paddlex.cpp 28.9 KB
Newer Older
C
Channingss 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
//   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
J
jack 已提交
14
#include <omp.h>
J
jack 已提交
15
#include <algorithm>
J
jack 已提交
16
#include <cstring>
J
jack 已提交
17
#include "include/paddlex/paddlex.h"
C
Channingss 已提交
18 19 20 21
namespace PaddleX {

void Model::create_predictor(const std::string& model_dir,
                             bool use_gpu,
C
Channingss 已提交
22
                             bool use_trt,
C
Channingss 已提交
23
                             int gpu_id,
J
jack 已提交
24
                             std::string key,
J
jack 已提交
25
                             int batch_size) {
C
Channingss 已提交
26 27 28
  paddle::AnalysisConfig config;
  std::string model_file = model_dir + OS_PATH_SEP + "__model__";
  std::string params_file = model_dir + OS_PATH_SEP + "__params__";
J
jack 已提交
29
  std::string yaml_file = model_dir + OS_PATH_SEP + "model.yml";
C
Channingss 已提交
30
#ifdef WITH_ENCRYPTION
J
jack 已提交
31
  if (key != "") {
F
FlyingQianMM 已提交
32 33
    model_file = model_dir + OS_PATH_SEP + "__model__.encrypted";
    params_file = model_dir + OS_PATH_SEP + "__params__.encrypted";
J
jack 已提交
34
    std::string yaml_file = model_dir + OS_PATH_SEP + "model.yml.encrypted";
J
jack 已提交
35 36
    paddle_security_load_model(
        &config, key.c_str(), model_file.c_str(), params_file.c_str());
C
Channingss 已提交
37 38
  }
#endif
J
jack 已提交
39 40 41 42 43 44
  // 读取配置文件
  if (!load_config(yaml_file)) {
    std::cerr << "Parse file 'model.yml' failed!" << std::endl;
    exit(-1);
  }

J
jack 已提交
45
  if (key == "") {
C
Channingss 已提交
46 47
    config.SetModel(model_file, params_file);
  }
C
Channingss 已提交
48 49 50 51 52 53 54 55 56
  if (use_gpu) {
    config.EnableUseGpu(100, gpu_id);
  } else {
    config.DisableGpu();
  }
  config.SwitchUseFeedFetchOps(false);
  config.SwitchSpecifyInputNames(true);
  // 开启内存优化
  config.EnableMemoryOptim();
C
Channingss 已提交
57 58 59 60 61 62 63 64
  if (use_trt) {
    config.EnableTensorRtEngine(
        1 << 20 /* workspace_size*/,
        32 /* max_batch_size*/,
        20 /* min_subgraph_size*/,
        paddle::AnalysisConfig::Precision::kFloat32 /* precision*/,
        true /* use_static*/,
        false /* use_calib_mode*/);
C
Channingss 已提交
65
  }
C
Channingss 已提交
66
  predictor_ = std::move(CreatePaddlePredictor(config));
J
jack 已提交
67
  inputs_batch_.assign(batch_size, ImageBlob());
C
Channingss 已提交
68 69
}

J
jack 已提交
70 71
bool Model::load_config(const std::string& yaml_file) {
  // std::string yaml_file = model_dir + OS_PATH_SEP + "model.yml";
C
Channingss 已提交
72 73 74
  YAML::Node config = YAML::LoadFile(yaml_file);
  type = config["_Attributes"]["model_type"].as<std::string>();
  name = config["Model"].as<std::string>();
F
FlyingQianMM 已提交
75 76
  std::string version = config["version"].as<std::string>();
  if (version[0] == '0') {
J
jack 已提交
77 78 79 80 81
    std::cerr << "[Init] Version of the loaded model is lower than 1.0.0, "
              << "deployment cannot be done, please refer to "
              << "https://github.com/PaddlePaddle/PaddleX/blob/develop/docs"
              << "/tutorials/deploy/upgrade_version.md "
              << "to transfer version." << std::endl;
F
FlyingQianMM 已提交
82 83
    return false;
  }
C
Channingss 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
  bool to_rgb = true;
  if (config["TransformsMode"].IsDefined()) {
    std::string mode = config["TransformsMode"].as<std::string>();
    if (mode == "BGR") {
      to_rgb = false;
    } else if (mode != "RGB") {
      std::cerr << "[Init] Only 'RGB' or 'BGR' is supported for TransformsMode"
                << std::endl;
      return false;
    }
  }
  // 构建数据处理流
  transforms_.Init(config["Transforms"], to_rgb);
  // 读入label list
  labels.clear();
  for (const auto& item : config["_Attributes"]["labels"]) {
    int index = labels.size();
    labels[index] = item.as<std::string>();
  }
  return true;
}

bool Model::preprocess(const cv::Mat& input_im, ImageBlob* blob) {
  cv::Mat im = input_im.clone();
108
  if (!transforms_.Run(&im, blob)) {
C
Channingss 已提交
109 110 111 112 113
    return false;
  }
  return true;
}

