paddlex.cpp 29.6 KB
Newer Older
C
Channingss 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
//   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
J
jack 已提交
14
#include <omp.h>
J
jack 已提交
15
#include <algorithm>
J
jack 已提交
16
#include <fstream>
J
jack 已提交
17
#include <cstring>
J
jack 已提交
18
#include "include/paddlex/paddlex.h"
C
Channingss 已提交
19 20 21 22
namespace PaddleX {

void Model::create_predictor(const std::string& model_dir,
                             bool use_gpu,
C
Channingss 已提交
23
                             bool use_trt,
C
Channingss 已提交
24
                             int gpu_id,
J
jack 已提交
25 26
                             std::string key,
                             bool use_ir_optim) {
C
Channingss 已提交
27 28 29
  paddle::AnalysisConfig config;
  std::string model_file = model_dir + OS_PATH_SEP + "__model__";
  std::string params_file = model_dir + OS_PATH_SEP + "__params__";
J
jack 已提交
30
  std::string yaml_file = model_dir + OS_PATH_SEP + "model.yml";
J
jack 已提交
31
  std::string yaml_input = "";
C
Channingss 已提交
32
#ifdef WITH_ENCRYPTION
J
jack 已提交
33
  if (key != "") {
F
FlyingQianMM 已提交
34 35
    model_file = model_dir + OS_PATH_SEP + "__model__.encrypted";
    params_file = model_dir + OS_PATH_SEP + "__params__.encrypted";
J
jack 已提交
36
    yaml_file = model_dir + OS_PATH_SEP + "model.yml.encrypted";
J
jack 已提交
37 38
    paddle_security_load_model(
        &config, key.c_str(), model_file.c_str(), params_file.c_str());
J
jack 已提交
39
    yaml_input = decrypt_file(yaml_file.c_str(), key.c_str());
C
Channingss 已提交
40 41
  }
#endif
J
jack 已提交
42 43 44 45 46 47 48 49 50 51 52
  if (yaml_input == "") {
    // 读取配置文件
    std::ifstream yaml_fin(yaml_file);
    yaml_fin.seekg(0, std::ios::end);
    size_t yaml_file_size = yaml_fin.tellg();
    yaml_input.assign(yaml_file_size, ' ');
    yaml_fin.seekg(0);
    yaml_fin.read(&yaml_input[0], yaml_file_size);
  }
  // 读取配置文件内容
  if (!load_config(yaml_input)) {
J
jack 已提交
53 54 55 56
    std::cerr << "Parse file 'model.yml' failed!" << std::endl;
    exit(-1);
  }

J
jack 已提交
57
  if (key == "") {
C
Channingss 已提交
58 59
    config.SetModel(model_file, params_file);
  }
C
Channingss 已提交
60 61 62 63 64 65 66
  if (use_gpu) {
    config.EnableUseGpu(100, gpu_id);
  } else {
    config.DisableGpu();
  }
  config.SwitchUseFeedFetchOps(false);
  config.SwitchSpecifyInputNames(true);
J
jack 已提交
67
  // 开启图优化
F
FlyingQianMM 已提交
68 69 70
#if defined(__arm__) || defined(__aarch64__)
  config.SwitchIrOptim(false);
#else
J
jack 已提交
71
  config.SwitchIrOptim(use_ir_optim);
F
FlyingQianMM 已提交
72
#endif
C
Channingss 已提交
73 74
  // 开启内存优化
  config.EnableMemoryOptim();
C
Channingss 已提交
75 76 77 78 79 80 81 82
  if (use_trt) {
    config.EnableTensorRtEngine(
        1 << 20 /* workspace_size*/,
        32 /* max_batch_size*/,
        20 /* min_subgraph_size*/,
        paddle::AnalysisConfig::Precision::kFloat32 /* precision*/,
        true /* use_static*/,
        false /* use_calib_mode*/);
C
Channingss 已提交
83
  }
C
Channingss 已提交
84 85 86
  predictor_ = std::move(CreatePaddlePredictor(config));
}

J
jack 已提交
87 88
bool Model::load_config(const std::string& yaml_input) {
  YAML::Node config = YAML::Load(yaml_input);
C
Channingss 已提交
89 90
  type = config["_Attributes"]["model_type"].as<std::string>();
  name = config["Model"].as<std::string>();
F
FlyingQianMM 已提交
91 92
  std::string version = config["version"].as<std::string>();
  if (version[0] == '0') {
J
jack 已提交
93 94 95 96 97
    std::cerr << "[Init] Version of the loaded model is lower than 1.0.0, "
              << "deployment cannot be done, please refer to "
              << "https://github.com/PaddlePaddle/PaddleX/blob/develop/docs"
              << "/tutorials/deploy/upgrade_version.md "
              << "to transfer version." << std::endl;
F
FlyingQianMM 已提交
98 99
    return false;
  }
C
Channingss 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
  bool to_rgb = true;
  if (config["TransformsMode"].IsDefined()) {
    std::string mode = config["TransformsMode"].as<std::string>();
    if (mode == "BGR") {
      to_rgb = false;
    } else if (mode != "RGB") {
      std::cerr << "[Init] Only 'RGB' or 'BGR' is supported for TransformsMode"
                << std::endl;
      return false;
    }
  }
  // 构建数据处理流
  transforms_.Init(config["Transforms"], to_rgb);
  // 读入label list
  labels.clear();
  for (const auto& item : config["_Attributes"]["labels"]) {
    int index = labels.size();
    labels[index] = item.as<std::string>();
  }
  return true;
}

