train.py 14.5 KB
Newer Older
L
lifuchen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

C
chenfeiyu 已提交
15 16
import os
import argparse
17
import ruamel.yaml
C
chenfeiyu 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
import numpy as np
from matplotlib import cm
import matplotlib.pyplot as plt
import tqdm
import librosa
from librosa import display
import soundfile as sf
from tensorboardX import SummaryWriter

from paddle import fluid
import paddle.fluid.layers as F
import paddle.fluid.dygraph as dg

from parakeet.g2p import en
from parakeet.data import FilterDataset, TransformDataset, FilterDataset
from parakeet.data import DataCargo, PartialyRandomizedSimilarTimeLengthSampler, SequentialSampler
34
from parakeet.models.deepvoice3 import Encoder, Decoder, Converter, DeepVoice3, ConvSpec
C
chenfeiyu 已提交
35 36 37 38
from parakeet.models.deepvoice3.loss import TTSLoss
from parakeet.utils.layer_tools import summary

from data import LJSpeechMetaData, DataCollector, Transform
39
from utils import make_model, eval_model, save_state, make_output_tree, plot_alignment
C
chenfeiyu 已提交
40 41 42 43 44

if __name__ == "__main__":
    parser = argparse.ArgumentParser(
        description="Train a deepvoice 3 model with LJSpeech dataset.")
    parser.add_argument("-c", "--config", type=str, help="experimrnt config")
45 46 47 48 49 50
    parser.add_argument(
        "-s",
        "--data",
        type=str,
        default="/workspace/datasets/LJSpeech-1.1/",
        help="The path of the LJSpeech dataset.")
C
chenfeiyu 已提交
51
    parser.add_argument("-r", "--resume", type=str, help="checkpoint to load")
52 53 54 55 56 57 58 59
    parser.add_argument(
        "-o",
        "--output",
        type=str,
        default="result",
        help="The directory to save result.")
    parser.add_argument(
        "-g", "--device", type=int, default=-1, help="device to use")
C
chenfeiyu 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
    args, _ = parser.parse_known_args()
    with open(args.config, 'rt') as f:
        config = ruamel.yaml.safe_load(f)

    # =========================dataset=========================
    # construct meta data
    data_root = args.data
    meta = LJSpeechMetaData(data_root)

    # filter it!
    min_text_length = config["meta_data"]["min_text_length"]
    meta = FilterDataset(meta, lambda x: len(x[2]) >= min_text_length)

    # transform meta data into meta data
    transform_config = config["transform"]
    replace_pronounciation_prob = transform_config[
        "replace_pronunciation_prob"]
    sample_rate = transform_config["sample_rate"]
    preemphasis = transform_config["preemphasis"]
    n_fft = transform_config["n_fft"]
    win_length = transform_config["win_length"]
    hop_length = transform_config["hop_length"]
    fmin = transform_config["fmin"]
    fmax = transform_config["fmax"]
    n_mels = transform_config["n_mels"]
    min_level_db = transform_config["min_level_db"]
    ref_level_db = transform_config["ref_level_db"]
    max_norm = transform_config["max_norm"]
    clip_norm = transform_config["clip_norm"]
    transform = Transform(replace_pronounciation_prob, sample_rate,
                          preemphasis, n_fft, win_length, hop_length, fmin,
                          fmax, n_mels, min_level_db, ref_level_db, max_norm,
                          clip_norm)
    ljspeech = TransformDataset(meta, transform)

    # =========================dataiterator=========================
    # use meta data's text length as a sort key for the sampler
    train_config = config["train"]
    batch_size = train_config["batch_size"]
    text_lengths = [len(example[2]) for example in meta]
100 101
    sampler = PartialyRandomizedSimilarTimeLengthSampler(text_lengths,
                                                         batch_size)
C
chenfeiyu 已提交
102 103 104 105 106 107

    # some hyperparameters affect how we process data, so create a data collector!
    model_config = config["model"]
    downsample_factor = model_config["downsample_factor"]
    r = model_config["outputs_per_step"]
    collector = DataCollector(downsample_factor=downsample_factor, r=r)
108 109
    ljspeech_loader = DataCargo(
        ljspeech, batch_fn=collector, batch_size=batch_size, sampler=sampler)
C
chenfeiyu 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140

