train.py 14.9 KB
Newer Older
C
chenfeiyu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
import os
import argparse
import ruamel.yamls
import numpy as np
from matplotlib import cm
import matplotlib.pyplot as plt
import tqdm
import librosa
from librosa import display
import soundfile as sf
from tensorboardX import SummaryWriter

from paddle import fluid
import paddle.fluid.layers as F
import paddle.fluid.dygraph as dg

from parakeet.g2p import en
from parakeet.models.deepvoice3.encoder import ConvSpec
from parakeet.data import FilterDataset, TransformDataset, FilterDataset
from parakeet.data import DataCargo, PartialyRandomizedSimilarTimeLengthSampler, SequentialSampler
from parakeet.models.deepvoice3 import Encoder, Decoder, Converter, DeepVoice3
from parakeet.models.deepvoice3.loss import TTSLoss
from parakeet.utils.layer_tools import summary

from data import LJSpeechMetaData, DataCollector, Transform
from utils import make_model, eval_model, plot_alignment, plot_alignments, save_state, make_output_tree

if __name__ == "__main__":
    parser = argparse.ArgumentParser(
        description="Train a deepvoice 3 model with LJSpeech dataset.")
    parser.add_argument("-c", "--config", type=str, help="experimrnt config")
    parser.add_argument("-s",
                        "--data",
                        type=str,
                        default="/workspace/datasets/LJSpeech-1.1/",
                        help="The path of the LJSpeech dataset.")
    parser.add_argument("-r", "--resume", type=str, help="checkpoint to load")
    parser.add_argument("-o",
                        "--output",
                        type=str,
                        default="result",
                        help="The directory to save result.")
    parser.add_argument("-g",
                        "--device",
                        type=int,
                        default=-1,
                        help="device to use")
    args, _ = parser.parse_known_args()
    with open(args.config, 'rt') as f:
        config = ruamel.yaml.safe_load(f)

    # =========================dataset=========================
    # construct meta data
    data_root = args.data
    meta = LJSpeechMetaData(data_root)

    # filter it!
    min_text_length = config["meta_data"]["min_text_length"]
    meta = FilterDataset(meta, lambda x: len(x[2]) >= min_text_length)

    # transform meta data into meta data
    transform_config = config["transform"]
    replace_pronounciation_prob = transform_config[
        "replace_pronunciation_prob"]
    sample_rate = transform_config["sample_rate"]
    preemphasis = transform_config["preemphasis"]
    n_fft = transform_config["n_fft"]
    win_length = transform_config["win_length"]
    hop_length = transform_config["hop_length"]
    fmin = transform_config["fmin"]
    fmax = transform_config["fmax"]
    n_mels = transform_config["n_mels"]
    min_level_db = transform_config["min_level_db"]
    ref_level_db = transform_config["ref_level_db"]
    max_norm = transform_config["max_norm"]
    clip_norm = transform_config["clip_norm"]
    transform = Transform(replace_pronounciation_prob, sample_rate,
                          preemphasis, n_fft, win_length, hop_length, fmin,
                          fmax, n_mels, min_level_db, ref_level_db, max_norm,
                          clip_norm)
    ljspeech = TransformDataset(meta, transform)

    # =========================dataiterator=========================
    # use meta data's text length as a sort key for the sampler
    train_config = config["train"]
    batch_size = train_config["batch_size"]
    text_lengths = [len(example[2]) for example in meta]
    sampler = PartialyRandomizedSimilarTimeLengthSampler(
        text_lengths, batch_size)

    # some hyperparameters affect how we process data, so create a data collector!
    model_config = config["model"]
    downsample_factor = model_config["downsample_factor"]
    r = model_config["outputs_per_step"]
    collector = DataCollector(downsample_factor=downsample_factor, r=r)
    ljspeech_loader = DataCargo(ljspeech,
                                batch_fn=collector,
                                batch_size=batch_size,
                                sampler=sampler)