bool Model::preprocess(const cv::Mat& input_im, ImageBlob* blob) {
  cv::Mat im = input_im.clone();
124
  if (!transforms_.Run(&im, blob)) {
C
Channingss 已提交
125 126 127 128 129
    return false;
  }
  return true;
}

J
jack 已提交
130
// use openmp
J
jack 已提交
131 132 133
bool Model::preprocess(const std::vector<cv::Mat>& input_im_batch,
                       std::vector<ImageBlob>* blob_batch,
                       int thread_num) {
J
jack 已提交
134
  int batch_size = input_im_batch.size();
J
jack 已提交
135
  bool success = true;
J
jack 已提交
136 137
  thread_num = std::min(thread_num, batch_size);
  #pragma omp parallel for num_threads(thread_num)
J
jack 已提交
138
  for (int i = 0; i < input_im_batch.size(); ++i) {
J
jack 已提交
139
    cv::Mat im = input_im_batch[i].clone();
J
jack 已提交
140
    if (!transforms_.Run(&im, &(*blob_batch)[i])) {
J
jack 已提交
141 142 143 144 145 146
      success = false;
    }
  }
  return success;
}

C
Channingss 已提交
147 148 149 150 151
bool Model::predict(const cv::Mat& im, ClsResult* result) {
  inputs_.clear();
  if (type == "detector") {
    std::cerr << "Loading model is a 'detector', DetResult should be passed to "
                 "function predict()!"
J
jack 已提交
152
                 "to function predict()!" << std::endl;
C
Channingss 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
    return false;
  }
  // 处理输入图像
  if (!preprocess(im, &inputs_)) {
    std::cerr << "Preprocess failed!" << std::endl;
    return false;
  }
  // 使用加载的模型进行预测
  auto in_tensor = predictor_->GetInputTensor("image");
  int h = inputs_.new_im_size_[0];
  int w = inputs_.new_im_size_[1];
  in_tensor->Reshape({1, 3, h, w});
  in_tensor->copy_from_cpu(inputs_.im_data_.data());
  predictor_->ZeroCopyRun();
  // 取出模型的输出结果
  auto output_names = predictor_->GetOutputNames();
  auto output_tensor = predictor_->GetOutputTensor(output_names[0]);
  std::vector<int> output_shape = output_tensor->shape();
  int size = 1;
  for (const auto& i : output_shape) {
    size *= i;
  }
  outputs_.resize(size);
  output_tensor->copy_to_cpu(outputs_.data());
  // 对模型输出结果进行后处理
  auto ptr = std::max_element(std::begin(outputs_), std::end(outputs_));
  result->category_id = std::distance(std::begin(outputs_), ptr);
  result->score = *ptr;
  result->category = labels[result->category_id];
J
jack 已提交
182
  return true;
C
Channingss 已提交
183 184
}

