm.tqdm(loader))
                batch = next(iterator)

            dv3.train()
            (text_sequences, text_lengths, text_positions, mel_specs,
             lin_specs, frames, decoder_positions, done_flags) = batch
            downsampled_mel_specs = F.strided_slice(
                mel_specs,
                axes=[1],
                starts=[0],
                ends=[mel_specs.shape[1]],
                strides=[downsample_factor])
            mel_outputs, linear_outputs, alignments, done = dv3(
                text_sequences, text_positions, text_lengths, None,
                downsampled_mel_specs, decoder_positions)
C
chenfeiyu 已提交
252

253 254 255 256 257 258 259 260 261 262
            losses = criterion(mel_outputs, linear_outputs, done, alignments,
                               downsampled_mel_specs, lin_specs, done_flags,
                               text_lengths, frames)
            l = losses["loss"]
            l.backward()
            # record learning rate before updating
            writer.add_scalar("learning_rate",
                              optim._learning_rate.step().numpy(), global_step)
            optim.minimize(l, grad_clip=gradient_clipper)
            optim.clear_gradients()
C
chenfeiyu 已提交
263

264 265 266 267 268 269 270
            # ==================all kinds of tedious things=================
            # record step loss into tensorboard
            step_loss = {k: v.numpy()[0] for k, v in losses.items()}
            tqdm.tqdm.write("global_step: {}\tloss: {}".format(
                global_step, step_loss["loss"]))
            for k, v in step_loss.items():
                writer.add_scalar(k, v, global_step)
C
chenfeiyu 已提交
271

272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
            # train state saving, the first sentence in the batch
            if global_step % snap_interval == 0:
                save_state(
                    state_dir,
                    writer,
                    global_step,
                    mel_input=downsampled_mel_specs,
                    mel_output=mel_outputs,
                    lin_input=lin_specs,
                    lin_output=linear_outputs,
                    alignments=alignments,
                    win_length=win_length,
                    hop_length=hop_length,
                    min_level_db=min_level_db,
                    ref_level_db=ref_level_db,
                    power=power,
                    n_iter=n_iter,
                    preemphasis=preemphasis,
                    sample_rate=sample_rate)
C
chenfeiyu 已提交
291

292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
            # evaluation
            if global_step % eval_interval == 0:
                sentences = [
                    "Scientists at the CERN laboratory say they have discovered a new particle.",
                    "There's a way to measure the acute emotional intelligence that has never gone out of style.",
                    "President Trump met with other leaders at the Group of 20 conference.",
                    "Generative adversarial network or variational auto-encoder.",
                    "Please call Stella.",
                    "Some have accepted this as a miracle without any physical explanation.",
                ]
                for idx, sent in enumerate(sentences):
                    wav, attn = eval_model(
                        dv3, sent, replace_pronounciation_prob, min_level_db,
                        ref_level_db, power, n_iter, win_length, hop_length,
                        preemphasis)
                    wav_path = os.path.join(
                        state_dir, "waveform",
                        "eval_sample_{:09d}.wav".format(global_step))
                    sf.write(wav_path, wav, sample_rate)
                    writer.add_audio(
                        "eval_sample_{}".format(idx),
                        wav,
314 315
                        global_step,
                        sample_rate=sample_rate)
316 317 318 319 320 321 322 323 324
                    attn_path = os.path.join(
                        state_dir, "alignments",
                        "eval_sample_attn_{:09d}.png".format(global_step))
                    plot_alignment(attn, attn_path)
                    writer.add_image(
                        "eval_sample_attn{}".format(idx),
                        cm.viridis(attn),
                        global_step,
                        dataformats="HWC")
C
chenfeiyu 已提交
325

326 327 328 329
            # save checkpoint
            if global_step % save_interval == 0:
                io.save_latest_parameters(ckpt_dir, global_step, dv3, optim)
                io.save_latest_checkpoint(ckpt_dir, global_step)
C
chenfeiyu 已提交
330

331
            global_step += 1