train.py 13.9 KB
Newer Older
C
chenfeiyu 已提交
1 2
import os
import argparse
3
import ruamel.yaml
C
chenfeiyu 已提交
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
import numpy as np
from matplotlib import cm
import matplotlib.pyplot as plt
import tqdm
import librosa
from librosa import display
import soundfile as sf
from tensorboardX import SummaryWriter

from paddle import fluid
import paddle.fluid.layers as F
import paddle.fluid.dygraph as dg

from parakeet.g2p import en
from parakeet.data import FilterDataset, TransformDataset, FilterDataset
from parakeet.data import DataCargo, PartialyRandomizedSimilarTimeLengthSampler, SequentialSampler
20
from parakeet.models.deepvoice3 import Encoder, Decoder, Converter, DeepVoice3, ConvSpec
C
chenfeiyu 已提交
21 22 23 24
from parakeet.models.deepvoice3.loss import TTSLoss
from parakeet.utils.layer_tools import summary

from data import LJSpeechMetaData, DataCollector, Transform
25
from utils import make_model, eval_model, save_state, make_output_tree, plot_alignment
C
chenfeiyu 已提交
26 27 28 29 30

if __name__ == "__main__":
    parser = argparse.ArgumentParser(
        description="Train a deepvoice 3 model with LJSpeech dataset.")
    parser.add_argument("-c", "--config", type=str, help="experimrnt config")
31 32 33 34 35 36
    parser.add_argument(
        "-s",
        "--data",
        type=str,
        default="/workspace/datasets/LJSpeech-1.1/",
        help="The path of the LJSpeech dataset.")
C
chenfeiyu 已提交
37
    parser.add_argument("-r", "--resume", type=str, help="checkpoint to load")
38 39 40 41 42 43 44 45
    parser.add_argument(
        "-o",
        "--output",
        type=str,
        default="result",
        help="The directory to save result.")
    parser.add_argument(
        "-g", "--device", type=int, default=-1, help="device to use")
C
chenfeiyu 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
    args, _ = parser.parse_known_args()
    with open(args.config, 'rt') as f:
        config = ruamel.yaml.safe_load(f)

    # =========================dataset=========================
    # construct meta data
    data_root = args.data
    meta = LJSpeechMetaData(data_root)

    # filter it!
    min_text_length = config["meta_data"]["min_text_length"]
    meta = FilterDataset(meta, lambda x: len(x[2]) >= min_text_length)

    # transform meta data into meta data
    transform_config = config["transform"]
    replace_pronounciation_prob = transform_config[
        "replace_pronunciation_prob"]
    sample_rate = transform_config["sample_rate"]
    preemphasis = transform_config["preemphasis"]
    n_fft = transform_config["n_fft"]
    win_length = transform_config["win_length"]
    hop_length = transform_config["hop_length"]
    fmin = transform_config["fmin"]
    fmax = transform_config["fmax"]
    n_mels = transform_config["n_mels"]
    min_level_db = transform_config["min_level_db"]
    ref_level_db = transform_config["ref_level_db"]
    max_norm = transform_config["max_norm"]
    clip_norm = transform_config["clip_norm"]
    transform = Transform(replace_pronounciation_prob, sample_rate,
                          preemphasis, n_fft, win_length, hop_length, fmin,
                          fmax, n_mels, min_level_db, ref_level_db, max_norm,
                          clip_norm)
    ljspeech = TransformDataset(meta, transform)

    # =========================dataiterator=========================
    # use meta data's text length as a sort key for the sampler
    train_config = config["train"]
    batch_size = train_config["batch_size"]
    text_lengths = [len(example[2]) for example in meta]
86 87
    sampler = PartialyRandomizedSimilarTimeLengthSampler(text_lengths,
                                                         batch_size)
C
chenfeiyu 已提交
88 89 90 91 92 93

    # some hyperparameters affect how we process data, so create a data collector!
    model_config = config["model"]
    downsample_factor = model_config["downsample_factor"]
    r = model_config["outputs_per_step"]
    collector = DataCollector(downsample_factor=downsample_factor, r=r)
94 95
    ljspeech_loader = DataCargo(
        ljspeech, batch_fn=collector, batch_size=batch_size, sampler=sampler)
C
chenfeiyu 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126

