train.py 14.7 KB
Newer Older
C
chenfeiyu 已提交
1 2
import os
import argparse
3
import ruamel.yaml
C
chenfeiyu 已提交
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
import numpy as np
from matplotlib import cm
import matplotlib.pyplot as plt
import tqdm
import librosa
from librosa import display
import soundfile as sf
from tensorboardX import SummaryWriter

from paddle import fluid
import paddle.fluid.layers as F
import paddle.fluid.dygraph as dg

from parakeet.g2p import en
from parakeet.data import FilterDataset, TransformDataset, FilterDataset
from parakeet.data import DataCargo, PartialyRandomizedSimilarTimeLengthSampler, SequentialSampler
20
from parakeet.models.deepvoice3 import Encoder, Decoder, Converter, DeepVoice3, ConvSpec
C
chenfeiyu 已提交
21 22 23 24
from parakeet.models.deepvoice3.loss import TTSLoss
from parakeet.utils.layer_tools import summary

from data import LJSpeechMetaData, DataCollector, Transform
25
from utils import make_model, eval_model, save_state, make_output_tree, plot_alignment
C
chenfeiyu 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129

if __name__ == "__main__":
    parser = argparse.ArgumentParser(
        description="Train a deepvoice 3 model with LJSpeech dataset.")
    parser.add_argument("-c", "--config", type=str, help="experimrnt config")
    parser.add_argument("-s",
                        "--data",
                        type=str,
                        default="/workspace/datasets/LJSpeech-1.1/",
                        help="The path of the LJSpeech dataset.")
    parser.add_argument("-r", "--resume", type=str, help="checkpoint to load")
    parser.add_argument("-o",
                        "--output",
                        type=str,
                        default="result",
                        help="The directory to save result.")
    parser.add_argument("-g",
                        "--device",
                        type=int,
                        default=-1,
                        help="device to use")
    args, _ = parser.parse_known_args()
    with open(args.config, 'rt') as f:
        config = ruamel.yaml.safe_load(f)

    # =========================dataset=========================
    # construct meta data
    data_root = args.data
    meta = LJSpeechMetaData(data_root)

    # filter it!
    min_text_length = config["meta_data"]["min_text_length"]
    meta = FilterDataset(meta, lambda x: len(x[2]) >= min_text_length)

    # transform meta data into meta data
    transform_config = config["transform"]
    replace_pronounciation_prob = transform_config[
        "replace_pronunciation_prob"]
    sample_rate = transform_config["sample_rate"]
    preemphasis = transform_config["preemphasis"]
    n_fft = transform_config["n_fft"]
    win_length = transform_config["win_length"]
    hop_length = transform_config["hop_length"]
    fmin = transform_config["fmin"]
    fmax = transform_config["fmax"]
    n_mels = transform_config["n_mels"]
    min_level_db = transform_config["min_level_db"]
    ref_level_db = transform_config["ref_level_db"]
    max_norm = transform_config["max_norm"]
    clip_norm = transform_config["clip_norm"]
    transform = Transform(replace_pronounciation_prob, sample_rate,
                          preemphasis, n_fft, win_length, hop_length, fmin,
                          fmax, n_mels, min_level_db, ref_level_db, max_norm,
                          clip_norm)
    ljspeech = TransformDataset(meta, transform)

    # =========================dataiterator=========================
    # use meta data's text length as a sort key for the sampler
    train_config = config["train"]
    batch_size = train_config["batch_size"]
    text_lengths = [len(example[2]) for example in meta]
    sampler = PartialyRandomizedSimilarTimeLengthSampler(
        text_lengths, batch_size)

    # some hyperparameters affect how we process data, so create a data collector!
    model_config = config["model"]
    downsample_factor = model_config["downsample_factor"]
    r = model_config["outputs_per_step"]
    collector = DataCollector(downsample_factor=downsample_factor, r=r)
    ljspeech_loader = DataCargo(ljspeech,
                                batch_fn=collector,
                                batch_size=batch_size,
                                sampler=sampler)

