Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleX
提交
c3b50efe
P
PaddleX
项目概览
PaddlePaddle
/
PaddleX
通知
138
Star
4
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
43
列表
看板
标记
里程碑
合并请求
5
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleX
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
43
Issue
43
列表
看板
标记
里程碑
合并请求
5
合并请求
5
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c3b50efe
编写于
5月 08, 2020
作者:
C
Channingss
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
support TensorRT
上级
2385d7ab
变更
26
隐藏空白更改
内联
并排
Showing
26 changed file
with
271 addition
and
69 deletion
+271
-69
README.md
README.md
+1
-1
deploy/cpp/CMakeLists.txt
deploy/cpp/CMakeLists.txt
+10
-5
deploy/cpp/include/paddlex/paddlex.h
deploy/cpp/include/paddlex/paddlex.h
+3
-1
deploy/cpp/include/paddlex/transforms.h
deploy/cpp/include/paddlex/transforms.h
+3
-6
deploy/cpp/scripts/build.sh
deploy/cpp/scripts/build.sh
+4
-1
deploy/cpp/src/classifier.cpp
deploy/cpp/src/classifier.cpp
+2
-1
deploy/cpp/src/detector.cpp
deploy/cpp/src/detector.cpp
+2
-1
deploy/cpp/src/paddlex.cpp
deploy/cpp/src/paddlex.cpp
+21
-7
deploy/cpp/src/segmenter.cpp
deploy/cpp/src/segmenter.cpp
+3
-1
deploy/cpp/src/transforms.cpp
deploy/cpp/src/transforms.cpp
+4
-8
paddlex/command.py
paddlex/command.py
+10
-3
paddlex/cv/models/base.py
paddlex/cv/models/base.py
+21
-2
paddlex/cv/models/classifier.py
paddlex/cv/models/classifier.py
+10
-3
paddlex/cv/models/deeplabv3p.py
paddlex/cv/models/deeplabv3p.py
+6
-3
paddlex/cv/models/faster_rcnn.py
paddlex/cv/models/faster_rcnn.py
+6
-2
paddlex/cv/models/load_model.py
paddlex/cv/models/load_model.py
+3
-1
paddlex/cv/models/mask_rcnn.py
paddlex/cv/models/mask_rcnn.py
+6
-2
paddlex/cv/models/unet.py
paddlex/cv/models/unet.py
+6
-2
paddlex/cv/models/yolo_v3.py
paddlex/cv/models/yolo_v3.py
+5
-2
paddlex/cv/nets/detection/faster_rcnn.py
paddlex/cv/nets/detection/faster_rcnn.py
+11
-3
paddlex/cv/nets/detection/mask_rcnn.py
paddlex/cv/nets/detection/mask_rcnn.py
+11
-3
paddlex/cv/nets/detection/yolo_v3.py
paddlex/cv/nets/detection/yolo_v3.py
+10
-3
paddlex/cv/nets/segmentation/deeplabv3p.py
paddlex/cv/nets/segmentation/deeplabv3p.py
+12
-3
paddlex/cv/nets/segmentation/unet.py
paddlex/cv/nets/segmentation/unet.py
+12
-3
paddlex/cv/transforms/det_transforms.py
paddlex/cv/transforms/det_transforms.py
+19
-2
paddlex/cv/transforms/seg_transforms.py
paddlex/cv/transforms/seg_transforms.py
+70
-0
未找到文件。
README.md
浏览文件 @
c3b50efe
...
...
@@ -17,7 +17,7 @@ PaddleX是基于飞桨技术生态的全流程深度学习模型开发工具。
-
[
10分钟快速上手PaddleX模型训练
](
docs/quick_start.md
)
-
[
PaddleX使用教程
](
docs/tutorials
)
-
[
PaddleX模型库
](
docs/model_zoo.md
)
-
[
导出模型部署
](
docs/deploy.md
)
-
[
导出模型部署
](
docs/deploy
/deploy
.md
)
## 反馈
...
...
deploy/cpp/CMakeLists.txt
浏览文件 @
c3b50efe
...
...
@@ -3,9 +3,10 @@ project(PaddleX CXX C)
option
(
WITH_MKL
"Compile demo with MKL/OpenBlas support,defaultuseMKL."
