paddlex.cpp 21.5 KB
Newer Older
C
Channingss 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
//   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
J
jack 已提交
14 15
#include <algorithm>
#include <omp.h>
C
Channingss 已提交
16 17 18 19 20
#include "include/paddlex/paddlex.h"
namespace PaddleX {

void Model::create_predictor(const std::string& model_dir,
                             bool use_gpu,
C
Channingss 已提交
21
                             bool use_trt,
C
Channingss 已提交
22
                             int gpu_id,
J
jack 已提交
23 24
                             std::string key,
			     int batch_size) {
C
Channingss 已提交
25 26 27 28 29 30 31 32
  // 读取配置文件
  if (!load_config(model_dir)) {
    std::cerr << "Parse file 'model.yml' failed!" << std::endl;
    exit(-1);
  }
  paddle::AnalysisConfig config;
  std::string model_file = model_dir + OS_PATH_SEP + "__model__";
  std::string params_file = model_dir + OS_PATH_SEP + "__params__";
C
Channingss 已提交
33 34
#ifdef WITH_ENCRYPTION
  if (key != ""){
F
FlyingQianMM 已提交
35 36
    model_file = model_dir + OS_PATH_SEP + "__model__.encrypted";
    params_file = model_dir + OS_PATH_SEP + "__params__.encrypted";
C
Channingss 已提交
37 38 39 40 41 42
    paddle_security_load_model(&config, key.c_str(), model_file.c_str(), params_file.c_str());
  }
#endif
  if (key == ""){
    config.SetModel(model_file, params_file);
  }
C
Channingss 已提交
43 44 45 46 47 48 49 50 51
  if (use_gpu) {
    config.EnableUseGpu(100, gpu_id);
  } else {
    config.DisableGpu();
  }
  config.SwitchUseFeedFetchOps(false);
  config.SwitchSpecifyInputNames(true);
  // 开启内存优化
  config.EnableMemoryOptim();
C
Channingss 已提交
52 53 54 55 56 57 58 59
  if (use_trt) {
    config.EnableTensorRtEngine(
        1 << 20 /* workspace_size*/,
        32 /* max_batch_size*/,
        20 /* min_subgraph_size*/,
        paddle::AnalysisConfig::Precision::kFloat32 /* precision*/,
        true /* use_static*/,
        false /* use_calib_mode*/);
C
Channingss 已提交
60
  }
C
Channingss 已提交
61
  predictor_ = std::move(CreatePaddlePredictor(config));
J
jack 已提交
62
  inputs_batch_.assign(batch_size, ImageBlob());
C
Channingss 已提交
63 64 65 66 67 68 69
}

bool Model::load_config(const std::string& model_dir) {
  std::string yaml_file = model_dir + OS_PATH_SEP + "model.yml";
  YAML::Node config = YAML::LoadFile(yaml_file);
  type = config["_Attributes"]["model_type"].as<std::string>();
  name = config["Model"].as<std::string>();
F
FlyingQianMM 已提交
70 71 72 73 74 75 76 77 78
  std::string version = config["version"].as<std::string>();
  if (version[0] == '0') {
    std::cerr << "[Init] Version of the loaded model is lower than 1.0.0, deployment "
              << "cannot be done, please refer to "
              << "https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/tutorials/deploy/upgrade_version.md "
              << "to transfer version."
              << std::endl;
    return false;
  }
C
Channingss 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
  bool to_rgb = true;
  if (config["TransformsMode"].IsDefined()) {
    std::string mode = config["TransformsMode"].as<std::string>();
    if (mode == "BGR") {
      to_rgb = false;
    } else if (mode != "RGB") {
      std::cerr << "[Init] Only 'RGB' or 'BGR' is supported for TransformsMode"
                << std::endl;
      return false;
    }
  }
  // 构建数据处理流
  transforms_.Init(config["Transforms"], to_rgb);
  // 读入label list
  labels.clear();
  for (const auto& item : config["_Attributes"]["labels"]) {
    int index = labels.size();
    labels[index] = item.as<std::string>();
  }
  return true;
}

bool Model::preprocess(const cv::Mat& input_im, ImageBlob* blob) {
  cv::Mat im = input_im.clone();
103
  if (!transforms_.Run(&im, blob)) {
C
Channingss 已提交
104 105 106 107 108
    return false;
  }
  return true;
}