J
jack 已提交
185 186 187 188
bool Model::predict(const std::vector<cv::Mat>& im_batch,
                    std::vector<ClsResult>* results,
                    int thread_num) {
  for (auto& inputs : inputs_batch_) {
J
jack 已提交
189 190 191 192
    inputs.clear();
  }
  if (type == "detector") {
    std::cerr << "Loading model is a 'detector', DetResult should be passed to "
J
jack 已提交
193
                 "function predict()!" << std::endl;
J
jack 已提交
194 195 196
    return false;
  } else if (type == "segmenter") {
    std::cerr << "Loading model is a 'segmenter', SegResult should be passed "
J
jack 已提交
197
                 "to function predict()!" << std::endl;
J
jack 已提交
198 199
    return false;
  }
J
jack 已提交
200
  inputs_batch_.assign(im_batch.size(), ImageBlob());
J
jack 已提交
201
  // 处理输入图像
J
jack 已提交
202
  if (!preprocess(im_batch, &inputs_batch_, thread_num)) {
J
jack 已提交
203 204 205 206 207 208 209 210 211 212
    std::cerr << "Preprocess failed!" << std::endl;
    return false;
  }
  // 使用加载的模型进行预测
  int batch_size = im_batch.size();
  auto in_tensor = predictor_->GetInputTensor("image");
  int h = inputs_batch_[0].new_im_size_[0];
  int w = inputs_batch_[0].new_im_size_[1];
  in_tensor->Reshape({batch_size, 3, h, w});
  std::vector<float> inputs_data(batch_size * 3 * h * w);
J
jack 已提交
213 214 215 216
  for (int i = 0; i < batch_size; ++i) {
    std::copy(inputs_batch_[i].im_data_.begin(),
              inputs_batch_[i].im_data_.end(),
              inputs_data.begin() + i * 3 * h * w);
J
jack 已提交
217 218
  }
  in_tensor->copy_from_cpu(inputs_data.data());
J
jack 已提交
219
  // in_tensor->copy_from_cpu(inputs_.im_data_.data());
J
jack 已提交
220 221 222 223 224 225 226 227 228 229 230 231
  predictor_->ZeroCopyRun();
  // 取出模型的输出结果
  auto output_names = predictor_->GetOutputNames();
  auto output_tensor = predictor_->GetOutputTensor(output_names[0]);
  std::vector<int> output_shape = output_tensor->shape();
  int size = 1;
  for (const auto& i : output_shape) {
    size *= i;
  }
  outputs_.resize(size);
  output_tensor->copy_to_cpu(outputs_.data());
  // 对模型输出结果进行后处理
232 233
  (*results).clear();
  (*results).resize(batch_size);
J
jack 已提交
234
  int single_batch_size = size / batch_size;
J
jack 已提交
235
  for (int i = 0; i < batch_size; ++i) {
J
jack 已提交
236 237 238 239 240
    auto start_ptr = std::begin(outputs_);
    auto end_ptr = std::begin(outputs_);
    std::advance(start_ptr, i * single_batch_size);
    std::advance(end_ptr, (i + 1) * single_batch_size);
    auto ptr = std::max_element(start_ptr, end_ptr);
J
jack 已提交
241 242 243
    (*results)[i].category_id = std::distance(start_ptr, ptr);
    (*results)[i].score = *ptr;
    (*results)[i].category = labels[(*results)[i].category_id];
J
jack 已提交
244 245 246 247
  }
  return true;
}

C
Channingss 已提交
248
bool Model::predict(const cv::Mat& im, DetResult* result) {
J
jack 已提交
249
  inputs_.clear();
C
Channingss 已提交
250 251 252
  result->clear();
  if (type == "classifier") {
    std::cerr << "Loading model is a 'classifier', ClsResult should be passed "
J
jack 已提交
253
                 "to function predict()!" << std::endl;
C
Channingss 已提交
254 255 256
    return false;
  } else if (type == "segmenter") {
    std::cerr << "Loading model is a 'segmenter', SegResult should be passed "
J
jack 已提交
257
                 "to function predict()!" << std::endl;
C
Channingss 已提交
258 259 260 261 262 263 264 265 266 267 268 269 270 271
    return false;
  }

  // 处理输入图像
  if (!preprocess(im, &inputs_)) {
    std::cerr << "Preprocess failed!" << std::endl;
    return false;
  }

  int h = inputs_.new_im_size_[0];
  int w = inputs_.new_im_size_[1];
  auto im_tensor = predictor_->GetInputTensor("image");
  im_tensor->Reshape({1, 3, h, w});
  im_tensor->copy_from_cpu(inputs_.im_data_.data());
J
jack 已提交
272

C
Channingss 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
  if (name == "YOLOv3") {
    auto im_size_tensor = predictor_->GetInputTensor("im_size");
    im_size_tensor->Reshape({1, 2});
    im_size_tensor->copy_from_cpu(inputs_.ori_im_size_.data());
  } else if (name == "FasterRCNN" || name == "MaskRCNN") {
    auto im_info_tensor = predictor_->GetInputTensor("im_info");
    auto im_shape_tensor = predictor_->GetInputTensor("im_shape");
    im_info_tensor->Reshape({1, 3});
    im_shape_tensor->Reshape({1, 3});
    float ori_h = static_cast<float>(inputs_.ori_im_size_[0]);
    float ori_w = static_cast<float>(inputs_.ori_im_size_[1]);
    float new_h = static_cast<float>(inputs_.new_im_size_[0]);
    float new_w = static_cast<float>(inputs_.new_im_size_[1]);
    float im_info[] = {new_h, new_w, inputs_.scale};
    float im_shape[] = {ori_h, ori_w, 1.0};
    im_info_tensor->copy_from_cpu(im_info);
    im_shape_tensor->copy_from_cpu(im_shape);
  }
  // 使用加载的模型进行预测
  predictor_->ZeroCopyRun();