ON
)
option
(
WITH_GPU
"Compile demo with GPU/CPU, default use CPU."
ON
)
option
(
WITH_STATIC_LIB
"Compile demo with static/shared library, default use static."
O
N
)
option
(
WITH_STATIC_LIB
"Compile demo with static/shared library, default use static."
O
FF
)
option
(
WITH_TENSORRT
"Compile demo with TensorRT."
OFF
)
SET
(
TENSORRT_DIR
""
CACHE PATH
"Compile demo with TensorRT"
)
SET
(
PADDLE_DIR
""
CACHE PATH
"Location of libraries"
)
SET
(
OPENCV_DIR
""
CACHE PATH
"Location of libraries"
)
SET
(
CUDA_LIB
""
CACHE PATH
"Location of libraries"
)
...
...
@@ -111,8 +112,10 @@ endif()
if
(
NOT WIN32
)
if
(
WITH_TENSORRT AND WITH_GPU
)
include_directories
(
"
${
PADDLE_DIR
}
/third_party/install/tensorrt/include"
)
link_directories
(
"
${
PADDLE_DIR
}
/third_party/install/tensorrt/lib"
)
include_directories
(
"
${
TENSORRT_DIR
}
/include"
)
link_directories
(
"
${
TENSORRT_DIR
}
/lib"
)
#include_directories("${PADDLE_DIR}/third_party/install/tensorrt/include")
#link_directories("${PADDLE_DIR}/third_party/install/tensorrt/lib")
endif
()
endif
(
NOT WIN32
)
...
...
@@ -194,8 +197,10 @@ endif(NOT WIN32)
if
(
WITH_GPU
)
if
(
NOT WIN32
)
if
(
WITH_TENSORRT
)
set
(
DEPS
${
DEPS
}
${
PADDLE_DIR
}
/third_party/install/tensorrt/lib/libnvinfer
${
CMAKE_STATIC_LIBRARY_SUFFIX
}
)
set
(
DEPS
${
DEPS
}
${
PADDLE_DIR
}
/third_party/install/tensorrt/lib/libnvinfer_plugin
${
CMAKE_STATIC_LIBRARY_SUFFIX
}
)
set
(
DEPS
${
DEPS
}
${
TENSORRT_DIR
}
/lib/libnvinfer
${
CMAKE_SHARED_LIBRARY_SUFFIX
}
)
set
(
DEPS
${
DEPS
}
${
TENSORRT_DIR
}
/lib/libnvinfer_plugin
${
CMAKE_SHARED_LIBRARY_SUFFIX
}
)
#set(DEPS ${DEPS} ${PADDLE_DIR}/third_party/install/tensorrt/lib/libnvinfer${CMAKE_STATIC_LIBRARY_SUFFIX})
#set(DEPS ${DEPS} ${PADDLE_DIR}/third_party/install/tensorrt/lib/libnvinfer_plugin${CMAKE_STATIC_LIBRARY_SUFFIX})
endif
()
set
(
DEPS
${
DEPS
}
${
CUDA_LIB
}
/libcudart
${
CMAKE_SHARED_LIBRARY_SUFFIX
}
)
set
(
DEPS
${
DEPS
}
${
CUDNN_LIB
}
/libcudnn
${
CMAKE_SHARED_LIBRARY_SUFFIX
}
)
...
...
deploy/cpp/include/paddlex/paddlex.h
浏览文件 @
c3b50efe
...
...
@@ -38,12 +38,14 @@ class Model {
public:
void
Init
(
const
std
::
string
&
model_dir
,
bool
use_gpu
=
false
,
bool
use_trt
=
false
,
int
gpu_id
=
0
)
{
create_predictor
(
model_dir
,
use_gpu
,
gpu_id
);
create_predictor
(
model_dir
,
use_gpu
,
use_trt
,
gpu_id
);
}
void
create_predictor
(
const
std
::
string
&
model_dir
,
bool
use_gpu
=
false
,
bool
use_trt
=
false
,
int
gpu_id
=
0
);
bool
load_config
(
const
std
::
string
&
model_dir
);
...