J
jack 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
// use openmp
bool Model::preprocess(const std::vector<cv::Mat> &input_im_batch, std::vector<ImageBlob> &blob_batch) {
  int batch_size = inputs_batch_.size();
  bool success = true;
  //int i;
  #pragma omp parallel for num_threads(batch_size)
  for(int i = 0; i < input_im_batch.size(); ++i) {
    cv::Mat im = input_im_batch[i].clone();
    if(!transforms_.Run(&im, &blob_batch[i])){
      success = false;
    }
  }
  return success;
}

C
Channingss 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
bool Model::predict(const cv::Mat& im, ClsResult* result) {
  inputs_.clear();
  if (type == "detector") {
    std::cerr << "Loading model is a 'detector', DetResult should be passed to "
                 "function predict()!"
              << std::endl;
    return false;
  } else if (type == "segmenter") {
    std::cerr << "Loading model is a 'segmenter', SegResult should be passed "
                 "to function predict()!"
              << std::endl;
    return false;
  }
  // 处理输入图像
  if (!preprocess(im, &inputs_)) {
    std::cerr << "Preprocess failed!" << std::endl;
    return false;
  }
  // 使用加载的模型进行预测
  auto in_tensor = predictor_->GetInputTensor("image");
  int h = inputs_.new_im_size_[0];
  int w = inputs_.new_im_size_[1];
  in_tensor->Reshape({1, 3, h, w});
  in_tensor->copy_from_cpu(inputs_.im_data_.data());
  predictor_->ZeroCopyRun();
  // 取出模型的输出结果
  auto output_names = predictor_->GetOutputNames();
  auto output_tensor = predictor_->GetOutputTensor(output_names[0]);
  std::vector<int> output_shape = output_tensor->shape();
  int size = 1;
  for (const auto& i : output_shape) {
    size *= i;
  }
  outputs_.resize(size);
  output_tensor->copy_to_cpu(outputs_.data());
  // 对模型输出结果进行后处理
  auto ptr = std::max_element(std::begin(outputs_), std::end(outputs_));
  result->category_id = std::distance(std::begin(outputs_), ptr);
  result->score = *ptr;
  result->category = labels[result->category_id];
J
jack 已提交
164
  return true;
C
Channingss 已提交
165 166
}

J
jack 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
bool Model::predict(const std::vector<cv::Mat> &im_batch, std::vector<ClsResult> &results) {
  for(auto &inputs: inputs_batch_) {
    inputs.clear();
  }
  if (type == "detector") {
    std::cerr << "Loading model is a 'detector', DetResult should be passed to "
                 "function predict()!"
              << std::endl;
    return false;
  } else if (type == "segmenter") {
    std::cerr << "Loading model is a 'segmenter', SegResult should be passed "
                 "to function predict()!"
              << std::endl;
    return false;
  }
  // 处理输入图像
  if (!preprocess(im_batch, inputs_batch_)) {
    std::cerr << "Preprocess failed!" << std::endl;
    return false;
  }
  // 使用加载的模型进行预测
  int batch_size = im_batch.size();
  auto in_tensor = predictor_->GetInputTensor("image");
  int h = inputs_batch_[0].new_im_size_[0];
  int w = inputs_batch_[0].new_im_size_[1];
  in_tensor->Reshape({batch_size, 3, h, w});
  std::vector<float> inputs_data(batch_size * 3 * h * w);
  for(int i = 0; i <inputs_batch_.size(); ++i) {
    std::copy(inputs_batch_[i].im_data_.begin(), inputs_batch_[i].im_data_.end(), inputs_data.begin() + i * 3 * h * w);
  }
  in_tensor->copy_from_cpu(inputs_data.data());
  //in_tensor->copy_from_cpu(inputs_.im_data_.data());
  predictor_->ZeroCopyRun();
  // 取出模型的输出结果
  auto output_names = predictor_->GetOutputNames();
  auto output_tensor = predictor_->GetOutputTensor(output_names[0]);
  std::vector<int> output_shape = output_tensor->shape();
  int size = 1;
  for (const auto& i : output_shape) {
    size *= i;
  }
  outputs_.resize(size);
  output_tensor->copy_to_cpu(outputs_.data());
  // 对模型输出结果进行后处理
  int single_batch_size = size / batch_size;
  for(int i = 0; i < batch_size; ++i) {
    auto start_ptr = std::begin(outputs_);
    auto end_ptr = std::begin(outputs_);
    std::advance(start_ptr, i * single_batch_size);
    std::advance(end_ptr, (i + 1) * single_batch_size);
    auto ptr = std::max_element(start_ptr, end_ptr);
    results[i].category_id = std::distance(start_ptr, ptr);
    results[i].score = *ptr;
    results[i].category = labels[results[i].category_id];
  }
  return true;
}