J
jack 已提交
114
// use openmp
J
jack 已提交
115 116 117
bool Model::preprocess(const std::vector<cv::Mat>& input_im_batch,
                       std::vector<ImageBlob>* blob_batch,
                       int thread_num) {
J
jack 已提交
118
  int batch_size = input_im_batch.size();
J
jack 已提交
119
  bool success = true;
J
jack 已提交
120 121
  thread_num = std::min(thread_num, batch_size);
  #pragma omp parallel for num_threads(thread_num)
J
jack 已提交
122
  for (int i = 0; i < input_im_batch.size(); ++i) {
J
jack 已提交
123
    cv::Mat im = input_im_batch[i].clone();
J
jack 已提交
124
    if (!transforms_.Run(&im, &(*blob_batch)[i])) {
J
jack 已提交
125 126 127 128 129 130
      success = false;
    }
  }
  return success;
}

C
Channingss 已提交
131 132 133 134 135
bool Model::predict(const cv::Mat& im, ClsResult* result) {
  inputs_.clear();
  if (type == "detector") {
    std::cerr << "Loading model is a 'detector', DetResult should be passed to "
                 "function predict()!"
J
jack 已提交
136
                 "to function predict()!" << std::endl;
C
Channingss 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    return false;
  }
  // 处理输入图像
  if (!preprocess(im, &inputs_)) {
    std::cerr << "Preprocess failed!" << std::endl;
    return false;
  }
  // 使用加载的模型进行预测
  auto in_tensor = predictor_->GetInputTensor("image");
  int h = inputs_.new_im_size_[0];
  int w = inputs_.new_im_size_[1];
  in_tensor->Reshape({1, 3, h, w});
  in_tensor->copy_from_cpu(inputs_.im_data_.data());
  predictor_->ZeroCopyRun();
  // 取出模型的输出结果
  auto output_names = predictor_->GetOutputNames();
  auto output_tensor = predictor_->GetOutputTensor(output_names[0]);
  std::vector<int> output_shape = output_tensor->shape();
  int size = 1;
  for (const auto& i : output_shape) {
    size *= i;
  }
  outputs_.resize(size);
  output_tensor->copy_to_cpu(outputs_.data());
  // 对模型输出结果进行后处理
  auto ptr = std::max_element(std::begin(outputs_), std::end(outputs_));
  result->category_id = std::distance(std::begin(outputs_), ptr);
  result->score = *ptr;
  result->category = labels[result->category_id];
J
jack 已提交
166
  return true;
C
Channingss 已提交
167 168
}

J
jack 已提交
169 170 171 172
bool Model::predict(const std::vector<cv::Mat>& im_batch,
                    std::vector<ClsResult>* results,
                    int thread_num) {
  for (auto& inputs : inputs_batch_) {
J
jack 已提交
173 174 175 176
    inputs.clear();
  }
  if (type == "detector") {
    std::cerr << "Loading model is a 'detector', DetResult should be passed to "
J
jack 已提交
177
                 "function predict()!" << std::endl;
J
jack 已提交
178 179 180
    return false;
  } else if (type == "segmenter") {
    std::cerr << "Loading model is a 'segmenter', SegResult should be passed "
J
jack 已提交
181
                 "to function predict()!" << std::endl;
J
jack 已提交
182 183 184
    return false;
  }
  // 处理输入图像
J
jack 已提交
185
  if (!preprocess(im_batch, &inputs_batch_, thread_num)) {
J
jack 已提交
186 187 188 189 190 191 192 193 194 195
    std::cerr << "Preprocess failed!" << std::endl;
    return false;
  }
  // 使用加载的模型进行预测
  int batch_size = im_batch.size();
  auto in_tensor = predictor_->GetInputTensor("image");
  int h = inputs_batch_[0].new_im_size_[0];
  int w = inputs_batch_[0].new_im_size_[1];
  in_tensor->Reshape({batch_size, 3, h, w});
  std::vector<float> inputs_data(batch_size * 3 * h * w);
J
jack 已提交
196 197 198 199
  for (int i = 0; i < batch_size; ++i) {
    std::copy(inputs_batch_[i].im_data_.begin(),
              inputs_batch_[i].im_data_.end(),
              inputs_data.begin() + i * 3 * h * w);
J
jack 已提交
200 201
  }
  in_tensor->copy_from_cpu(inputs_data.data());
J
jack 已提交
202
  // in_tensor->copy_from_cpu(inputs_.im_data_.data());
J
jack 已提交
203 204 205 206 207 208 209 210 211 212 213 214 215
  predictor_->ZeroCopyRun();
  // 取出模型的输出结果
  auto output_names = predictor_->GetOutputNames();
  auto output_tensor = predictor_->GetOutputTensor(output_names[0]);
  std::vector<int> output_shape = output_tensor->shape();
  int size = 1;
  for (const auto& i : output_shape) {
    size *= i;
  }
  outputs_.resize(size);
  output_tensor->copy_to_cpu(outputs_.data());
  // 对模型输出结果进行后处理
  int single_batch_size = size / batch_size;
J
jack 已提交
216
  for (int i = 0; i < batch_size; ++i) {
J
jack 已提交
217 218 219 220 221
    auto start_ptr = std::begin(outputs_);
    auto end_ptr = std::begin(outputs_);
    std::advance(start_ptr, i * single_batch_size);
    std::advance(end_ptr, (i + 1) * single_batch_size);
    auto ptr = std::max_element(start_ptr, end_ptr);
J
jack 已提交
222 223 224
    (*results)[i].category_id = std::distance(start_ptr, ptr);
    (*results)[i].score = *ptr;
    (*results)[i].category = labels[(*results)[i].category_id];
J
jack 已提交
225 226 227 228
  }
  return true;
}