...
deploy/cpp/include/paddlex/transforms.h
浏览文件 @
c3b50efe
...
...
@@ -35,10 +35,8 @@ class ImageBlob {
std
::
vector
<
int
>
ori_im_size_
=
std
::
vector
<
int
>
(
2
);
// Newest image height and width after process
std
::
vector
<
int
>
new_im_size_
=
std
::
vector
<
int
>
(
2
);
// Image height and width before padding
std
::
vector
<
int
>
im_size_before_padding_
=
std
::
vector
<
int
>
(
2
);
// Image height and width before resize
std
::
vector
<
int
>
im_size_before_resize_
=
std
::
vector
<
int
>
(
2
)
;
std
::
vector
<
std
::
vector
<
int
>>
im_size_before_resize_
;
// Reshape order
std
::
vector
<
std
::
string
>
reshape_order_
;
// Resize scale
...
...
@@ -49,7 +47,6 @@ class ImageBlob {
void
clear
()
{
ori_im_size_
.
clear
();
new_im_size_
.
clear
();
im_size_before_padding_
.
clear
();
im_size_before_resize_
.
clear
();
reshape_order_
.
clear
();
im_data_
.
clear
();
...
...
@@ -165,8 +162,8 @@ class Padding : public Transform {
width_
=
item
[
"target_size"
].
as
<
int
>
();
height_
=
item
[
"target_size"
].
as
<
int
>
();
}
else
if
(
item
[
"target_size"
].
IsSequence
())
{
width_
=
item
[
"target_size"
].
as
<
std
::
vector
<
int
>>
()[
0
];
height_
=
item
[
"target_size"
].
as
<
std
::
vector
<
int
>>
()[
1
];
width_
=
item
[
"target_size"
].
as
<
std
::
vector
<
int
>>
()[
1
];
height_
=
item
[
"target_size"
].
as
<
std
::
vector
<
int
>>
()[
0
];
}
}
if
(
item
[
"im_padding_value"
].
IsDefined
())
{
...
...
deploy/cpp/scripts/build.sh
浏览文件 @
c3b50efe
# 是否使用GPU(即是否使用 CUDA)
WITH_GPU
=
O
N
WITH_GPU
=
O
FF
# 是否集成 TensorRT(仅WITH_GPU=ON 有效)
WITH_TENSORRT
=
OFF
# TensorRT 的lib路径
TENSORRT_DIR
=
/path/to/TensorRT/
# Paddle 预测库路径
PADDLE_DIR
=
/path/to/fluid_inference/
# CUDA 的 lib 路径
...
...
@@ -20,6 +22,7 @@ cd build
cmake ..
\
-DWITH_GPU
=
${
WITH_GPU
}
\
-DWITH_TENSORRT
=
${
WITH_TENSORRT
}
\
-DTENSORRT_DIR
=
${
TENSORRT_DIR
}
\
-DPADDLE_DIR
=
${
PADDLE_DIR
}
\
-DCUDA_LIB
=
${
CUDA_LIB
}
\
-DCUDNN_LIB
=
${
CUDNN_LIB
}
\
...
...
deploy/cpp/src/classifier.cpp
浏览文件 @
c3b50efe
...
...
@@ -23,6 +23,7 @@
DEFINE_string
(
model_dir
,
""
,
"Path of inference model"
);
DEFINE_bool
(
use_gpu
,
false
,
"Infering with GPU or CPU"
);
DEFINE_bool
(
use_trt
,
false
,
"Infering with TensorRT"
);
DEFINE_int32
(
gpu_id
,
0
,
"GPU card id"
);
DEFINE_string
(
image
,
""
,
"Path of test image file"
);
DEFINE_string
(
image_list
,
""
,
"Path of test image list file"
);
...
...
@@ -42,7 +43,7 @@ int main(int argc, char** argv) {
// 加载模型
PaddleX
::
Model
model
;
model
.
Init
(
FLAGS_model_dir
,
FLAGS_use_gpu
,
FLAGS_gpu_id
);
model
.
Init
(
FLAGS_model_dir
,
FLAGS_use_gpu
,
FLAGS_
use_trt
,
FLAGS_
gpu_id
);
// 进行预测
if
(
FLAGS_image_list
!=
""
)
{
...