C
Channingss 已提交
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
bool Model::predict(const cv::Mat& im, DetResult* result) {
  result->clear();
  inputs_.clear();
  if (type == "classifier") {
    std::cerr << "Loading model is a 'classifier', ClsResult should be passed "
                 "to function predict()!"
              << std::endl;
    return false;
  } else if (type == "segmenter") {
    std::cerr << "Loading model is a 'segmenter', SegResult should be passed "
                 "to function predict()!"
              << std::endl;
    return false;
  }

  // 处理输入图像
  if (!preprocess(im, &inputs_)) {
    std::cerr << "Preprocess failed!" << std::endl;
    return false;
  }

  int h = inputs_.new_im_size_[0];
  int w = inputs_.new_im_size_[1];
  auto im_tensor = predictor_->GetInputTensor("image");
  im_tensor->Reshape({1, 3, h, w});
  im_tensor->copy_from_cpu(inputs_.im_data_.data());
  if (name == "YOLOv3") {
    auto im_size_tensor = predictor_->GetInputTensor("im_size");
    im_size_tensor->Reshape({1, 2});
    im_size_tensor->copy_from_cpu(inputs_.ori_im_size_.data());
  } else if (name == "FasterRCNN" || name == "MaskRCNN") {
    auto im_info_tensor = predictor_->GetInputTensor("im_info");
    auto im_shape_tensor = predictor_->GetInputTensor("im_shape");
    im_info_tensor->Reshape({1, 3});
    im_shape_tensor->Reshape({1, 3});
    float ori_h = static_cast<float>(inputs_.ori_im_size_[0]);
    float ori_w = static_cast<float>(inputs_.ori_im_size_[1]);
    float new_h = static_cast<float>(inputs_.new_im_size_[0]);
    float new_w = static_cast<float>(inputs_.new_im_size_[1]);
    float im_info[] = {new_h, new_w, inputs_.scale};
    float im_shape[] = {ori_h, ori_w, 1.0};
    im_info_tensor->copy_from_cpu(im_info);
    im_shape_tensor->copy_from_cpu(im_shape);
  }
  // 使用加载的模型进行预测
  predictor_->ZeroCopyRun();