C
Channingss 已提交
229
bool Model::predict(const cv::Mat& im, DetResult* result) {
J
jack 已提交
230
  inputs_.clear();
C
Channingss 已提交
231 232 233
  result->clear();
  if (type == "classifier") {
    std::cerr << "Loading model is a 'classifier', ClsResult should be passed "
J
jack 已提交
234
                 "to function predict()!" << std::endl;
C
Channingss 已提交
235 236 237
    return false;
  } else if (type == "segmenter") {
    std::cerr << "Loading model is a 'segmenter', SegResult should be passed "
J
jack 已提交
238
                 "to function predict()!" << std::endl;
C
Channingss 已提交
239 240 241 242 243 244 245 246 247 248 249 250 251 252
    return false;
  }

  // 处理输入图像
  if (!preprocess(im, &inputs_)) {
    std::cerr << "Preprocess failed!" << std::endl;
    return false;
  }

  int h = inputs_.new_im_size_[0];
  int w = inputs_.new_im_size_[1];
  auto im_tensor = predictor_->GetInputTensor("image");
  im_tensor->Reshape({1, 3, h, w});
  im_tensor->copy_from_cpu(inputs_.im_data_.data());
J
jack 已提交
253

C
Channingss 已提交
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
  if (name == "YOLOv3") {
    auto im_size_tensor = predictor_->GetInputTensor("im_size");
    im_size_tensor->Reshape({1, 2});
    im_size_tensor->copy_from_cpu(inputs_.ori_im_size_.data());
  } else if (name == "FasterRCNN" || name == "MaskRCNN") {
    auto im_info_tensor = predictor_->GetInputTensor("im_info");
    auto im_shape_tensor = predictor_->GetInputTensor("im_shape");
    im_info_tensor->Reshape({1, 3});
    im_shape_tensor->Reshape({1, 3});
    float ori_h = static_cast<float>(inputs_.ori_im_size_[0]);
    float ori_w = static_cast<float>(inputs_.ori_im_size_[1]);
    float new_h = static_cast<float>(inputs_.new_im_size_[0]);
    float new_w = static_cast<float>(inputs_.new_im_size_[1]);
    float im_info[] = {new_h, new_w, inputs_.scale};
    float im_shape[] = {ori_h, ori_w, 1.0};
    im_info_tensor->copy_from_cpu(im_info);
    im_shape_tensor->copy_from_cpu(im_shape);
  }
  // 使用加载的模型进行预测
  predictor_->ZeroCopyRun();

