train.py 14.5 KB
Newer Older
L
lifuchen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import division
C
chenfeiyu 已提交
16 17
import os
import argparse
18
import ruamel.yaml
C
chenfeiyu 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
import numpy as np
from matplotlib import cm
import matplotlib.pyplot as plt
import tqdm
import librosa
from librosa import display
import soundfile as sf
from tensorboardX import SummaryWriter

from paddle import fluid
import paddle.fluid.layers as F
import paddle.fluid.dygraph as dg

from parakeet.g2p import en
from parakeet.data import FilterDataset, TransformDataset, FilterDataset
from parakeet.data import DataCargo, PartialyRandomizedSimilarTimeLengthSampler, SequentialSampler
35
from parakeet.models.deepvoice3 import Encoder, Decoder, Converter, DeepVoice3, ConvSpec
C
chenfeiyu 已提交
36 37 38 39
from parakeet.models.deepvoice3.loss import TTSLoss
from parakeet.utils.layer_tools import summary

from data import LJSpeechMetaData, DataCollector, Transform
40
from utils import make_model, eval_model, save_state, make_output_tree, plot_alignment
C
chenfeiyu 已提交
41 42 43 44 45

if __name__ == "__main__":
    parser = argparse.ArgumentParser(
        description="Train a deepvoice 3 model with LJSpeech dataset.")
    parser.add_argument("-c", "--config", type=str, help="experimrnt config")
46 47 48 49 50 51
    parser.add_argument(
        "-s",
        "--data",
        type=str,
        default="/workspace/datasets/LJSpeech-1.1/",
        help="The path of the LJSpeech dataset.")
C
chenfeiyu 已提交
52
    parser.add_argument("-r", "--resume", type=str, help="checkpoint to load")
53 54 55 56 57 58 59 60
    parser.add_argument(
        "-o",
        "--output",
        type=str,
        default="result",
        help="The directory to save result.")
    parser.add_argument(
        "-g", "--device", type=int, default=-1, help="device to use")
C
chenfeiyu 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
    args, _ = parser.parse_known_args()
    with open(args.config, 'rt') as f:
        config = ruamel.yaml.safe_load(f)

    # =========================dataset=========================
    # construct meta data
    data_root = args.data
    meta = LJSpeechMetaData(data_root)

    # filter it!
    min_text_length = config["meta_data"]["min_text_length"]
    meta = FilterDataset(meta, lambda x: len(x[2]) >= min_text_length)

    # transform meta data into meta data
    transform_config = config["transform"]
    replace_pronounciation_prob = transform_config[
        "replace_pronunciation_prob"]
    sample_rate = transform_config["sample_rate"]
    preemphasis = transform_config["preemphasis"]
    n_fft = transform_config["n_fft"]
    win_length = transform_config["win_length"]
    hop_length = transform_config["hop_length"]
    fmin = transform_config["fmin"]
    fmax = transform_config["fmax"]
    n_mels = transform_config["n_mels"]
    min_level_db = transform_config["min_level_db"]
    ref_level_db = transform_config["ref_level_db"]
    max_norm = transform_config["max_norm"]
    clip_norm = transform_config["clip_norm"]
    transform = Transform(replace_pronounciation_prob, sample_rate,
                          preemphasis, n_fft, win_length, hop_length, fmin,
                          fmax, n_mels, min_level_db, ref_level_db, max_norm,
                          clip_norm)
    ljspeech = TransformDataset(meta, transform)

    # =========================dataiterator=========================
    # use meta data's text length as a sort key for the sampler
    train_config = config["train"]
    batch_size = train_config["batch_size"]
    text_lengths = [len(example[2]) for example in meta]
101 102
    sampler = PartialyRandomizedSimilarTimeLengthSampler(text_lengths,
                                                         batch_size)
C
chenfeiyu 已提交
103 104 105 106 107 108

    # some hyperparameters affect how we process data, so create a data collector!
    model_config = config["model"]
    downsample_factor = model_config["downsample_factor"]
    r = model_config["outputs_per_step"]
    collector = DataCollector(downsample_factor=downsample_factor, r=r)
109 110
    ljspeech_loader = DataCargo(
        ljspeech, batch_fn=collector, batch_size=batch_size, sampler=sampler)
C
chenfeiyu 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141