  std::vector<float> output_box;
  auto output_names = predictor_->GetOutputNames();
  auto output_box_tensor = predictor_->GetOutputTensor(output_names[0]);
  std::vector<int> output_box_shape = output_box_tensor->shape();
  int size = 1;
  for (const auto& i : output_box_shape) {
    size *= i;
  }
  output_box.resize(size);
  output_box_tensor->copy_to_cpu(output_box.data());
  if (size < 6) {
    std::cerr << "[WARNING] There's no object detected." << std::endl;
    return true;
  }
  int num_boxes = size / 6;
  // 解析预测框box
  for (int i = 0; i < num_boxes; ++i) {
    Box box;
    box.category_id = static_cast<int>(round(output_box[i * 6]));
    box.category = labels[box.category_id];
    box.score = output_box[i * 6 + 1];
    float xmin = output_box[i * 6 + 2];
    float ymin = output_box[i * 6 + 3];
    float xmax = output_box[i * 6 + 4];
    float ymax = output_box[i * 6 + 5];
    float w = xmax - xmin + 1;
    float h = ymax - ymin + 1;
    box.coordinate = {xmin, ymin, w, h};
    result->boxes.push_back(std::move(box));
  }
  // 实例分割需解析mask
  if (name == "MaskRCNN") {
    std::vector<float> output_mask;
    auto output_mask_tensor = predictor_->GetOutputTensor(output_names[1]);
    std::vector<int> output_mask_shape = output_mask_tensor->shape();
    int masks_size = 1;
    for (const auto& i : output_mask_shape) {
      masks_size *= i;
    }
    int mask_pixels = output_mask_shape[2] * output_mask_shape[3];
    int classes = output_mask_shape[1];
    output_mask.resize(masks_size);
    output_mask_tensor->copy_to_cpu(output_mask.data());
    result->mask_resolution = output_mask_shape[2];
    for (int i = 0; i < result->boxes.size(); ++i) {
      Box* box = &result->boxes[i];
      auto begin_mask =
          output_mask.begin() + (i * classes + box->category_id) * mask_pixels;
      auto end_mask = begin_mask + mask_pixels;
      box->mask.data.assign(begin_mask, end_mask);
      box->mask.shape = {static_cast<int>(box->coordinate[2]),
                         static_cast<int>(box->coordinate[3])};
    }
  }
J
jack 已提交
326
  return true;
C
Channingss 已提交
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
}

bool Model::predict(const cv::Mat& im, SegResult* result) {
  result->clear();
  inputs_.clear();
  if (type == "classifier") {
    std::cerr << "Loading model is a 'classifier', ClsResult should be passed "
                 "to function predict()!"
              << std::endl;
    return false;
  } else if (type == "detector") {
    std::cerr << "Loading model is a 'detector', DetResult should be passed to "
                 "function predict()!"
              << std::endl;
    return false;
  }

  // 处理输入图像
  if (!preprocess(im, &inputs_)) {
    std::cerr << "Preprocess failed!" << std::endl;
    return false;
  }

  int h = inputs_.new_im_size_[0];
  int w = inputs_.new_im_size_[1];
  auto im_tensor = predictor_->GetInputTensor("image");
  im_tensor->Reshape({1, 3, h, w});
  im_tensor->copy_from_cpu(inputs_.im_data_.data());

  // 使用加载的模型进行预测
  predictor_->ZeroCopyRun();

  // 获取预测置信度,经过argmax后的labelmap
  auto output_names = predictor_->GetOutputNames();
  auto output_label_tensor = predictor_->GetOutputTensor(output_names[0]);
  std::vector<int> output_label_shape = output_label_tensor->shape();
  int size = 1;
  for (const auto& i : output_label_shape) {
    size *= i;
    result->label_map.shape.push_back(i);
  }
J
jack 已提交
368

C
Channingss 已提交
369 370 371 372 373 374 375 376 377 378 379
  result->label_map.data.resize(size);
  output_label_tensor->copy_to_cpu(result->label_map.data.data());

  // 获取预测置信度scoremap
  auto output_score_tensor = predictor_->GetOutputTensor(output_names[1]);
  std::vector<int> output_score_shape = output_score_tensor->shape();
  size = 1;
  for (const auto& i : output_score_shape) {
    size *= i;
    result->score_map.shape.push_back(i);
  }
J
jack 已提交
380

C
Channingss 已提交
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
  result->score_map.data.resize(size);
  output_score_tensor->copy_to_cpu(result->score_map.data.data());