  std::vector<float> output_box;
  auto output_names = predictor_->GetOutputNames();
  auto output_box_tensor = predictor_->GetOutputTensor(output_names[0]);
  std::vector<int> output_box_shape = output_box_tensor->shape();
  int size = 1;
  for (const auto& i : output_box_shape) {
    size *= i;
  }
  output_box.resize(size);
  output_box_tensor->copy_to_cpu(output_box.data());
  if (size < 6) {
    std::cerr << "[WARNING] There's no object detected." << std::endl;
    return true;
  }
  int num_boxes = size / 6;
  // 解析预测框box
  for (int i = 0; i < num_boxes; ++i) {
    Box box;
    box.category_id = static_cast<int>(round(output_box[i * 6]));
    box.category = labels[box.category_id];
    box.score = output_box[i * 6 + 1];
    float xmin = output_box[i * 6 + 2];
    float ymin = output_box[i * 6 + 3];
    float xmax = output_box[i * 6 + 4];
    float ymax = output_box[i * 6 + 5];
    float w = xmax - xmin + 1;
    float h = ymax - ymin + 1;
    box.coordinate = {xmin, ymin, w, h};
    result->boxes.push_back(std::move(box));
  }
  // 实例分割需解析mask
  if (name == "MaskRCNN") {
    std::vector<float> output_mask;
    auto output_mask_tensor = predictor_->GetOutputTensor(output_names[1]);
    std::vector<int> output_mask_shape = output_mask_tensor->shape();
    int masks_size = 1;
    for (const auto& i : output_mask_shape) {
      masks_size *= i;
    }
    int mask_pixels = output_mask_shape[2] * output_mask_shape[3];
    int classes = output_mask_shape[1];
    output_mask.resize(masks_size);
    output_mask_tensor->copy_to_cpu(output_mask.data());
    result->mask_resolution = output_mask_shape[2];
    for (int i = 0; i < result->boxes.size(); ++i) {
      Box* box = &result->boxes[i];
      auto begin_mask =
          output_mask.begin() + (i * classes + box->category_id) * mask_pixels;
      auto end_mask = begin_mask + mask_pixels;
      box->mask.data.assign(begin_mask, end_mask);
      box->mask.shape = {static_cast<int>(box->coordinate[2]),
                         static_cast<int>(box->coordinate[3])};
    }
  }
J
jack 已提交
329
  return true;
C
Channingss 已提交
330 331
}

J
jack 已提交
332 333 334 335
bool Model::predict(const std::vector<cv::Mat>& im_batch,
                    std::vector<DetResult>* result,
                    int thread_num) {
  for (auto& inputs : inputs_batch_) {
J
jack 已提交
336 337
    inputs.clear();
  }
J
jack 已提交
338 339
  if (type == "classifier") {
    std::cerr << "Loading model is a 'classifier', ClsResult should be passed "
J
jack 已提交
340
                 "to function predict()!" << std::endl;
J
jack 已提交
341 342 343
    return false;
  } else if (type == "segmenter") {
    std::cerr << "Loading model is a 'segmenter', SegResult should be passed "
J
jack 已提交
344
                 "to function predict()!" << std::endl;
J
jack 已提交
345 346 347
    return false;
  }

J
jack 已提交
348
  int batch_size = im_batch.size();
J
jack 已提交
349
  // 处理输入图像
J
jack 已提交
350
  if (!preprocess(im_batch, &inputs_batch_, thread_num)) {
J
jack 已提交
351 352 353
    std::cerr << "Preprocess failed!" << std::endl;
    return false;
  }
J
jack 已提交
354 355 356 357 358
  // 对RCNN类模型做批量padding
  if (batch_size > 1) {
    if (name == "FasterRCNN" || name == "MaskRCNN") {
      int max_h = -1;
      int max_w = -1;
J
jack 已提交
359
      for (int i = 0; i < batch_size; ++i) {
J
jack 已提交
360 361
        max_h = std::max(max_h, inputs_batch_[i].new_im_size_[0]);
        max_w = std::max(max_w, inputs_batch_[i].new_im_size_[1]);
J
jack 已提交
362 363
        // std::cout << "(" << inputs_batch_[i].new_im_size_[0]
        //          << ", " << inputs_batch_[i].new_im_size_[1]
J
jack 已提交
364
        //          <<  ")" << std::endl;
J
jack 已提交
365
      }
J
jack 已提交
366 367
      thread_num = std::min(thread_num, batch_size);
      #pragma omp parallel for num_threads(thread_num)
J
jack 已提交
368
      for (int i = 0; i < batch_size; ++i) {
J
jack 已提交
369 370 371
        int h = inputs_batch_[i].new_im_size_[0];
        int w = inputs_batch_[i].new_im_size_[1];
        int c = im_batch[i].channels();
J
jack 已提交
372
        if (max_h != h || max_w != w) {
J
jack 已提交
373
          std::vector<float> temp_buffer(c * max_h * max_w);
J
jack 已提交
374 375 376
          float* temp_ptr = temp_buffer.data();
          float* ptr = inputs_batch_[i].im_data_.data();
          for (int cur_channel = c - 1; cur_channel >= 0; --cur_channel) {
J
jack 已提交
377 378
            int ori_pos = cur_channel * h * w + (h - 1) * w;
            int des_pos = cur_channel * max_h * max_w + (h - 1) * max_w;
J
jack 已提交
379 380 381
            int last_pos = cur_channel * h * w;
            for (; ori_pos >= last_pos; ori_pos -= w, des_pos -= max_w) {
              memcpy(temp_ptr + des_pos, ptr + ori_pos, w * sizeof(float));
J
jack 已提交
382 383 384 385
            }
          }
          inputs_batch_[i].im_data_.swap(temp_buffer);
          inputs_batch_[i].new_im_size_[0] = max_h;
J
jack 已提交
386
          inputs_batch_[i].new_im_size_[1] = max_w;
J
jack 已提交
387 388 389 390
        }
      }
    }
  }
J
jack 已提交
391 392 393 394 395
  int h = inputs_batch_[0].new_im_size_[0];
  int w = inputs_batch_[0].new_im_size_[1];
  auto im_tensor = predictor_->GetInputTensor("image");
  im_tensor->Reshape({batch_size, 3, h, w});
  std::vector<float> inputs_data(batch_size * 3 * h * w);
J
jack 已提交
396 397 398 399
  for (int i = 0; i < batch_size; ++i) {
    std::copy(inputs_batch_[i].im_data_.begin(),
              inputs_batch_[i].im_data_.end(),
              inputs_data.begin() + i * 3 * h * w);
J
jack 已提交
400 401 402 403 404
  }
  im_tensor->copy_from_cpu(inputs_data.data());
  if (name == "YOLOv3") {
    auto im_size_tensor = predictor_->GetInputTensor("im_size");
    im_size_tensor->Reshape({batch_size, 2});
J
jack 已提交
405 406 407 408 409
    std::vector<int> inputs_data_size(batch_size * 2);
    for (int i = 0; i < batch_size; ++i) {
      std::copy(inputs_batch_[i].ori_im_size_.begin(),
                inputs_batch_[i].ori_im_size_.end(),
                inputs_data_size.begin() + 2 * i);
J
jack 已提交
410 411 412 413 414 415 416
    }
    im_size_tensor->copy_from_cpu(inputs_data_size.data());
  } else if (name == "FasterRCNN" || name == "MaskRCNN") {
    auto im_info_tensor = predictor_->GetInputTensor("im_info");
    auto im_shape_tensor = predictor_->GetInputTensor("im_shape");
    im_info_tensor->Reshape({batch_size, 3});
    im_shape_tensor->Reshape({batch_size, 3});
J
jack 已提交
417