    # =========================model=========================
    if args.device == -1:
        place = fluid.CPUPlace()
    else:
        place = fluid.CUDAPlace(args.device)

    with dg.guard(place):
        # =========================model=========================
        n_speakers = model_config["n_speakers"]
        speaker_dim = model_config["speaker_embed_dim"]
        speaker_embed_std = model_config["speaker_embedding_weight_std"]
        n_vocab = en.n_vocab
        embed_dim = model_config["text_embed_dim"]
        linear_dim = 1 + n_fft // 2
        use_decoder_states = model_config[
            "use_decoder_state_for_postnet_input"]
        filter_size = model_config["kernel_size"]
        encoder_channels = model_config["encoder_channels"]
        decoder_channels = model_config["decoder_channels"]
        converter_channels = model_config["converter_channels"]
        dropout = model_config["dropout"]
        padding_idx = model_config["padding_idx"]
        embedding_std = model_config["embedding_weight_std"]
        max_positions = model_config["max_positions"]
        freeze_embedding = model_config["freeze_embedding"]
        trainable_positional_encodings = model_config[
            "trainable_positional_encodings"]
        use_memory_mask = model_config["use_memory_mask"]
        query_position_rate = model_config["query_position_rate"]
        key_position_rate = model_config["key_position_rate"]
        window_behind = model_config["window_behind"]
        window_ahead = model_config["window_ahead"]
        key_projection = model_config["key_projection"]
        value_projection = model_config["value_projection"]
        dv3 = make_model(n_speakers, speaker_dim, speaker_embed_std, embed_dim,
                         padding_idx, embedding_std, max_positions, n_vocab,
                         freeze_embedding, filter_size, encoder_channels,
                         n_mels, decoder_channels, r,
                         trainable_positional_encodings, use_memory_mask,
                         query_position_rate, key_position_rate, window_behind,
                         window_ahead, key_projection, value_projection,
                         downsample_factor, linear_dim, use_decoder_states,
                         converter_channels, dropout)

        # =========================loss=========================
        loss_config = config["loss"]
        masked_weight = loss_config["masked_loss_weight"]
        priority_freq = loss_config["priority_freq"]  # Hz
        priority_bin = int(priority_freq / (0.5 * sample_rate) * linear_dim)
        priority_freq_weight = loss_config["priority_freq_weight"]
        binary_divergence_weight = loss_config["binary_divergence_weight"]
        guided_attention_sigma = loss_config["guided_attention_sigma"]
        criterion = TTSLoss(masked_weight=masked_weight,
                            priority_bin=priority_bin,
                            priority_weight=priority_freq_weight,
                            binary_divergence_weight=binary_divergence_weight,
                            guided_attention_sigma=guided_attention_sigma,
                            downsample_factor=downsample_factor,
                            r=r)

        # =========================lr_scheduler=========================
        lr_config = config["lr_scheduler"]
        warmup_steps = lr_config["warmup_steps"]
        peak_learning_rate = lr_config["peak_learning_rate"]
        lr_scheduler = dg.NoamDecay(
            1 / (warmup_steps * (peak_learning_rate)**2), warmup_steps)

        # =========================optimizer=========================
        optim_config = config["optimizer"]
        beta1 = optim_config["beta1"]
        beta2 = optim_config["beta2"]
        epsilon = optim_config["epsilon"]
        optim = fluid.optimizer.Adam(lr_scheduler,
                                     beta1,
                                     beta2,
                                     epsilon=epsilon,
                                     parameter_list=dv3.parameters())
        gradient_clipper = fluid.dygraph_grad_clip.GradClipByGlobalNorm(0.1)

        # =========================link(dataloader, paddle)=========================
        # CAUTION: it does not return a DataLoader
        loader = fluid.io.DataLoader.from_generator(capacity=10,
                                                    return_list=True)
        loader.set_batch_generator(ljspeech_loader, places=place)

        # tensorboard & checkpoint preparation
        output_dir = args.output
        ckpt_dir = os.path.join(output_dir, "checkpoints")
        log_dir = os.path.join(output_dir, "log")
        state_dir = os.path.join(output_dir, "states")
        make_output_tree(output_dir)
        writer = SummaryWriter(logdir=log_dir)

        # load model parameters
        resume_path = args.resume
        if resume_path is not None:
            state, _ = dg.load_dygraph(args.resume)
            dv3.set_dict(state)