    # =========================model=========================
    if args.device == -1:
        place = fluid.CPUPlace()
    else:
        place = fluid.CUDAPlace(args.device)

    with dg.guard(place):
        # =========================model=========================
        n_speakers = model_config["n_speakers"]
        speaker_dim = model_config["speaker_embed_dim"]
        speaker_embed_std = model_config["speaker_embedding_weight_std"]
        n_vocab = en.n_vocab
        embed_dim = model_config["text_embed_dim"]
        linear_dim = 1 + n_fft // 2
        use_decoder_states = model_config[
            "use_decoder_state_for_postnet_input"]
        filter_size = model_config["kernel_size"]
        encoder_channels = model_config["encoder_channels"]
        decoder_channels = model_config["decoder_channels"]
        converter_channels = model_config["converter_channels"]
        dropout = model_config["dropout"]
        padding_idx = model_config["padding_idx"]
        embedding_std = model_config["embedding_weight_std"]
        max_positions = model_config["max_positions"]
        freeze_embedding = model_config["freeze_embedding"]
        trainable_positional_encodings = model_config[
            "trainable_positional_encodings"]
        use_memory_mask = model_config["use_memory_mask"]
        query_position_rate = model_config["query_position_rate"]
        key_position_rate = model_config["key_position_rate"]
130
        window_backward = model_config["window_backward"]
C
chenfeiyu 已提交
131 132 133 134 135 136 137 138
        window_ahead = model_config["window_ahead"]
        key_projection = model_config["key_projection"]
        value_projection = model_config["value_projection"]
        dv3 = make_model(n_speakers, speaker_dim, speaker_embed_std, embed_dim,
                         padding_idx, embedding_std, max_positions, n_vocab,
                         freeze_embedding, filter_size, encoder_channels,
                         n_mels, decoder_channels, r,
                         trainable_positional_encodings, use_memory_mask,
139 140 141 142
                         query_position_rate, key_position_rate,
                         window_backward, window_ahead, key_projection,
                         value_projection, downsample_factor, linear_dim,
                         use_decoder_states, converter_channels, dropout)
C
chenfeiyu 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178

        # =========================loss=========================
        loss_config = config["loss"]
        masked_weight = loss_config["masked_loss_weight"]
        priority_freq = loss_config["priority_freq"]  # Hz
        priority_bin = int(priority_freq / (0.5 * sample_rate) * linear_dim)
        priority_freq_weight = loss_config["priority_freq_weight"]
        binary_divergence_weight = loss_config["binary_divergence_weight"]
        guided_attention_sigma = loss_config["guided_attention_sigma"]
        criterion = TTSLoss(masked_weight=masked_weight,
                            priority_bin=priority_bin,
                            priority_weight=priority_freq_weight,
                            binary_divergence_weight=binary_divergence_weight,
                            guided_attention_sigma=guided_attention_sigma,
                            downsample_factor=downsample_factor,
                            r=r)

        # =========================lr_scheduler=========================
        lr_config = config["lr_scheduler"]
        warmup_steps = lr_config["warmup_steps"]
        peak_learning_rate = lr_config["peak_learning_rate"]
        lr_scheduler = dg.NoamDecay(
            1 / (warmup_steps * (peak_learning_rate)**2), warmup_steps)

        # =========================optimizer=========================
        optim_config = config["optimizer"]
        beta1 = optim_config["beta1"]
        beta2 = optim_config["beta2"]
        epsilon = optim_config["epsilon"]
        optim = fluid.optimizer.Adam(lr_scheduler,
                                     beta1,
                                     beta2,
                                     epsilon=epsilon,
                                     parameter_list=dv3.parameters())
        gradient_clipper = fluid.dygraph_grad_clip.GradClipByGlobalNorm(0.1)

179 180 181 182 183
        # generation
        synthesis_config = config["synthesis"]
        power = synthesis_config["power"]
        n_iter = synthesis_config["n_iter"]

C
chenfeiyu 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
        # =========================link(dataloader, paddle)=========================
        # CAUTION: it does not return a DataLoader
        loader = fluid.io.DataLoader.from_generator(capacity=10,
                                                    return_list=True)
        loader.set_batch_generator(ljspeech_loader, places=place)

        # tensorboard & checkpoint preparation
        output_dir = args.output
        ckpt_dir = os.path.join(output_dir, "checkpoints")
        log_dir = os.path.join(output_dir, "log")
        state_dir = os.path.join(output_dir, "states")
        make_output_tree(output_dir)
        writer = SummaryWriter(logdir=log_dir)

        # load model parameters
        resume_path = args.resume
        if resume_path is not None:
            state, _ = dg.load_dygraph(args.resume)
            dv3.set_dict(state)