J
jack 已提交
418 419
    std::vector<float> im_info(3 * batch_size);
    std::vector<float> im_shape(3 * batch_size);
J
jack 已提交
420
    for (int i = 0; i < batch_size; ++i) {
J
jack 已提交
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
      float ori_h = static_cast<float>(inputs_batch_[i].ori_im_size_[0]);
      float ori_w = static_cast<float>(inputs_batch_[i].ori_im_size_[1]);
      float new_h = static_cast<float>(inputs_batch_[i].new_im_size_[0]);
      float new_w = static_cast<float>(inputs_batch_[i].new_im_size_[1]);
      im_info[i * 3] = new_h;
      im_info[i * 3 + 1] = new_w;
      im_info[i * 3 + 2] = inputs_batch_[i].scale;
      im_shape[i * 3] = ori_h;
      im_shape[i * 3 + 1] = ori_w;
      im_shape[i * 3 + 2] = 1.0;
    }
    im_info_tensor->copy_from_cpu(im_info.data());
    im_shape_tensor->copy_from_cpu(im_shape.data());
  }
  // 使用加载的模型进行预测
  predictor_->ZeroCopyRun();

  // 读取所有box
  std::vector<float> output_box;
  auto output_names = predictor_->GetOutputNames();
  auto output_box_tensor = predictor_->GetOutputTensor(output_names[0]);
  std::vector<int> output_box_shape = output_box_tensor->shape();
  int size = 1;
  for (const auto& i : output_box_shape) {
    size *= i;
  }
  output_box.resize(size);
  output_box_tensor->copy_to_cpu(output_box.data());
  if (size < 6) {
    std::cerr << "[WARNING] There's no object detected." << std::endl;
    return true;
  }
  auto lod_vector = output_box_tensor->lod();
  int num_boxes = size / 6;
  // 解析预测框box
  for (int i = 0; i < lod_vector[0].size() - 1; ++i) {
J
jack 已提交
457
    for (int j = lod_vector[0][i]; j < lod_vector[0][i + 1]; ++j) {
J
jack 已提交
458
      Box box;
J
jack 已提交
459
      box.category_id = static_cast<int>(round(output_box[j * 6]));
J
jack 已提交
460 461 462 463 464 465 466 467 468
      box.category = labels[box.category_id];
      box.score = output_box[j * 6 + 1];
      float xmin = output_box[j * 6 + 2];
      float ymin = output_box[j * 6 + 3];
      float xmax = output_box[j * 6 + 4];
      float ymax = output_box[j * 6 + 5];
      float w = xmax - xmin + 1;
      float h = ymax - ymin + 1;
      box.coordinate = {xmin, ymin, w, h};
J
jack 已提交
469
      (*result)[i].boxes.push_back(std::move(box));
J
jack 已提交
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
    }
  }