  std::vector<float> output_box;
  auto output_names = predictor_->GetOutputNames();
  auto output_box_tensor = predictor_->GetOutputTensor(output_names[0]);
  std::vector<int> output_box_shape = output_box_tensor->shape();
  int size = 1;
  for (const auto& i : output_box_shape) {
    size *= i;
  }
  output_box.resize(size);
  output_box_tensor->copy_to_cpu(output_box.data());
  if (size < 6) {
    std::cerr << "[WARNING] There's no object detected." << std::endl;
    return true;
  }
  int num_boxes = size / 6;
  // 解析预测框box
  for (int i = 0; i < num_boxes; ++i) {
    Box box;
    box.category_id = static_cast<int>(round(output_box[i * 6]));
    box.category = labels[box.category_id];
    box.score = output_box[i * 6 + 1];
    float xmin = output_box[i * 6 + 2];
    float ymin = output_box[i * 6 + 3];
    float xmax = output_box[i * 6 + 4];
    float ymax = output_box[i * 6 + 5];
    float w = xmax - xmin + 1;
    float h = ymax - ymin + 1;
    box.coordinate = {xmin, ymin, w, h};
    result->boxes.push_back(std::move(box));
  }
  // 实例分割需解析mask
  if (name == "MaskRCNN") {
    std::vector<float> output_mask;
    auto output_mask_tensor = predictor_->GetOutputTensor(output_names[1]);
    std::vector<int> output_mask_shape = output_mask_tensor->shape();
    int masks_size = 1;
    for (const auto& i : output_mask_shape) {
      masks_size *= i;
    }
    int mask_pixels = output_mask_shape[2] * output_mask_shape[3];
    int classes = output_mask_shape[1];
    output_mask.resize(masks_size);
    output_mask_tensor->copy_to_cpu(output_mask.data());
    result->mask_resolution = output_mask_shape[2];
    for (int i = 0; i < result->boxes.size(); ++i) {
      Box* box = &result->boxes[i];
      auto begin_mask =
          output_mask.begin() + (i * classes + box->category_id) * mask_pixels;
      auto end_mask = begin_mask + mask_pixels;
      box->mask.data.assign(begin_mask, end_mask);
      box->mask.shape = {static_cast<int>(box->coordinate[2]),
                         static_cast<int>(box->coordinate[3])};
    }
  }
J
jack 已提交
348
  return true;
C
Channingss 已提交
349 350
}

J
jack 已提交
351
bool Model::predict(const std::vector<cv::Mat>& im_batch,
352
                    std::vector<DetResult>* results,
J
jack 已提交
353 354
                    int thread_num) {
  for (auto& inputs : inputs_batch_) {
J
jack 已提交
355 356
    inputs.clear();
  }
J
jack 已提交
357 358
  if (type == "classifier") {
    std::cerr << "Loading model is a 'classifier', ClsResult should be passed "
J
jack 已提交
359
                 "to function predict()!" << std::endl;
J
jack 已提交
360 361 362
    return false;
  } else if (type == "segmenter") {
    std::cerr << "Loading model is a 'segmenter', SegResult should be passed "
J
jack 已提交
363
                 "to function predict()!" << std::endl;
J
jack 已提交
364 365 366
    return false;
  }