    # =========================model=========================
    if args.device == -1:
        place = fluid.CPUPlace()
    else:
        place = fluid.CUDAPlace(args.device)

    with dg.guard(place):
        # =========================model=========================
        n_speakers = model_config["n_speakers"]
        speaker_dim = model_config["speaker_embed_dim"]
        speaker_embed_std = model_config["speaker_embedding_weight_std"]
        n_vocab = en.n_vocab
        embed_dim = model_config["text_embed_dim"]
        linear_dim = 1 + n_fft // 2
        use_decoder_states = model_config[
            "use_decoder_state_for_postnet_input"]
        filter_size = model_config["kernel_size"]
        encoder_channels = model_config["encoder_channels"]
        decoder_channels = model_config["decoder_channels"]
        converter_channels = model_config["converter_channels"]
        dropout = model_config["dropout"]
        padding_idx = model_config["padding_idx"]
        embedding_std = model_config["embedding_weight_std"]
        max_positions = model_config["max_positions"]
        freeze_embedding = model_config["freeze_embedding"]
        trainable_positional_encodings = model_config[
            "trainable_positional_encodings"]
        use_memory_mask = model_config["use_memory_mask"]
        query_position_rate = model_config["query_position_rate"]
        key_position_rate = model_config["key_position_rate"]
142
        window_backward = model_config["window_backward"]
C
chenfeiyu 已提交
143 144 145
        window_ahead = model_config["window_ahead"]
        key_projection = model_config["key_projection"]
        value_projection = model_config["value_projection"]
146 147 148 149 150 151 152 153
        dv3 = make_model(
            n_speakers, speaker_dim, speaker_embed_std, embed_dim, padding_idx,
            embedding_std, max_positions, n_vocab, freeze_embedding,
            filter_size, encoder_channels, n_mels, decoder_channels, r,
            trainable_positional_encodings, use_memory_mask,
            query_position_rate, key_position_rate, window_backward,
            window_ahead, key_projection, value_projection, downsample_factor,
            linear_dim, use_decoder_states, converter_channels, dropout)
C
chenfeiyu 已提交
154 155 156 157 158 159 160 161 162

        # =========================loss=========================
        loss_config = config["loss"]
        masked_weight = loss_config["masked_loss_weight"]
        priority_freq = loss_config["priority_freq"]  # Hz
        priority_bin = int(priority_freq / (0.5 * sample_rate) * linear_dim)
        priority_freq_weight = loss_config["priority_freq_weight"]
        binary_divergence_weight = loss_config["binary_divergence_weight"]
        guided_attention_sigma = loss_config["guided_attention_sigma"]
163 164 165 166 167 168 169 170
        criterion = TTSLoss(
            masked_weight=masked_weight,
            priority_bin=priority_bin,
            priority_weight=priority_freq_weight,
            binary_divergence_weight=binary_divergence_weight,
            guided_attention_sigma=guided_attention_sigma,
            downsample_factor=downsample_factor,
            r=r)
C
chenfeiyu 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183

        # =========================lr_scheduler=========================
        lr_config = config["lr_scheduler"]
        warmup_steps = lr_config["warmup_steps"]
        peak_learning_rate = lr_config["peak_learning_rate"]
        lr_scheduler = dg.NoamDecay(
            1 / (warmup_steps * (peak_learning_rate)**2), warmup_steps)

        # =========================optimizer=========================
        optim_config = config["optimizer"]
        beta1 = optim_config["beta1"]
        beta2 = optim_config["beta2"]
        epsilon = optim_config["epsilon"]
184 185 186 187 188 189
        optim = fluid.optimizer.Adam(
            lr_scheduler,
            beta1,
            beta2,
            epsilon=epsilon,
            parameter_list=dv3.parameters())
C
chenfeiyu 已提交
190 191
        gradient_clipper = fluid.dygraph_grad_clip.GradClipByGlobalNorm(0.1)

192 193 194 195 196
        # generation
        synthesis_config = config["synthesis"]
        power = synthesis_config["power"]
        n_iter = synthesis_config["n_iter"]

C
chenfeiyu 已提交
197 198
        # =========================link(dataloader, paddle)=========================
        # CAUTION: it does not return a DataLoader
199 200
        loader = fluid.io.DataLoader.from_generator(
            capacity=10, return_list=True)
C
chenfeiyu 已提交
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
        loader.set_batch_generator(ljspeech_loader, places=place)

        # tensorboard & checkpoint preparation
        output_dir = args.output
        ckpt_dir = os.path.join(output_dir, "checkpoints")
        log_dir = os.path.join(output_dir, "log")
        state_dir = os.path.join(output_dir, "states")
        make_output_tree(output_dir)
        writer = SummaryWriter(logdir=log_dir)

        # load model parameters
        resume_path = args.resume
        if resume_path is not None:
            state, _ = dg.load_dygraph(args.resume)
            dv3.set_dict(state)