  // 实例分割需解析mask
  if (name == "MaskRCNN") {
    std::vector<float> output_mask;
    auto output_mask_tensor = predictor_->GetOutputTensor(output_names[1]);
    std::vector<int> output_mask_shape = output_mask_tensor->shape();
    int masks_size = 1;
    for (const auto& i : output_mask_shape) {
      masks_size *= i;
    }
    int mask_pixels = output_mask_shape[2] * output_mask_shape[3];
    int classes = output_mask_shape[1];
    output_mask.resize(masks_size);
    output_mask_tensor->copy_to_cpu(output_mask.data());
    int mask_idx = 0;
J
jack 已提交
487 488 489 490 491 492 493
    for (int i = 0; i < lod_vector[0].size() - 1; ++i) {
      (*result)[i].mask_resolution = output_mask_shape[2];
      for (int j = 0; j < (*result)[i].boxes.size(); ++j) {
        Box* box = &(*result)[i].boxes[j];
        int category_id = box->category_id;
        auto begin_mask = output_mask.begin() +
                          (mask_idx * classes + category_id) * mask_pixels;
J
jack 已提交
494 495 496 497 498 499 500 501
        auto end_mask = begin_mask + mask_pixels;
        box->mask.data.assign(begin_mask, end_mask);
        box->mask.shape = {static_cast<int>(box->coordinate[2]),
                           static_cast<int>(box->coordinate[3])};
        mask_idx++;
      }
    }
  }
J
jack 已提交
502
  return true;
J
jack 已提交
503 504
}

C
Channingss 已提交
505 506 507 508 509
bool Model::predict(const cv::Mat& im, SegResult* result) {
  result->clear();
  inputs_.clear();
  if (type == "classifier") {
    std::cerr << "Loading model is a 'classifier', ClsResult should be passed "
J
jack 已提交
510
                 "to function predict()!" << std::endl;
C
Channingss 已提交
511 512 513
    return false;
  } else if (type == "detector") {
    std::cerr << "Loading model is a 'detector', DetResult should be passed to "
J
jack 已提交
514
                 "function predict()!" << std::endl;
C
Channingss 已提交
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
    return false;
  }

  // 处理输入图像
  if (!preprocess(im, &inputs_)) {
    std::cerr << "Preprocess failed!" << std::endl;
    return false;
  }

  int h = inputs_.new_im_size_[0];
  int w = inputs_.new_im_size_[1];
  auto im_tensor = predictor_->GetInputTensor("image");
  im_tensor->Reshape({1, 3, h, w});
  im_tensor->copy_from_cpu(inputs_.im_data_.data());

  // 使用加载的模型进行预测
  predictor_->ZeroCopyRun();

  // 获取预测置信度,经过argmax后的labelmap
  auto output_names = predictor_->GetOutputNames();
  auto output_label_tensor = predictor_->GetOutputTensor(output_names[0]);
  std::vector<int> output_label_shape = output_label_tensor->shape();
  int size = 1;
  for (const auto& i : output_label_shape) {
    size *= i;
    result->label_map.shape.push_back(i);
  }
J
jack 已提交
542

C
Channingss 已提交
543 544 545 546 547 548 549 550 551 552 553
  result->label_map.data.resize(size);
  output_label_tensor->copy_to_cpu(result->label_map.data.data());

  // 获取预测置信度scoremap
  auto output_score_tensor = predictor_->GetOutputTensor(output_names[1]);
  std::vector<int> output_score_shape = output_score_tensor->shape();
  size = 1;
  for (const auto& i : output_score_shape) {
    size *= i;
    result->score_map.shape.push_back(i);
  }
J
jack 已提交
554

C
Channingss 已提交
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
  result->score_map.data.resize(size);
  output_score_tensor->copy_to_cpu(result->score_map.data.data());

  // 解析输出结果到原图大小
  std::vector<uint8_t> label_map(result->label_map.data.begin(),
                                 result->label_map.data.end());
  cv::Mat mask_label(result->label_map.shape[1],
                     result->label_map.shape[2],
                     CV_8UC1,
                     label_map.data());