J
jack 已提交
367
  inputs_batch_.assign(im_batch.size(), ImageBlob());
J
jack 已提交
368
  int batch_size = im_batch.size();
J
jack 已提交
369
  // 处理输入图像
J
jack 已提交
370
  if (!preprocess(im_batch, &inputs_batch_, thread_num)) {
J
jack 已提交
371 372 373
    std::cerr << "Preprocess failed!" << std::endl;
    return false;
  }
J
jack 已提交
374 375 376 377 378
  // 对RCNN类模型做批量padding
  if (batch_size > 1) {
    if (name == "FasterRCNN" || name == "MaskRCNN") {
      int max_h = -1;
      int max_w = -1;
J
jack 已提交
379
      for (int i = 0; i < batch_size; ++i) {
J
jack 已提交
380 381
        max_h = std::max(max_h, inputs_batch_[i].new_im_size_[0]);
        max_w = std::max(max_w, inputs_batch_[i].new_im_size_[1]);
J
jack 已提交
382 383
        // std::cout << "(" << inputs_batch_[i].new_im_size_[0]
        //          << ", " << inputs_batch_[i].new_im_size_[1]
J
jack 已提交
384
        //          <<  ")" << std::endl;
J
jack 已提交
385
      }
J
jack 已提交
386 387
      thread_num = std::min(thread_num, batch_size);
      #pragma omp parallel for num_threads(thread_num)
J
jack 已提交
388
      for (int i = 0; i < batch_size; ++i) {
J
jack 已提交
389 390 391
        int h = inputs_batch_[i].new_im_size_[0];
        int w = inputs_batch_[i].new_im_size_[1];
        int c = im_batch[i].channels();
J
jack 已提交
392
        if (max_h != h || max_w != w) {
J
jack 已提交
393
          std::vector<float> temp_buffer(c * max_h * max_w);
J
jack 已提交
394 395 396
          float* temp_ptr = temp_buffer.data();
          float* ptr = inputs_batch_[i].im_data_.data();
          for (int cur_channel = c - 1; cur_channel >= 0; --cur_channel) {
J
jack 已提交
397 398
            int ori_pos = cur_channel * h * w + (h - 1) * w;
            int des_pos = cur_channel * max_h * max_w + (h - 1) * max_w;
J
jack 已提交
399 400 401
            int last_pos = cur_channel * h * w;
            for (; ori_pos >= last_pos; ori_pos -= w, des_pos -= max_w) {
              memcpy(temp_ptr + des_pos, ptr + ori_pos, w * sizeof(float));
J
jack 已提交
402 403 404 405
            }
          }
          inputs_batch_[i].im_data_.swap(temp_buffer);
          inputs_batch_[i].new_im_size_[0] = max_h;
J
jack 已提交
406
          inputs_batch_[i].new_im_size_[1] = max_w;
J
jack 已提交
407 408 409 410
        }
      }
    }
  }
J
jack 已提交
411 412 413 414 415
  int h = inputs_batch_[0].new_im_size_[0];
  int w = inputs_batch_[0].new_im_size_[1];
  auto im_tensor = predictor_->GetInputTensor("image");
  im_tensor->Reshape({batch_size, 3, h, w});
  std::vector<float> inputs_data(batch_size * 3 * h * w);
J
jack 已提交
416 417 418 419
  for (int i = 0; i < batch_size; ++i) {
    std::copy(inputs_batch_[i].im_data_.begin(),
              inputs_batch_[i].im_data_.end(),
              inputs_data.begin() + i * 3 * h * w);
J
jack 已提交
420 421 422 423 424
  }
  im_tensor->copy_from_cpu(inputs_data.data());
  if (name == "YOLOv3") {
    auto im_size_tensor = predictor_->GetInputTensor("im_size");
    im_size_tensor->Reshape({batch_size, 2});
J
jack 已提交
425 426 427 428 429
    std::vector<int> inputs_data_size(batch_size * 2);
    for (int i = 0; i < batch_size; ++i) {
      std::copy(inputs_batch_[i].ori_im_size_.begin(),
                inputs_batch_[i].ori_im_size_.end(),
                inputs_data_size.begin() + 2 * i);
J
jack 已提交
430 431 432 433 434 435 436
    }
    im_size_tensor->copy_from_cpu(inputs_data_size.data());
  } else if (name == "FasterRCNN" || name == "MaskRCNN") {
    auto im_info_tensor = predictor_->GetInputTensor("im_info");
    auto im_shape_tensor = predictor_->GetInputTensor("im_shape");
    im_info_tensor->Reshape({batch_size, 3});
    im_shape_tensor->Reshape({batch_size, 3});
J
jack 已提交
437

J
jack 已提交
438 439
    std::vector<float> im_info(3 * batch_size);
    std::vector<float> im_shape(3 * batch_size);
J
jack 已提交
440
    for (int i = 0; i < batch_size; ++i) {
J
jack 已提交
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
      float ori_h = static_cast<float>(inputs_batch_[i].ori_im_size_[0]);
      float ori_w = static_cast<float>(inputs_batch_[i].ori_im_size_[1]);
      float new_h = static_cast<float>(inputs_batch_[i].new_im_size_[0]);
      float new_w = static_cast<float>(inputs_batch_[i].new_im_size_[1]);
      im_info[i * 3] = new_h;
      im_info[i * 3 + 1] = new_w;
      im_info[i * 3 + 2] = inputs_batch_[i].scale;
      im_shape[i * 3] = ori_h;
      im_shape[i * 3 + 1] = ori_w;
      im_shape[i * 3 + 2] = 1.0;
    }
    im_info_tensor->copy_from_cpu(im_info.data());
    im_shape_tensor->copy_from_cpu(im_shape.data());
  }
  // 使用加载的模型进行预测
  predictor_->ZeroCopyRun();

  // 读取所有box
  std::vector<float> output_box;
  auto output_names = predictor_->GetOutputNames();
  auto output_box_tensor = predictor_->GetOutputTensor(output_names[0]);
  std::vector<int> output_box_shape = output_box_tensor->shape();
  int size = 1;
  for (const auto& i : output_box_shape) {
    size *= i;
  }
  output_box.resize(size);
  output_box_tensor->copy_to_cpu(output_box.data());
  if (size < 6) {
    std::cerr << "[WARNING] There's no object detected." << std::endl;
    return true;
  }
  auto lod_vector = output_box_tensor->lod();
  int num_boxes = size / 6;
  // 解析预测框box
476 477
  (*results).clear();
  (*results).resize(batch_size);
J
jack 已提交
478
  for (int i = 0; i < lod_vector[0].size() - 1; ++i) {
J
jack 已提交
479
    for (int j = lod_vector[0][i]; j < lod_vector[0][i + 1]; ++j) {
J
jack 已提交
480
      Box box;
J
jack 已提交
481
      box.category_id = static_cast<int>(round(output_box[j * 6]));
J
jack 已提交
482 483 484 485 486 487 488 489 490
      box.category = labels[box.category_id];
      box.score = output_box[j * 6 + 1];
      float xmin = output_box[j * 6 + 2];
      float ymin = output_box[j * 6 + 3];
      float xmax = output_box[j * 6 + 4];
      float ymax = output_box[j * 6 + 5];
      float w = xmax - xmin + 1;
      float h = ymax - ymin + 1;
      box.coordinate = {xmin, ymin, w, h};
491
      (*results)[i].boxes.push_back(std::move(box));
J
jack 已提交
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
    }
  }