...
deploy/cpp/src/detector.cpp
浏览文件 @
c3b50efe
...
...
@@ -24,6 +24,7 @@
DEFINE_string
(
model_dir
,
""
,
"Path of inference model"
);
DEFINE_bool
(
use_gpu
,
false
,
"Infering with GPU or CPU"
);
DEFINE_bool
(
use_trt
,
false
,
"Infering with TensorRT"
);
DEFINE_int32
(
gpu_id
,
0
,
"GPU card id"
);
DEFINE_string
(
image
,
""
,
"Path of test image file"
);
DEFINE_string
(
image_list
,
""
,
"Path of test image list file"
);
...
...
@@ -44,7 +45,7 @@ int main(int argc, char** argv) {
// 加载模型
PaddleX
::
Model
model
;
model
.
Init
(
FLAGS_model_dir
,
FLAGS_use_gpu
,
FLAGS_gpu_id
);
model
.
Init
(
FLAGS_model_dir
,
FLAGS_use_gpu
,
FLAGS_
use_trt
,
FLAGS_
gpu_id
);
auto
colormap
=
PaddleX
::
GenerateColorMap
(
model
.
labels
.
size
());
std
::
string
save_dir
=
"output"
;
...
...
deploy/cpp/src/paddlex.cpp
浏览文件 @
c3b50efe
...
...
@@ -18,6 +18,7 @@ namespace PaddleX {
void
Model
::
create_predictor
(
const
std
::
string
&
model_dir
,
bool
use_gpu
,
bool
use_trt
,
int
gpu_id
)
{
// 读取配置文件
if
(
!
load_config
(
model_dir
))
{
...
...
@@ -37,6 +38,14 @@ void Model::create_predictor(const std::string& model_dir,
config
.
SwitchSpecifyInputNames
(
true
);
// 开启内存优化
config
.
EnableMemoryOptim
();
if
(
use_trt
){
config
.
EnableTensorRtEngine
(
1
<<
20
/* workspace_size*/
,
32
/* max_batch_size*/
,
20
/* min_subgraph_size*/
,
paddle
::
AnalysisConfig
::
Precision
::
kFloat32
/* precision*/
,
false
/* use_static*/
,
false
/* use_calib_mode*/
);
}
predictor_
=
std
::
move
(
CreatePaddlePredictor
(
config
));
}
...
...
@@ -286,19 +295,23 @@ bool Model::predict(const cv::Mat& im, SegResult* result) {
result
->
score_map
.
shape
[
3
],
CV_32FC1
,
result
->
score_map
.
data
.
data
());
int
idx
=
1
;
int
len_postprocess
=
inputs_
.
im_size_before_resize_
.
size
();
for
(
std
::
vector
<
std
::
string
>::
reverse_iterator
iter
=
inputs_
.
reshape_order_
.
rbegin
();
iter
!=
inputs_
.
reshape_order_
.
rend
();
++
iter
)
{
iter
!=
inputs_
.
reshape_order_
.
rend
();
++
iter
)
{
if
(
*
iter
==
"padding"
)
{
auto
padding_w
=
inputs_
.
im_size_before_padding_
[
0
];
auto
padding_h
=
inputs_
.
im_size_before_padding_
[
1
];
auto
before_shape
=
inputs_
.
im_size_before_resize_
[
len_postprocess
-
idx
];
inputs_
.
im_size_before_resize_
.
pop_back
();
auto
padding_w
=
before_shape
[
0
];
auto
padding_h
=
before_shape
[
1
];
mask_label
=
mask_label
(
cv
::
Rect
(
0
,
0
,
padding_w
,
padding_h
));
mask_score
=
mask_score
(
cv
::
Rect
(
0
,
0
,
padding_w
,
padding_h
));
}
else
if
(
*
iter
==
"resize"
)
{
auto
resize_w
=
inputs_
.
im_size_before_resize_
[
0
];
auto
resize_h
=
inputs_
.
im_size_before_resize_
[
1
];
auto
before_shape
=
inputs_
.
im_size_before_resize_
[
len_postprocess
-
idx
];
inputs_
.
im_size_before_resize_
.
pop_back
();
auto
resize_w
=
before_shape
[
0
];
auto
resize_h
=
before_shape
[
1
];
cv
::
resize
(
mask_label
,
mask_label
,
cv
::
Size
(
resize_h
,
resize_w
),
...