  cv::Mat mask_score(result->score_map.shape[2],
                     result->score_map.shape[3],
                     CV_32FC1,
                     result->score_map.data.data());
C
Channingss 已提交
570
  int idx = 1;
C
Channingss 已提交
571
  int len_postprocess = inputs_.im_size_before_resize_.size();
C
Channingss 已提交
572 573
  for (std::vector<std::string>::reverse_iterator iter =
           inputs_.reshape_order_.rbegin();
C
Channingss 已提交
574 575
       iter != inputs_.reshape_order_.rend();
       ++iter) {
C
Channingss 已提交
576
    if (*iter == "padding") {
C
Channingss 已提交
577
      auto before_shape = inputs_.im_size_before_resize_[len_postprocess - idx];
C
Channingss 已提交
578 579 580
      inputs_.im_size_before_resize_.pop_back();
      auto padding_w = before_shape[0];
      auto padding_h = before_shape[1];
J
jack 已提交
581 582
      mask_label = mask_label(cv::Rect(0, 0, padding_h, padding_w));
      mask_score = mask_score(cv::Rect(0, 0, padding_h, padding_w));
C
Channingss 已提交
583
    } else if (*iter == "resize") {
C
Channingss 已提交
584
      auto before_shape = inputs_.im_size_before_resize_[len_postprocess - idx];
C
Channingss 已提交
585 586 587
      inputs_.im_size_before_resize_.pop_back();
      auto resize_w = before_shape[0];
      auto resize_h = before_shape[1];
C
Channingss 已提交
588 589 590 591 592 593 594 595 596 597 598
      cv::resize(mask_label,
                 mask_label,
                 cv::Size(resize_h, resize_w),
                 0,
                 0,
                 cv::INTER_NEAREST);
      cv::resize(mask_score,
                 mask_score,
                 cv::Size(resize_h, resize_w),
                 0,
                 0,
J
jack 已提交
599
                 cv::INTER_LINEAR);
C
Channingss 已提交
600
    }
C
Channingss 已提交
601
    ++idx;
C
Channingss 已提交
602 603 604 605 606 607 608
  }
  result->label_map.data.assign(mask_label.begin<uint8_t>(),
                                mask_label.end<uint8_t>());
  result->label_map.shape = {mask_label.rows, mask_label.cols};
  result->score_map.data.assign(mask_score.begin<float>(),
                                mask_score.end<float>());
  result->score_map.shape = {mask_score.rows, mask_score.cols};
J
jack 已提交
609 610 611
  return true;
}

J
jack 已提交
612 613 614 615
bool Model::predict(const std::vector<cv::Mat>& im_batch,
                    std::vector<SegResult>* result,
                    int thread_num) {
  for (auto& inputs : inputs_batch_) {
J
jack 已提交
616 617 618 619
    inputs.clear();
  }
  if (type == "classifier") {
    std::cerr << "Loading model is a 'classifier', ClsResult should be passed "
J
jack 已提交
620
                 "to function predict()!" << std::endl;
J
jack 已提交
621 622 623
    return false;
  } else if (type == "detector") {
    std::cerr << "Loading model is a 'detector', DetResult should be passed to "
J
jack 已提交
624
                 "function predict()!" << std::endl;
J
jack 已提交
625 626 627 628
    return false;
  }

  // 处理输入图像
J
jack 已提交
629
  if (!preprocess(im_batch, &inputs_batch_, thread_num)) {
J
jack 已提交
630 631 632 633 634
    std::cerr << "Preprocess failed!" << std::endl;
    return false;
  }

  int batch_size = im_batch.size();
J
jack 已提交
635 636
  (*result).clear();
  (*result).resize(batch_size);
J
jack 已提交
637 638 639 640 641
  int h = inputs_batch_[0].new_im_size_[0];
  int w = inputs_batch_[0].new_im_size_[1];
  auto im_tensor = predictor_->GetInputTensor("image");
  im_tensor->Reshape({batch_size, 3, h, w});
  std::vector<float> inputs_data(batch_size * 3 * h * w);
J
jack 已提交
642 643 644 645
  for (int i = 0; i < batch_size; ++i) {
    std::copy(inputs_batch_[i].im_data_.begin(),
              inputs_batch_[i].im_data_.end(),
              inputs_data.begin() + i * 3 * h * w);
J
jack 已提交
646 647
  }
  im_tensor->copy_from_cpu(inputs_data.data());
J
jack 已提交
648
  // im_tensor->copy_from_cpu(inputs_.im_data_.data());
J
jack 已提交
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666

  // 使用加载的模型进行预测
  predictor_->ZeroCopyRun();

  // 获取预测置信度,经过argmax后的labelmap
  auto output_names = predictor_->GetOutputNames();
  auto output_label_tensor = predictor_->GetOutputTensor(output_names[0]);
  std::vector<int> output_label_shape = output_label_tensor->shape();
  int size = 1;
  for (const auto& i : output_label_shape) {
    size *= i;
  }

  std::vector<int64_t> output_labels(size, 0);
  output_label_tensor->copy_to_cpu(output_labels.data());
  auto output_labels_iter = output_labels.begin();

  int single_batch_size = size / batch_size;
J
jack 已提交
667 668 669 670 671
  for (int i = 0; i < batch_size; ++i) {
    (*result)[i].label_map.data.resize(single_batch_size);
    (*result)[i].label_map.shape.push_back(1);
    for (int j = 1; j < output_label_shape.size(); ++j) {
      (*result)[i].label_map.shape.push_back(output_label_shape[j]);
J
jack 已提交
672
    }
J
jack 已提交
673 674 675
    std::copy(output_labels_iter + i * single_batch_size,
              output_labels_iter + (i + 1) * single_batch_size,
              (*result)[i].label_map.data.data());
J
jack 已提交
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
  }