  // 实例分割需解析mask
  if (name == "MaskRCNN") {
    std::vector<float> output_mask;
    auto output_mask_tensor = predictor_->GetOutputTensor(output_names[1]);
    std::vector<int> output_mask_shape = output_mask_tensor->shape();
    int masks_size = 1;
    for (const auto& i : output_mask_shape) {
      masks_size *= i;
    }
    int mask_pixels = output_mask_shape[2] * output_mask_shape[3];
    int classes = output_mask_shape[1];
    output_mask.resize(masks_size);
    output_mask_tensor->copy_to_cpu(output_mask.data());
    int mask_idx = 0;
J
jack 已提交
509
    for (int i = 0; i < lod_vector[0].size() - 1; ++i) {
510 511 512
      (*results)[i].mask_resolution = output_mask_shape[2];
      for (int j = 0; j < (*results)[i].boxes.size(); ++j) {
        Box* box = &(*results)[i].boxes[j];
J
jack 已提交
513 514 515
        int category_id = box->category_id;
        auto begin_mask = output_mask.begin() +
                          (mask_idx * classes + category_id) * mask_pixels;
J
jack 已提交
516 517 518 519 520 521 522 523
        auto end_mask = begin_mask + mask_pixels;
        box->mask.data.assign(begin_mask, end_mask);
        box->mask.shape = {static_cast<int>(box->coordinate[2]),
                           static_cast<int>(box->coordinate[3])};
        mask_idx++;
      }
    }
  }
J
jack 已提交
524
  return true;
J
jack 已提交
525 526
}

C
Channingss 已提交
527 528 529 530 531
bool Model::predict(const cv::Mat& im, SegResult* result) {
  result->clear();
  inputs_.clear();
  if (type == "classifier") {
    std::cerr << "Loading model is a 'classifier', ClsResult should be passed "
J
jack 已提交
532
                 "to function predict()!" << std::endl;
C
Channingss 已提交
533 534 535
    return false;
  } else if (type == "detector") {
    std::cerr << "Loading model is a 'detector', DetResult should be passed to "
J
jack 已提交
536
                 "function predict()!" << std::endl;
C
Channingss 已提交
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
    return false;
  }

  // 处理输入图像
  if (!preprocess(im, &inputs_)) {
    std::cerr << "Preprocess failed!" << std::endl;
    return false;
  }

  int h = inputs_.new_im_size_[0];
  int w = inputs_.new_im_size_[1];
  auto im_tensor = predictor_->GetInputTensor("image");
  im_tensor->Reshape({1, 3, h, w});
  im_tensor->copy_from_cpu(inputs_.im_data_.data());

  // 使用加载的模型进行预测
  predictor_->ZeroCopyRun();

  // 获取预测置信度,经过argmax后的labelmap
  auto output_names = predictor_->GetOutputNames();
  auto output_label_tensor = predictor_->GetOutputTensor(output_names[0]);
  std::vector<int> output_label_shape = output_label_tensor->shape();
  int size = 1;
  for (const auto& i : output_label_shape) {
    size *= i;
    result->label_map.shape.push_back(i);
  }
J
jack 已提交
564

C
Channingss 已提交
565 566 567 568 569 570 571 572 573 574 575
  result->label_map.data.resize(size);
  output_label_tensor->copy_to_cpu(result->label_map.data.data());

  // 获取预测置信度scoremap
  auto output_score_tensor = predictor_->GetOutputTensor(output_names[1]);
  std::vector<int> output_score_shape = output_score_tensor->shape();
  size = 1;
  for (const auto& i : output_score_shape) {
    size *= i;
    result->score_map.shape.push_back(i);
  }
J
jack 已提交
576

C
Channingss 已提交
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
  result->score_map.data.resize(size);
  output_score_tensor->copy_to_cpu(result->score_map.data.data());