    # =========================model=========================
    if args.device == -1:
        place = fluid.CPUPlace()
    else:
        place = fluid.CUDAPlace(args.device)

    with dg.guard(place):
        # =========================model=========================
        n_speakers = model_config["n_speakers"]
        speaker_dim = model_config["speaker_embed_dim"]
        speaker_embed_std = model_config["speaker_embedding_weight_std"]
        n_vocab = en.n_vocab
        embed_dim = model_config["text_embed_dim"]
        linear_dim = 1 + n_fft // 2
        use_decoder_states = model_config[
            "use_decoder_state_for_postnet_input"]
        filter_size = model_config["kernel_size"]
        encoder_channels = model_config["encoder_channels"]
        decoder_channels = model_config["decoder_channels"]
        converter_channels = model_config["converter_channels"]
        dropout = model_config["dropout"]
        padding_idx = model_config["padding_idx"]
        embedding_std = model_config["embedding_weight_std"]
        max_positions = model_config["max_positions"]
        freeze_embedding = model_config["freeze_embedding"]
        trainable_positional_encodings = model_config[
            "trainable_positional_encodings"]
        use_memory_mask = model_config["use_memory_mask"]
        query_position_rate = model_config["query_position_rate"]
        key_position_rate = model_config["key_position_rate"]
127
        window_backward = model_config["window_backward"]
C
chenfeiyu 已提交
128 129 130
        window_ahead = model_config["window_ahead"]
        key_projection = model_config["key_projection"]
        value_projection = model_config["value_projection"]
131 132 133 134 135 136 137 138
        dv3 = make_model(
            n_speakers, speaker_dim, speaker_embed_std, embed_dim, padding_idx,
            embedding_std, max_positions, n_vocab, freeze_embedding,
            filter_size, encoder_channels, n_mels, decoder_channels, r,
            trainable_positional_encodings, use_memory_mask,
            query_position_rate, key_position_rate, window_backward,
            window_ahead, key_projection, value_projection, downsample_factor,
            linear_dim, use_decoder_states, converter_channels, dropout)
C
chenfeiyu 已提交
139 140 141 142 143 144 145 146 147

        # =========================loss=========================
        loss_config = config["loss"]
        masked_weight = loss_config["masked_loss_weight"]
        priority_freq = loss_config["priority_freq"]  # Hz
        priority_bin = int(priority_freq / (0.5 * sample_rate) * linear_dim)
        priority_freq_weight = loss_config["priority_freq_weight"]
        binary_divergence_weight = loss_config["binary_divergence_weight"]
        guided_attention_sigma = loss_config["guided_attention_sigma"]
148 149 150 151 152 153 154 155
        criterion = TTSLoss(
            masked_weight=masked_weight,
            priority_bin=priority_bin,
            priority_weight=priority_freq_weight,
            binary_divergence_weight=binary_divergence_weight,
            guided_attention_sigma=guided_attention_sigma,
            downsample_factor=downsample_factor,
            r=r)
C
chenfeiyu 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168

        # =========================lr_scheduler=========================
        lr_config = config["lr_scheduler"]
        warmup_steps = lr_config["warmup_steps"]
        peak_learning_rate = lr_config["peak_learning_rate"]
        lr_scheduler = dg.NoamDecay(
            1 / (warmup_steps * (peak_learning_rate)**2), warmup_steps)

        # =========================optimizer=========================
        optim_config = config["optimizer"]
        beta1 = optim_config["beta1"]
        beta2 = optim_config["beta2"]
        epsilon = optim_config["epsilon"]
169 170 171 172 173 174
        optim = fluid.optimizer.Adam(
            lr_scheduler,
            beta1,
            beta2,
            epsilon=epsilon,
            parameter_list=dv3.parameters())
C
chenfeiyu 已提交
175 176
        gradient_clipper = fluid.dygraph_grad_clip.GradClipByGlobalNorm(0.1)

177 178 179 180 181
        # generation
        synthesis_config = config["synthesis"]
        power = synthesis_config["power"]
        n_iter = synthesis_config["n_iter"]

C
chenfeiyu 已提交
182 183
        # =========================link(dataloader, paddle)=========================
        # CAUTION: it does not return a DataLoader
184 185
        loader = fluid.io.DataLoader.from_generator(
            capacity=10, return_list=True)
C
chenfeiyu 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
        loader.set_batch_generator(ljspeech_loader, places=place)

        # tensorboard & checkpoint preparation
        output_dir = args.output
        ckpt_dir = os.path.join(output_dir, "checkpoints")
        log_dir = os.path.join(output_dir, "log")
        state_dir = os.path.join(output_dir, "states")
        make_output_tree(output_dir)
        writer = SummaryWriter(logdir=log_dir)

        # load model parameters
        resume_path = args.resume
        if resume_path is not None:
            state, _ = dg.load_dygraph(args.resume)
            dv3.set_dict(state)