    # =========================model=========================
    if args.device == -1:
        place = fluid.CPUPlace()
    else:
        place = fluid.CUDAPlace(args.device)

    with dg.guard(place):
        # =========================model=========================
        n_speakers = model_config["n_speakers"]
        speaker_dim = model_config["speaker_embed_dim"]
        speaker_embed_std = model_config["speaker_embedding_weight_std"]
        n_vocab = en.n_vocab
        embed_dim = model_config["text_embed_dim"]
        linear_dim = 1 + n_fft // 2
        use_decoder_states = model_config[
            "use_decoder_state_for_postnet_input"]
        filter_size = model_config["kernel_size"]
        encoder_channels = model_config["encoder_channels"]
        decoder_channels = model_config["decoder_channels"]
        converter_channels = model_config["converter_channels"]
        dropout = model_config["dropout"]
        padding_idx = model_config["padding_idx"]
        embedding_std = model_config["embedding_weight_std"]
        max_positions = model_config["max_positions"]
        freeze_embedding = model_config["freeze_embedding"]
        trainable_positional_encodings = model_config[
            "trainable_positional_encodings"]
        use_memory_mask = model_config["use_memory_mask"]
        query_position_rate = model_config["query_position_rate"]
        key_position_rate = model_config["key_position_rate"]
141
        window_backward = model_config["window_backward"]
C
chenfeiyu 已提交
142 143 144
        window_ahead = model_config["window_ahead"]
        key_projection = model_config["key_projection"]
        value_projection = model_config["value_projection"]
145 146 147 148 149 150 151 152
        dv3 = make_model(
            n_speakers, speaker_dim, speaker_embed_std, embed_dim, padding_idx,
            embedding_std, max_positions, n_vocab, freeze_embedding,
            filter_size, encoder_channels, n_mels, decoder_channels, r,
            trainable_positional_encodings, use_memory_mask,
            query_position_rate, key_position_rate, window_backward,
            window_ahead, key_projection, value_projection, downsample_factor,
            linear_dim, use_decoder_states, converter_channels, dropout)
C
chenfeiyu 已提交
153 154 155 156 157 158 159 160 161

        # =========================loss=========================
        loss_config = config["loss"]
        masked_weight = loss_config["masked_loss_weight"]
        priority_freq = loss_config["priority_freq"]  # Hz
        priority_bin = int(priority_freq / (0.5 * sample_rate) * linear_dim)
        priority_freq_weight = loss_config["priority_freq_weight"]
        binary_divergence_weight = loss_config["binary_divergence_weight"]
        guided_attention_sigma = loss_config["guided_attention_sigma"]
162 163 164 165 166 167 168 169
        criterion = TTSLoss(
            masked_weight=masked_weight,
            priority_bin=priority_bin,
            priority_weight=priority_freq_weight,
            binary_divergence_weight=binary_divergence_weight,
            guided_attention_sigma=guided_attention_sigma,
            downsample_factor=downsample_factor,
            r=r)
C
chenfeiyu 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182

        # =========================lr_scheduler=========================
        lr_config = config["lr_scheduler"]
        warmup_steps = lr_config["warmup_steps"]
        peak_learning_rate = lr_config["peak_learning_rate"]
        lr_scheduler = dg.NoamDecay(
            1 / (warmup_steps * (peak_learning_rate)**2), warmup_steps)

        # =========================optimizer=========================
        optim_config = config["optimizer"]
        beta1 = optim_config["beta1"]
        beta2 = optim_config["beta2"]
        epsilon = optim_config["epsilon"]
183 184 185 186 187 188
        optim = fluid.optimizer.Adam(
            lr_scheduler,
            beta1,
            beta2,
            epsilon=epsilon,
            parameter_list=dv3.parameters())
C
chenfeiyu 已提交
189 190
        gradient_clipper = fluid.dygraph_grad_clip.GradClipByGlobalNorm(0.1)

191 192 193 194 195
        # generation
        synthesis_config = config["synthesis"]
        power = synthesis_config["power"]
        n_iter = synthesis_config["n_iter"]

C
chenfeiyu 已提交
196 197
        # =========================link(dataloader, paddle)=========================
        # CAUTION: it does not return a DataLoader
198 199
        loader = fluid.io.DataLoader.from_generator(
            capacity=10, return_list=True)
C
chenfeiyu 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
        loader.set_batch_generator(ljspeech_loader, places=place)

        # tensorboard & checkpoint preparation
        output_dir = args.output
        ckpt_dir = os.path.join(output_dir, "checkpoints")
        log_dir = os.path.join(output_dir, "log")
        state_dir = os.path.join(output_dir, "states")
        make_output_tree(output_dir)
        writer = SummaryWriter(logdir=log_dir)

        # load model parameters
        resume_path = args.resume
        if resume_path is not None:
            state, _ = dg.load_dygraph(args.resume)
            dv3.set_dict(state)