  // 解析输出结果到原图大小
  std::vector<uint8_t> label_map(result->label_map.data.begin(),
                                 result->label_map.data.end());
  cv::Mat mask_label(result->label_map.shape[1],
                     result->label_map.shape[2],
                     CV_8UC1,
                     label_map.data());

  cv::Mat mask_score(result->score_map.shape[2],
                     result->score_map.shape[3],
                     CV_32FC1,
                     result->score_map.data.data());
C
Channingss 已提交
396
  int idx = 1;
C
Channingss 已提交
397
  int len_postprocess = inputs_.im_size_before_resize_.size();
C
Channingss 已提交
398 399
  for (std::vector<std::string>::reverse_iterator iter =
           inputs_.reshape_order_.rbegin();
C
Channingss 已提交
400 401
       iter != inputs_.reshape_order_.rend();
       ++iter) {
C
Channingss 已提交
402
    if (*iter == "padding") {
C
Channingss 已提交
403
      auto before_shape = inputs_.im_size_before_resize_[len_postprocess - idx];
C
Channingss 已提交
404 405 406
      inputs_.im_size_before_resize_.pop_back();
      auto padding_w = before_shape[0];
      auto padding_h = before_shape[1];
J
jack 已提交
407 408
      mask_label = mask_label(cv::Rect(0, 0, padding_h, padding_w));
      mask_score = mask_score(cv::Rect(0, 0, padding_h, padding_w));
C
Channingss 已提交
409
    } else if (*iter == "resize") {
C
Channingss 已提交
410
      auto before_shape = inputs_.im_size_before_resize_[len_postprocess - idx];
C
Channingss 已提交
411 412 413
      inputs_.im_size_before_resize_.pop_back();
      auto resize_w = before_shape[0];
      auto resize_h = before_shape[1];
C
Channingss 已提交
414 415 416 417 418 419 420 421 422 423 424
      cv::resize(mask_label,
                 mask_label,
                 cv::Size(resize_h, resize_w),
                 0,
                 0,
                 cv::INTER_NEAREST);
      cv::resize(mask_score,
                 mask_score,
                 cv::Size(resize_h, resize_w),
                 0,
                 0,
J
jack 已提交
425
                 cv::INTER_LINEAR); 
C
Channingss 已提交
426
    }
C
Channingss 已提交
427
    ++idx;
C
Channingss 已提交
428 429 430 431 432 433 434
  }
  result->label_map.data.assign(mask_label.begin<uint8_t>(),
                                mask_label.end<uint8_t>());
  result->label_map.shape = {mask_label.rows, mask_label.cols};
  result->score_map.data.assign(mask_score.begin<float>(),
                                mask_score.end<float>());
  result->score_map.shape = {mask_score.rows, mask_score.cols};
J
jack 已提交
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
  return true;
}

bool Model::predict(const std::vector<cv::Mat> &im_batch, std::vector<SegResult> &result) {
  for(auto &inputs: inputs_batch_) {
    inputs.clear();
  }
  if (type == "classifier") {
    std::cerr << "Loading model is a 'classifier', ClsResult should be passed "
                 "to function predict()!"
              << std::endl;
    return false;
  } else if (type == "detector") {
    std::cerr << "Loading model is a 'detector', DetResult should be passed to "
                 "function predict()!"
              << std::endl;
    return false;
  }

  // 处理输入图像
  if (!preprocess(im_batch, inputs_batch_)) {
    std::cerr << "Preprocess failed!" << std::endl;
    return false;
  }

  int batch_size = im_batch.size();
  result.clear();
  result.resize(batch_size);
  int h = inputs_batch_[0].new_im_size_[0];
  int w = inputs_batch_[0].new_im_size_[1];
  auto im_tensor = predictor_->GetInputTensor("image");
  im_tensor->Reshape({batch_size, 3, h, w});
  std::vector<float> inputs_data(batch_size * 3 * h * w);
  for(int i = 0; i <inputs_batch_.size(); ++i) {
    std::copy(inputs_batch_[i].im_data_.begin(), inputs_batch_[i].im_data_.end(), inputs_data.begin() + i * 3 * h * w);
  }
  im_tensor->copy_from_cpu(inputs_data.data());
  //im_tensor->copy_from_cpu(inputs_.im_data_.data());

  // 使用加载的模型进行预测
  predictor_->ZeroCopyRun();