  // 获取预测置信度scoremap
  auto output_score_tensor = predictor_->GetOutputTensor(output_names[1]);
  std::vector<int> output_score_shape = output_score_tensor->shape();
  size = 1;
  for (const auto& i : output_score_shape) {
    size *= i;
  }

  std::vector<float> output_scores(size, 0);
  output_score_tensor->copy_to_cpu(output_scores.data());
  auto output_scores_iter = output_scores.begin();

  int single_batch_score_size = size / batch_size;
J
jack 已提交
691 692 693 694 695
  for (int i = 0; i < batch_size; ++i) {
    (*result)[i].score_map.data.resize(single_batch_score_size);
    (*result)[i].score_map.shape.push_back(1);
    for (int j = 1; j < output_score_shape.size(); ++j) {
      (*result)[i].score_map.shape.push_back(output_score_shape[j]);
J
jack 已提交
696
    }
J
jack 已提交
697 698 699
    std::copy(output_scores_iter + i * single_batch_score_size,
              output_scores_iter + (i + 1) * single_batch_score_size,
              (*result)[i].score_map.data.data());
J
jack 已提交
700 701 702
  }

  // 解析输出结果到原图大小
J
jack 已提交
703 704 705 706 707
  for (int i = 0; i < batch_size; ++i) {
    std::vector<uint8_t> label_map((*result)[i].label_map.data.begin(),
                                   (*result)[i].label_map.data.end());
    cv::Mat mask_label((*result)[i].label_map.shape[1],
                       (*result)[i].label_map.shape[2],
J
jack 已提交
708 709
                       CV_8UC1,
                       label_map.data());
J
jack 已提交
710 711 712

    cv::Mat mask_score((*result)[i].score_map.shape[2],
                       (*result)[i].score_map.shape[3],
J
jack 已提交
713
                       CV_32FC1,
J
jack 已提交
714
                       (*result)[i].score_map.data.data());
J
jack 已提交
715 716 717 718 719 720 721
    int idx = 1;
    int len_postprocess = inputs_batch_[i].im_size_before_resize_.size();
    for (std::vector<std::string>::reverse_iterator iter =
             inputs_batch_[i].reshape_order_.rbegin();
         iter != inputs_batch_[i].reshape_order_.rend();
         ++iter) {
      if (*iter == "padding") {
J
jack 已提交
722 723
        auto before_shape =
            inputs_batch_[i].im_size_before_resize_[len_postprocess - idx];
J
jack 已提交
724 725 726 727 728 729
        inputs_batch_[i].im_size_before_resize_.pop_back();
        auto padding_w = before_shape[0];
        auto padding_h = before_shape[1];
        mask_label = mask_label(cv::Rect(0, 0, padding_h, padding_w));
        mask_score = mask_score(cv::Rect(0, 0, padding_h, padding_w));
      } else if (*iter == "resize") {
J
jack 已提交
730 731
        auto before_shape =
            inputs_batch_[i].im_size_before_resize_[len_postprocess - idx];
J
jack 已提交
732 733 734 735 736 737 738 739 740 741 742 743 744 745
        inputs_batch_[i].im_size_before_resize_.pop_back();
        auto resize_w = before_shape[0];
        auto resize_h = before_shape[1];
        cv::resize(mask_label,
                   mask_label,
                   cv::Size(resize_h, resize_w),
                   0,
                   0,
                   cv::INTER_NEAREST);
        cv::resize(mask_score,
                   mask_score,
                   cv::Size(resize_h, resize_w),
                   0,
                   0,
J
jack 已提交
746
                   cv::INTER_LINEAR);
J
jack 已提交
747 748 749
      }
      ++idx;
    }
J
jack 已提交
750 751 752 753 754 755
    (*result)[i].label_map.data.assign(mask_label.begin<uint8_t>(),
                                       mask_label.end<uint8_t>());
    (*result)[i].label_map.shape = {mask_label.rows, mask_label.cols};
    (*result)[i].score_map.data.assign(mask_score.begin<float>(),
                                       mask_score.end<float>());
    (*result)[i].score_map.shape = {mask_score.rows, mask_score.cols};
J
jack 已提交
756 757
  }
  return true;
C
Channingss 已提交
758 759
}

J
jack 已提交
760
}  // namespace PaddleX