  // 解析输出结果到原图大小
  std::vector<uint8_t> label_map(result->label_map.data.begin(),
                                 result->label_map.data.end());
  cv::Mat mask_label(result->label_map.shape[1],
                     result->label_map.shape[2],
                     CV_8UC1,
                     label_map.data());

  cv::Mat mask_score(result->score_map.shape[2],
                     result->score_map.shape[3],
                     CV_32FC1,
                     result->score_map.data.data());
C
Channingss 已提交
592
  int idx = 1;
C
Channingss 已提交
593
  int len_postprocess = inputs_.im_size_before_resize_.size();
C
Channingss 已提交
594 595
  for (std::vector<std::string>::reverse_iterator iter =
           inputs_.reshape_order_.rbegin();
C
Channingss 已提交
596 597
       iter != inputs_.reshape_order_.rend();
       ++iter) {
C
Channingss 已提交
598
    if (*iter == "padding") {
C
Channingss 已提交
599
      auto before_shape = inputs_.im_size_before_resize_[len_postprocess - idx];
C
Channingss 已提交
600 601 602
      inputs_.im_size_before_resize_.pop_back();
      auto padding_w = before_shape[0];
      auto padding_h = before_shape[1];
J
jack 已提交
603 604
      mask_label = mask_label(cv::Rect(0, 0, padding_h, padding_w));
      mask_score = mask_score(cv::Rect(0, 0, padding_h, padding_w));
C
Channingss 已提交
605
    } else if (*iter == "resize") {
C
Channingss 已提交
606
      auto before_shape = inputs_.im_size_before_resize_[len_postprocess - idx];
C
Channingss 已提交
607 608 609
      inputs_.im_size_before_resize_.pop_back();
      auto resize_w = before_shape[0];
      auto resize_h = before_shape[1];
C
Channingss 已提交
610 611 612 613 614 615 616 617 618 619 620
      cv::resize(mask_label,
                 mask_label,
                 cv::Size(resize_h, resize_w),
                 0,
                 0,
                 cv::INTER_NEAREST);
      cv::resize(mask_score,
                 mask_score,
                 cv::Size(resize_h, resize_w),
                 0,
                 0,
J
jack 已提交
621
                 cv::INTER_LINEAR);
C
Channingss 已提交
622
    }
C
Channingss 已提交
623
    ++idx;
C
Channingss 已提交
624 625 626 627 628 629 630
  }
  result->label_map.data.assign(mask_label.begin<uint8_t>(),
                                mask_label.end<uint8_t>());
  result->label_map.shape = {mask_label.rows, mask_label.cols};
  result->score_map.data.assign(mask_score.begin<float>(),
                                mask_score.end<float>());
  result->score_map.shape = {mask_score.rows, mask_score.cols};
J
jack 已提交
631 632 633
  return true;
}

J
jack 已提交
634
bool Model::predict(const std::vector<cv::Mat>& im_batch,
635
                    std::vector<SegResult>* results,
J
jack 已提交
636 637
                    int thread_num) {
  for (auto& inputs : inputs_batch_) {
J
jack 已提交
638 639 640 641
    inputs.clear();
  }
  if (type == "classifier") {
    std::cerr << "Loading model is a 'classifier', ClsResult should be passed "
J
jack 已提交
642
                 "to function predict()!" << std::endl;
J
jack 已提交
643 644 645
    return false;
  } else if (type == "detector") {
    std::cerr << "Loading model is a 'detector', DetResult should be passed to "
J
jack 已提交
646
                 "function predict()!" << std::endl;
J
jack 已提交
647 648 649 650
    return false;
  }

  // 处理输入图像
J
jack 已提交
651
  inputs_batch_.assign(im_batch.size(), ImageBlob());
J
jack 已提交
652
  if (!preprocess(im_batch, &inputs_batch_, thread_num)) {
J
jack 已提交
653 654 655 656 657
    std::cerr << "Preprocess failed!" << std::endl;
    return false;
  }

  int batch_size = im_batch.size();
658 659
  (*results).clear();
  (*results).resize(batch_size);
J
jack 已提交
660 661 662 663 664
  int h = inputs_batch_[0].new_im_size_[0];
  int w = inputs_batch_[0].new_im_size_[1];
  auto im_tensor = predictor_->GetInputTensor("image");
  im_tensor->Reshape({batch_size, 3, h, w});
  std::vector<float> inputs_data(batch_size * 3 * h * w);
J
jack 已提交
665 666 667 668
  for (int i = 0; i < batch_size; ++i) {
    std::copy(inputs_batch_[i].im_data_.begin(),
              inputs_batch_[i].im_data_.end(),
              inputs_data.begin() + i * 3 * h * w);
J
jack 已提交
669 670
  }
  im_tensor->copy_from_cpu(inputs_data.data());
J
jack 已提交
671
  // im_tensor->copy_from_cpu(inputs_.im_data_.data());
J
jack 已提交
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689

  // 使用加载的模型进行预测
  predictor_->ZeroCopyRun();