        # =========================train=========================
        epoch = train_config["epochs"]
        snap_interval = train_config["snap_interval"]
        save_interval = train_config["save_interval"]
        eval_interval = train_config["eval_interval"]

        global_step = 1

        for j in range(1, 1 + epoch):
225
            epoch_loss = 0.
C
chenfeiyu 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
            for i, batch in tqdm.tqdm(enumerate(loader, 1)):
                dv3.train()  # CAUTION: don't forget to switch to train
                (text_sequences, text_lengths, text_positions, mel_specs,
                 lin_specs, frames, decoder_positions, done_flags) = batch
                downsampled_mel_specs = F.strided_slice(
                    mel_specs,
                    axes=[1],
                    starts=[0],
                    ends=[mel_specs.shape[1]],
                    strides=[downsample_factor])
                mel_outputs, linear_outputs, alignments, done = dv3(
                    text_sequences, text_positions, text_lengths, None,
                    downsampled_mel_specs, decoder_positions)

                losses = criterion(mel_outputs, linear_outputs, done,
                                   alignments, downsampled_mel_specs,
                                   lin_specs, done_flags, text_lengths, frames)
243
                l = losses["loss"]
C
chenfeiyu 已提交
244
                l.backward()
245 246 247 248
                # record learning rate before updating
                writer.add_scalar("learning_rate",
                                  optim._learning_rate.step().numpy(),
                                  global_step)
C
chenfeiyu 已提交
249
                optim.minimize(l, grad_clip=gradient_clipper)
250
                optim.clear_gradients()
C
chenfeiyu 已提交
251 252 253

                # ==================all kinds of tedious things=================
                # record step loss into tensorboard
254
                epoch_loss += l.numpy()[0]
C
chenfeiyu 已提交
255 256 257 258 259 260 261
                step_loss = {k: v.numpy()[0] for k, v in losses.items()}
                for k, v in step_loss.items():
                    writer.add_scalar(k, v, global_step)

                # TODO: clean code
                # train state saving, the first sentence in the batch
                if global_step % snap_interval == 0:
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
                    save_state(
                        state_dir,
                        writer,
                        global_step,
                        mel_input=downsampled_mel_specs,
                        mel_output=mel_outputs,
                        lin_input=lin_specs,
                        lin_output=linear_outputs,
                        alignments=alignments,
                        win_length=win_length,
                        hop_length=hop_length,
                        min_level_db=min_level_db,
                        ref_level_db=ref_level_db,
                        power=power,
                        n_iter=n_iter,
                        preemphasis=preemphasis,
                        sample_rate=sample_rate)
C
chenfeiyu 已提交
279 280 281 282 283 284 285 286 287 288 289

                # evaluation
                if global_step % eval_interval == 0:
                    sentences = [
                        "Scientists at the CERN laboratory say they have discovered a new particle.",
                        "There's a way to measure the acute emotional intelligence that has never gone out of style.",
                        "President Trump met with other leaders at the Group of 20 conference.",
                        "Generative adversarial network or variational auto-encoder.",
                        "Please call Stella.",
                        "Some have accepted this as a miracle without any physical explanation.",
                    ]
290
                    for idx, sent in enumerate(sentences):
291 292 293 294
                        wav, attn = eval_model(
                            dv3, sent, replace_pronounciation_prob,
                            min_level_db, ref_level_db, power, n_iter,
                            win_length, hop_length, preemphasis)
C
chenfeiyu 已提交
295 296 297 298
                        wav_path = os.path.join(
                            state_dir, "waveform",
                            "eval_sample_{:09d}.wav".format(global_step))
                        sf.write(wav_path, wav, sample_rate)
299 300 301 302 303
                        writer.add_audio(
                            "eval_sample_{}".format(idx),
                            wav,
                            global_step,
                            sample_rate=sample_rate)
C
chenfeiyu 已提交
304 305 306 307
                        attn_path = os.path.join(
                            state_dir, "alignments",
                            "eval_sample_attn_{:09d}.png".format(global_step))
                        plot_alignment(attn, attn_path)
308 309 310 311 312
                        writer.add_image(
                            "eval_sample_attn{}".format(idx),
                            cm.viridis(attn),
                            global_step,
                            dataformats="HWC")
C
chenfeiyu 已提交
313 314 315

                # save checkpoint
                if global_step % save_interval == 0:
316 317 318 319 320 321 322 323
                    dg.save_dygraph(
                        dv3.state_dict(),
                        os.path.join(ckpt_dir,
                                     "model_step_{}".format(global_step)))
                    dg.save_dygraph(
                        optim.state_dict(),
                        os.path.join(ckpt_dir,
                                     "model_step_{}".format(global_step)))
C
chenfeiyu 已提交
324 325 326

                global_step += 1
            # epoch report
327
            writer.add_scalar("epoch_average_loss", epoch_loss / i, j)
328
            epoch_loss = 0.