        # =========================train=========================
        epoch = train_config["epochs"]
        snap_interval = train_config["snap_interval"]
        save_interval = train_config["save_interval"]
        eval_interval = train_config["eval_interval"]

        global_step = 1

        for j in range(1, 1 + epoch):
226
            epoch_loss = 0.
C
chenfeiyu 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
            for i, batch in tqdm.tqdm(enumerate(loader, 1)):
                dv3.train()  # CAUTION: don't forget to switch to train
                (text_sequences, text_lengths, text_positions, mel_specs,
                 lin_specs, frames, decoder_positions, done_flags) = batch
                downsampled_mel_specs = F.strided_slice(
                    mel_specs,
                    axes=[1],
                    starts=[0],
                    ends=[mel_specs.shape[1]],
                    strides=[downsample_factor])
                mel_outputs, linear_outputs, alignments, done = dv3(
                    text_sequences, text_positions, text_lengths, None,
                    downsampled_mel_specs, decoder_positions)

                losses = criterion(mel_outputs, linear_outputs, done,
                                   alignments, downsampled_mel_specs,
                                   lin_specs, done_flags, text_lengths, frames)
244
                l = losses["loss"]
C
chenfeiyu 已提交
245
                l.backward()
246 247 248 249
                # record learning rate before updating
                writer.add_scalar("learning_rate",
                                  optim._learning_rate.step().numpy(),
                                  global_step)
C
chenfeiyu 已提交
250
                optim.minimize(l, grad_clip=gradient_clipper)
251
                optim.clear_gradients()
C
chenfeiyu 已提交
252 253 254

                # ==================all kinds of tedious things=================
                # record step loss into tensorboard
255
                epoch_loss += l.numpy()[0]
C
chenfeiyu 已提交
256 257 258 259 260 261 262
                step_loss = {k: v.numpy()[0] for k, v in losses.items()}
                for k, v in step_loss.items():
                    writer.add_scalar(k, v, global_step)

                # TODO: clean code
                # train state saving, the first sentence in the batch
                if global_step % snap_interval == 0:
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
                    save_state(
                        state_dir,
                        writer,
                        global_step,
                        mel_input=downsampled_mel_specs,
                        mel_output=mel_outputs,
                        lin_input=lin_specs,
                        lin_output=linear_outputs,
                        alignments=alignments,
                        win_length=win_length,
                        hop_length=hop_length,
                        min_level_db=min_level_db,
                        ref_level_db=ref_level_db,
                        power=power,
                        n_iter=n_iter,
                        preemphasis=preemphasis,
                        sample_rate=sample_rate)
C
chenfeiyu 已提交
280 281 282 283 284 285 286 287 288 289 290

                # evaluation
                if global_step % eval_interval == 0:
                    sentences = [
                        "Scientists at the CERN laboratory say they have discovered a new particle.",
                        "There's a way to measure the acute emotional intelligence that has never gone out of style.",
                        "President Trump met with other leaders at the Group of 20 conference.",
                        "Generative adversarial network or variational auto-encoder.",
                        "Please call Stella.",
                        "Some have accepted this as a miracle without any physical explanation.",
                    ]
291
                    for idx, sent in enumerate(sentences):
292 293 294 295
                        wav, attn = eval_model(
                            dv3, sent, replace_pronounciation_prob,
                            min_level_db, ref_level_db, power, n_iter,
                            win_length, hop_length, preemphasis)
C
chenfeiyu 已提交
296 297 298 299
                        wav_path = os.path.join(
                            state_dir, "waveform",
                            "eval_sample_{:09d}.wav".format(global_step))
                        sf.write(wav_path, wav, sample_rate)
300 301 302 303 304
                        writer.add_audio(
                            "eval_sample_{}".format(idx),
                            wav,
                            global_step,
                            sample_rate=sample_rate)
C
chenfeiyu 已提交
305 306 307 308
                        attn_path = os.path.join(
                            state_dir, "alignments",
                            "eval_sample_attn_{:09d}.png".format(global_step))
                        plot_alignment(attn, attn_path)
309 310 311 312 313
                        writer.add_image(
                            "eval_sample_attn{}".format(idx),
                            cm.viridis(attn),
                            global_step,
                            dataformats="HWC")
C
chenfeiyu 已提交
314 315 316

                # save checkpoint
                if global_step % save_interval == 0:
317 318 319 320 321 322 323 324
                    dg.save_dygraph(
                        dv3.state_dict(),
                        os.path.join(ckpt_dir,
                                     "model_step_{}".format(global_step)))
                    dg.save_dygraph(
                        optim.state_dict(),
                        os.path.join(ckpt_dir,
                                     "model_step_{}".format(global_step)))
C
chenfeiyu 已提交
325 326 327

                global_step += 1
            # epoch report
328
            writer.add_scalar("epoch_average_loss", epoch_loss / i, j)
329
            epoch_loss = 0.