  // 获取预测置信度,经过argmax后的labelmap
  auto output_names = predictor_->GetOutputNames();
  auto output_label_tensor = predictor_->GetOutputTensor(output_names[0]);
  std::vector<int> output_label_shape = output_label_tensor->shape();
  int size = 1;
  for (const auto& i : output_label_shape) {
    size *= i;
  }

  std::vector<int64_t> output_labels(size, 0);
  output_label_tensor->copy_to_cpu(output_labels.data());
  auto output_labels_iter = output_labels.begin();

  int single_batch_size = size / batch_size;
J
jack 已提交
690
  for (int i = 0; i < batch_size; ++i) {
691 692
    (*results)[i].label_map.data.resize(single_batch_size);
    (*results)[i].label_map.shape.push_back(1);
J
jack 已提交
693
    for (int j = 1; j < output_label_shape.size(); ++j) {
694
      (*results)[i].label_map.shape.push_back(output_label_shape[j]);
J
jack 已提交
695
    }
J
jack 已提交
696 697
    std::copy(output_labels_iter + i * single_batch_size,
              output_labels_iter + (i + 1) * single_batch_size,
698
              (*results)[i].label_map.data.data());
J
jack 已提交
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
  }

  // 获取预测置信度scoremap
  auto output_score_tensor = predictor_->GetOutputTensor(output_names[1]);
  std::vector<int> output_score_shape = output_score_tensor->shape();
  size = 1;
  for (const auto& i : output_score_shape) {
    size *= i;
  }

  std::vector<float> output_scores(size, 0);
  output_score_tensor->copy_to_cpu(output_scores.data());
  auto output_scores_iter = output_scores.begin();

  int single_batch_score_size = size / batch_size;
J
jack 已提交
714
  for (int i = 0; i < batch_size; ++i) {
715 716
    (*results)[i].score_map.data.resize(single_batch_score_size);
    (*results)[i].score_map.shape.push_back(1);
J
jack 已提交
717
    for (int j = 1; j < output_score_shape.size(); ++j) {
718
      (*results)[i].score_map.shape.push_back(output_score_shape[j]);
J
jack 已提交
719
    }
J
jack 已提交
720 721
    std::copy(output_scores_iter + i * single_batch_score_size,
              output_scores_iter + (i + 1) * single_batch_score_size,
722
              (*results)[i].score_map.data.data());
J
jack 已提交
723 724 725
  }

  // 解析输出结果到原图大小
J
jack 已提交
726
  for (int i = 0; i < batch_size; ++i) {
727 728 729 730
    std::vector<uint8_t> label_map((*results)[i].label_map.data.begin(),
                                   (*results)[i].label_map.data.end());
    cv::Mat mask_label((*results)[i].label_map.shape[1],
                       (*results)[i].label_map.shape[2],
J
jack 已提交
731 732
                       CV_8UC1,
                       label_map.data());
J
jack 已提交
733

734 735
    cv::Mat mask_score((*results)[i].score_map.shape[2],
                       (*results)[i].score_map.shape[3],
J
jack 已提交
736
                       CV_32FC1,
737
                       (*results)[i].score_map.data.data());
J
jack 已提交
738 739 740 741 742 743 744
    int idx = 1;
    int len_postprocess = inputs_batch_[i].im_size_before_resize_.size();
    for (std::vector<std::string>::reverse_iterator iter =
             inputs_batch_[i].reshape_order_.rbegin();
         iter != inputs_batch_[i].reshape_order_.rend();
         ++iter) {
      if (*iter == "padding") {
J
jack 已提交
745 746
        auto before_shape =
            inputs_batch_[i].im_size_before_resize_[len_postprocess - idx];
J
jack 已提交
747 748 749 750 751 752
        inputs_batch_[i].im_size_before_resize_.pop_back();
        auto padding_w = before_shape[0];
        auto padding_h = before_shape[1];
        mask_label = mask_label(cv::Rect(0, 0, padding_h, padding_w));
        mask_score = mask_score(cv::Rect(0, 0, padding_h, padding_w));
      } else if (*iter == "resize") {
J
jack 已提交
753 754
        auto before_shape =
            inputs_batch_[i].im_size_before_resize_[len_postprocess - idx];
J
jack 已提交
755 756 757 758 759 760 761 762 763 764 765 766 767 768
        inputs_batch_[i].im_size_before_resize_.pop_back();
        auto resize_w = before_shape[0];
        auto resize_h = before_shape[1];
        cv::resize(mask_label,
                   mask_label,
                   cv::Size(resize_h, resize_w),
                   0,
                   0,
                   cv::INTER_NEAREST);
        cv::resize(mask_score,
                   mask_score,
                   cv::Size(resize_h, resize_w),
                   0,
                   0,
J
jack 已提交
769
                   cv::INTER_LINEAR);
J
jack 已提交
770 771 772
      }
      ++idx;
    }
773
    (*results)[i].label_map.data.assign(mask_label.begin<uint8_t>(),
J
jack 已提交
774
                                       mask_label.end<uint8_t>());
775 776
    (*results)[i].label_map.shape = {mask_label.rows, mask_label.cols};
    (*results)[i].score_map.data.assign(mask_score.begin<float>(),
J
jack 已提交
777
                                       mask_score.end<float>());
778
    (*results)[i].score_map.shape = {mask_score.rows, mask_score.cols};
J
jack 已提交
779 780
  }
  return true;
C
Channingss 已提交
781 782
}

J
jack 已提交
783
}  // namespace PaddleX