        # =========================train=========================
        epoch = train_config["epochs"]
        snap_interval = train_config["snap_interval"]
        save_interval = train_config["save_interval"]
        eval_interval = train_config["eval_interval"]

        global_step = 1

        for j in range(1, 1 + epoch):
213
            epoch_loss = 0.
C
chenfeiyu 已提交
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
            for i, batch in tqdm.tqdm(enumerate(loader, 1)):
                dv3.train()  # CAUTION: don't forget to switch to train
                (text_sequences, text_lengths, text_positions, mel_specs,
                 lin_specs, frames, decoder_positions, done_flags) = batch
                downsampled_mel_specs = F.strided_slice(
                    mel_specs,
                    axes=[1],
                    starts=[0],
                    ends=[mel_specs.shape[1]],
                    strides=[downsample_factor])
                mel_outputs, linear_outputs, alignments, done = dv3(
                    text_sequences, text_positions, text_lengths, None,
                    downsampled_mel_specs, decoder_positions)

                losses = criterion(mel_outputs, linear_outputs, done,
                                   alignments, downsampled_mel_specs,
                                   lin_specs, done_flags, text_lengths, frames)
231
                l = losses["loss"]
C
chenfeiyu 已提交
232
                l.backward()
233 234 235 236
                # record learning rate before updating
                writer.add_scalar("learning_rate",
                                  optim._learning_rate.step().numpy(),
                                  global_step)
C
chenfeiyu 已提交
237
                optim.minimize(l, grad_clip=gradient_clipper)
238
                optim.clear_gradients()
C
chenfeiyu 已提交
239 240 241

                # ==================all kinds of tedious things=================
                # record step loss into tensorboard
242
                epoch_loss += l.numpy()[0]
C
chenfeiyu 已提交
243 244 245 246 247 248 249 250
                step_loss = {k: v.numpy()[0] for k, v in losses.items()}
                for k, v in step_loss.items():
                    writer.add_scalar(k, v, global_step)

                # TODO: clean code
                # train state saving, the first sentence in the batch
                if global_step % snap_interval == 0:
                    save_state(state_dir,
251
                               writer,
C
chenfeiyu 已提交
252
                               global_step,
253 254 255 256 257 258 259 260 261 262 263 264 265
                               mel_input=downsampled_mel_specs,
                               mel_output=mel_outputs,
                               lin_input=lin_specs,
                               lin_output=linear_outputs,
                               alignments=alignments,
                               win_length=win_length,
                               hop_length=hop_length,
                               min_level_db=min_level_db,
                               ref_level_db=ref_level_db,
                               power=power,
                               n_iter=n_iter,
                               preemphasis=preemphasis,
                               sample_rate=sample_rate)
C
chenfeiyu 已提交
266 267 268 269 270 271 272 273 274 275 276

                # evaluation
                if global_step % eval_interval == 0:
                    sentences = [
                        "Scientists at the CERN laboratory say they have discovered a new particle.",
                        "There's a way to measure the acute emotional intelligence that has never gone out of style.",
                        "President Trump met with other leaders at the Group of 20 conference.",
                        "Generative adversarial network or variational auto-encoder.",
                        "Please call Stella.",
                        "Some have accepted this as a miracle without any physical explanation.",
                    ]
277
                    for idx, sent in enumerate(sentences):
C
chenfeiyu 已提交
278 279 280 281 282 283 284 285 286
                        wav, attn = eval_model(dv3, sent,
                                               replace_pronounciation_prob,
                                               min_level_db, ref_level_db,
                                               power, n_iter, win_length,
                                               hop_length, preemphasis)
                        wav_path = os.path.join(
                            state_dir, "waveform",
                            "eval_sample_{:09d}.wav".format(global_step))
                        sf.write(wav_path, wav, sample_rate)
287 288 289 290
                        writer.add_audio("eval_sample_{}".format(idx),
                                         wav,
                                         global_step,
                                         sample_rate=sample_rate)
C
chenfeiyu 已提交
291 292 293 294
                        attn_path = os.path.join(
                            state_dir, "alignments",
                            "eval_sample_attn_{:09d}.png".format(global_step))
                        plot_alignment(attn, attn_path)
295 296 297 298
                        writer.add_image("eval_sample_attn{}".format(idx),
                                         cm.viridis(attn),
                                         global_step,
                                         dataformats="HWC")
C
chenfeiyu 已提交
299 300 301

                # save checkpoint
                if global_step % save_interval == 0:
302 303 304 305 306 307 308 309
                    dg.save_dygraph(
                        dv3.state_dict(),
                        os.path.join(ckpt_dir,
                                     "model_step_{}".format(global_step)))
                    dg.save_dygraph(
                        optim.state_dict(),
                        os.path.join(ckpt_dir,
                                     "model_step_{}".format(global_step)))
C
chenfeiyu 已提交
310 311 312

                global_step += 1
            # epoch report
313 314
            writer.add_scalar("epoch_average_loss", epoch_loss / i, j)
            epoch_loss = 0.