  // 获取预测置信度,经过argmax后的labelmap
  auto output_names = predictor_->GetOutputNames();
  auto output_label_tensor = predictor_->GetOutputTensor(output_names[0]);
  std::vector<int> output_label_shape = output_label_tensor->shape();
  int size = 1;
  for (const auto& i : output_label_shape) {
    size *= i;
  }

  std::vector<int64_t> output_labels(size, 0);
  output_label_tensor->copy_to_cpu(output_labels.data());
  auto output_labels_iter = output_labels.begin();

  int single_batch_size = size / batch_size;
  for(int i = 0; i < batch_size; ++i) {
    result[i].label_map.data.resize(single_batch_size);
    result[i].label_map.shape.push_back(1);
    for(int j = 1; j < output_label_shape.size(); ++j) {
      result[i].label_map.shape.push_back(output_label_shape[j]);
    }
    std::copy(output_labels_iter + i * single_batch_size, output_labels_iter + (i + 1) * single_batch_size, result[i].label_map.data.data());
  }

  // 获取预测置信度scoremap
  auto output_score_tensor = predictor_->GetOutputTensor(output_names[1]);
  std::vector<int> output_score_shape = output_score_tensor->shape();
  size = 1;
  for (const auto& i : output_score_shape) {
    size *= i;
  }

  std::vector<float> output_scores(size, 0);
  output_score_tensor->copy_to_cpu(output_scores.data());
  auto output_scores_iter = output_scores.begin();

  int single_batch_score_size = size / batch_size;
  for(int i = 0; i < batch_size; ++i) {
    result[i].score_map.data.resize(single_batch_score_size);
    result[i].score_map.shape.push_back(1);
    for(int j = 1; j < output_score_shape.size(); ++j) {
      result[i].score_map.shape.push_back(output_score_shape[j]);
    }
    std::copy(output_scores_iter + i * single_batch_score_size, output_scores_iter + (i + 1) * single_batch_score_size, result[i].score_map.data.data());
  }

  // 解析输出结果到原图大小
  for(int i = 0; i < batch_size; ++i) {
    std::vector<uint8_t> label_map(result[i].label_map.data.begin(),
                                   result[i].label_map.data.end());
    cv::Mat mask_label(result[i].label_map.shape[1],
                       result[i].label_map.shape[2],
                       CV_8UC1,
                       label_map.data());
  
    cv::Mat mask_score(result[i].score_map.shape[2],
                       result[i].score_map.shape[3],
                       CV_32FC1,
                       result[i].score_map.data.data());
    int idx = 1;
    int len_postprocess = inputs_batch_[i].im_size_before_resize_.size();
    for (std::vector<std::string>::reverse_iterator iter =
             inputs_batch_[i].reshape_order_.rbegin();
         iter != inputs_batch_[i].reshape_order_.rend();
         ++iter) {
      if (*iter == "padding") {
        auto before_shape = inputs_batch_[i].im_size_before_resize_[len_postprocess - idx];
        inputs_batch_[i].im_size_before_resize_.pop_back();
        auto padding_w = before_shape[0];
        auto padding_h = before_shape[1];
        mask_label = mask_label(cv::Rect(0, 0, padding_h, padding_w));
        mask_score = mask_score(cv::Rect(0, 0, padding_h, padding_w));
      } else if (*iter == "resize") {
        auto before_shape = inputs_batch_[i].im_size_before_resize_[len_postprocess - idx];
        inputs_batch_[i].im_size_before_resize_.pop_back();
        auto resize_w = before_shape[0];
        auto resize_h = before_shape[1];
        cv::resize(mask_label,
                   mask_label,
                   cv::Size(resize_h, resize_w),
                   0,
                   0,
                   cv::INTER_NEAREST);
        cv::resize(mask_score,
                   mask_score,
                   cv::Size(resize_h, resize_w),
                   0,
                   0,
                   cv::INTER_LINEAR); 
      }
      ++idx;
    }
    result[i].label_map.data.assign(mask_label.begin<uint8_t>(),
                                  mask_label.end<uint8_t>());
    result[i].label_map.shape = {mask_label.rows, mask_label.cols};
    result[i].score_map.data.assign(mask_score.begin<float>(),
                                  mask_score.end<float>());
    result[i].score_map.shape = {mask_score.rows, mask_score.cols};
  }
  return true;
C
Channingss 已提交
576 577 578
}

}  // namespce of PaddleX