        # =========================train=========================
        epoch = train_config["epochs"]
        snap_interval = train_config["snap_interval"]
        save_interval = train_config["save_interval"]
        eval_interval = train_config["eval_interval"]

        global_step = 1

        for j in range(1, 1 + epoch):
211
            epoch_loss = 0.
C
chenfeiyu 已提交
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
            for i, batch in tqdm.tqdm(enumerate(loader, 1)):
                dv3.train()  # CAUTION: don't forget to switch to train
                (text_sequences, text_lengths, text_positions, mel_specs,
                 lin_specs, frames, decoder_positions, done_flags) = batch
                downsampled_mel_specs = F.strided_slice(
                    mel_specs,
                    axes=[1],
                    starts=[0],
                    ends=[mel_specs.shape[1]],
                    strides=[downsample_factor])
                mel_outputs, linear_outputs, alignments, done = dv3(
                    text_sequences, text_positions, text_lengths, None,
                    downsampled_mel_specs, decoder_positions)

                losses = criterion(mel_outputs, linear_outputs, done,
                                   alignments, downsampled_mel_specs,
                                   lin_specs, done_flags, text_lengths, frames)
229
                l = losses["loss"]
C
chenfeiyu 已提交
230
                l.backward()
231 232 233 234
                # record learning rate before updating
                writer.add_scalar("learning_rate",
                                  optim._learning_rate.step().numpy(),
                                  global_step)
C
chenfeiyu 已提交
235
                optim.minimize(l, grad_clip=gradient_clipper)
236
                optim.clear_gradients()
C
chenfeiyu 已提交
237 238 239

                # ==================all kinds of tedious things=================
                # record step loss into tensorboard
240
                epoch_loss += l.numpy()[0]
C
chenfeiyu 已提交
241 242 243 244 245 246 247
                step_loss = {k: v.numpy()[0] for k, v in losses.items()}
                for k, v in step_loss.items():
                    writer.add_scalar(k, v, global_step)

                # TODO: clean code
                # train state saving, the first sentence in the batch
                if global_step % snap_interval == 0:
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
                    save_state(
                        state_dir,
                        writer,
                        global_step,
                        mel_input=downsampled_mel_specs,
                        mel_output=mel_outputs,
                        lin_input=lin_specs,
                        lin_output=linear_outputs,
                        alignments=alignments,
                        win_length=win_length,
                        hop_length=hop_length,
                        min_level_db=min_level_db,
                        ref_level_db=ref_level_db,
                        power=power,
                        n_iter=n_iter,
                        preemphasis=preemphasis,
                        sample_rate=sample_rate)
C
chenfeiyu 已提交
265 266 267 268 269 270 271 272 273 274 275

                # evaluation
                if global_step % eval_interval == 0:
                    sentences = [
                        "Scientists at the CERN laboratory say they have discovered a new particle.",
                        "There's a way to measure the acute emotional intelligence that has never gone out of style.",
                        "President Trump met with other leaders at the Group of 20 conference.",
                        "Generative adversarial network or variational auto-encoder.",
                        "Please call Stella.",
                        "Some have accepted this as a miracle without any physical explanation.",
                    ]
276
                    for idx, sent in enumerate(sentences):
277 278 279 280
                        wav, attn = eval_model(
                            dv3, sent, replace_pronounciation_prob,
                            min_level_db, ref_level_db, power, n_iter,
                            win_length, hop_length, preemphasis)
C
chenfeiyu 已提交
281 282 283 284
                        wav_path = os.path.join(
                            state_dir, "waveform",
                            "eval_sample_{:09d}.wav".format(global_step))
                        sf.write(wav_path, wav, sample_rate)
285 286 287 288 289
                        writer.add_audio(
                            "eval_sample_{}".format(idx),
                            wav,
                            global_step,
                            sample_rate=sample_rate)
C
chenfeiyu 已提交
290 291 292 293
                        attn_path = os.path.join(
                            state_dir, "alignments",
                            "eval_sample_attn_{:09d}.png".format(global_step))
                        plot_alignment(attn, attn_path)
294 295 296 297 298
                        writer.add_image(
                            "eval_sample_attn{}".format(idx),
                            cm.viridis(attn),
                            global_step,
                            dataformats="HWC")
C
chenfeiyu 已提交
299 300 301

                # save checkpoint
                if global_step % save_interval == 0:
302 303 304 305 306 307 308 309
                    dg.save_dygraph(
                        dv3.state_dict(),
                        os.path.join(ckpt_dir,
                                     "model_step_{}".format(global_step)))
                    dg.save_dygraph(
                        optim.state_dict(),
                        os.path.join(ckpt_dir,
                                     "model_step_{}".format(global_step)))
C
chenfeiyu 已提交
310 311 312

                global_step += 1
            # epoch report
313
            writer.add_scalar("epoch_average_loss", epoch_loss / i, j)
314
            epoch_loss = 0.