        # =========================train=========================
        epoch = train_config["epochs"]
        report_interval = train_config["report_interval"]
        snap_interval = train_config["snap_interval"]
        save_interval = train_config["save_interval"]
        eval_interval = train_config["eval_interval"]

        global_step = 1
        average_loss = {"mel": 0, "lin": 0, "done": 0, "attn": 0}

        for j in range(1, 1 + epoch):
            epoch_loss = {"mel": 0., "lin": 0., "done": 0., "attn": 0.}
            for i, batch in tqdm.tqdm(enumerate(loader, 1)):
                dv3.train()  # CAUTION: don't forget to switch to train
                (text_sequences, text_lengths, text_positions, mel_specs,
                 lin_specs, frames, decoder_positions, done_flags) = batch
                downsampled_mel_specs = F.strided_slice(
                    mel_specs,
                    axes=[1],
                    starts=[0],
                    ends=[mel_specs.shape[1]],
                    strides=[downsample_factor])
                mel_outputs, linear_outputs, alignments, done = dv3(
                    text_sequences, text_positions, text_lengths, None,
                    downsampled_mel_specs, decoder_positions)

                losses = criterion(mel_outputs, linear_outputs, done,
                                   alignments, downsampled_mel_specs,
                                   lin_specs, done_flags, text_lengths, frames)
                l = criterion.compose_loss(losses)
                l.backward()
                optim.minimize(l, grad_clip=gradient_clipper)
                dv3.clear_gradients()

                # ==================all kinds of tedious things=================
                for k in epoch_loss.keys():
                    epoch_loss[k] += losses[k].numpy()[0]
                    average_loss[k] += losses[k].numpy()[0]

                # record step loss into tensorboard
                step_loss = {k: v.numpy()[0] for k, v in losses.items()}
                for k, v in step_loss.items():
                    writer.add_scalar(k, v, global_step)

                # TODO: clean code
                # train state saving, the first sentence in the batch
                if global_step % snap_interval == 0:
                    linear_outputs_np = linear_outputs.numpy()[0].T
                    denoramlized = np.clip(linear_outputs_np, 0, 1) \
                                 * (-min_level_db) \
                                 + min_level_db
                    lin_scaled = np.exp(
                        (denoramlized + ref_level_db) / 20 * np.log(10))
                    synthesis_config = config["synthesis"]
                    power = synthesis_config["power"]
                    n_iter = synthesis_config["n_iter"]
                    wav = librosa.griffinlim(lin_scaled**power,
                                             n_iter=n_iter,
                                             hop_length=hop_length,
                                             win_length=win_length)

                    save_state(state_dir,
                               global_step,
                               mel_input=mel_specs.numpy()[0].T,
                               mel_output=mel_outputs.numpy()[0].T,
                               lin_input=lin_specs.numpy()[0].T,
                               lin_output=linear_outputs.numpy()[0].T,
                               alignments=alignments.numpy()[:, 0, :, :],
                               wav=wav)

                # evaluation
                if global_step % eval_interval == 0:
                    sentences = [
                        "Scientists at the CERN laboratory say they have discovered a new particle.",
                        "There's a way to measure the acute emotional intelligence that has never gone out of style.",
                        "President Trump met with other leaders at the Group of 20 conference.",
                        "Generative adversarial network or variational auto-encoder.",
                        "Please call Stella.",
                        "Some have accepted this as a miracle without any physical explanation.",
                    ]
                    for idx, sent in sentences:
                        wav, attn = eval_model(dv3, sent,
                                               replace_pronounciation_prob,
                                               min_level_db, ref_level_db,
                                               power, n_iter, win_length,
                                               hop_length, preemphasis)
                        wav_path = os.path.join(
                            state_dir, "waveform",
                            "eval_sample_{:09d}.wav".format(global_step))
                        sf.write(wav_path, wav, sample_rate)
                        attn_path = os.path.join(
                            state_dir, "alignments",
                            "eval_sample_attn_{:09d}.png".format(global_step))
                        plot_alignment(attn, attn_path)

                # save checkpoint
                if global_step % save_interval == 0:
                    dg.save_dygraph(dv3.state_dict(),
                                    os.path.join(ckpt_dir, "dv3"))
                    dg.save_dygraph(optim.state_dict(),
                                    os.path.join(ckpt_dir, "dv3"))

                # report average loss
                if global_step % report_interval == 0:
                    for k in epoch_loss.keys():
                        average_loss[k] /= report_interval
                    print("[average_loss] ",
                          "global_step: {}".format(global_step), average_loss)
                    average_loss = {"mel": 0, "lin": 0, "done": 0, "attn": 0}

                global_step += 1
            # epoch report
            for k in epoch_loss.keys():
                epoch_loss[k] /= i
            print("[epoch_loss] ", "epoch: {}".format(j), epoch_loss)