...
@@ -312,6 +325,7 @@ bool Model::predict(const cv::Mat& im, SegResult* result) {
0
,
cv
::
INTER_NEAREST
);
}
++
idx
;
}
result
->
label_map
.
data
.
assign
(
mask_label
.
begin
<
uint8_t
>
(),
mask_label
.
end
<
uint8_t
>
());
...
...
deploy/cpp/src/segmenter.cpp
浏览文件 @
c3b50efe
...
...
@@ -24,6 +24,7 @@
DEFINE_string
(
model_dir
,
""
,
"Path of inference model"
);
DEFINE_bool
(
use_gpu
,
false
,
"Infering with GPU or CPU"
);
DEFINE_bool
(
use_trt
,
false
,
"Infering with TensorRT"
);
DEFINE_int32
(
gpu_id
,
0
,
"GPU card id"
);
DEFINE_string
(
image
,
""
,
"Path of test image file"
);
DEFINE_string
(
image_list
,
""
,
"Path of test image list file"
);
...
...
@@ -44,7 +45,8 @@ int main(int argc, char** argv) {
// 加载模型
PaddleX
::
Model
model
;
model
.
Init
(
FLAGS_model_dir
,
FLAGS_use_gpu
,
FLAGS_gpu_id
);
model
.
Init
(
FLAGS_model_dir
,
FLAGS_use_gpu
,
FLAGS_use_trt
,
FLAGS_gpu_id
);
auto
colormap
=
PaddleX
::
GenerateColorMap
(
model
.
labels
.
size
());
// 进行预测
if
(
FLAGS_image_list
!=
""
)
{
...
...
deploy/cpp/src/transforms.cpp
浏览文件 @
c3b50efe
...
...
@@ -56,8 +56,7 @@ float ResizeByShort::GenerateScale(const cv::Mat& im) {
}
bool
ResizeByShort
::
Run
(
cv
::
Mat
*
im
,
ImageBlob
*
data
)
{
data
->
im_size_before_resize_
[
0
]
=
im
->
rows
;
data
->
im_size_before_resize_
[
1
]
=
im
->
cols
;
data
->
im_size_before_resize_
.
push_back
({
im
->
rows
,
im
->
cols
});
data
->
reshape_order_
.
push_back
(
"resize"
);
float
scale
=
GenerateScale
(
*
im
);
...
...
@@ -88,8 +87,7 @@ bool CenterCrop::Run(cv::Mat* im, ImageBlob* data) {
}
bool
Padding
::
Run
(
cv
::
Mat
*
im
,
ImageBlob
*
data
)
{
data
->
im_size_before_padding_
[
0
]
=
im
->
rows
;
data
->
im_size_before_padding_
[
1
]
=
im
->
cols
;
data
->
im_size_before_resize_
.
push_back
({
im
->
rows
,
im
->
cols
});
data
->
reshape_order_
.
push_back
(
"padding"
);
int
padding_w
=
0
;
...
...
@@ -122,8 +120,7 @@ bool ResizeByLong::Run(cv::Mat* im, ImageBlob* data) {
<<
std
::
endl
;
return
false
;
}
data
->
im_size_before_resize_
[
0
]
=
im
->
rows
;
data
->
im_size_before_resize_
[
1
]
=
im
->
cols
;
data
->
im_size_before_resize_
.
push_back
({
im
->
rows
,
im
->
cols
});
data
->
reshape_order_
.
push_back
(
"resize"
);
int
origin_w
=
im
->
cols
;
int
origin_h
=
im
->
rows
;
...
...
@@ -149,8 +146,7 @@ bool Resize::Run(cv::Mat* im, ImageBlob* data) {
<<
std
::
endl
;
return
false
;
}
data
->
im_size_before_resize_
[
0
]
=
im
->
rows
;
data
->
im_size_before_resize_
[
1
]
=
im
->
cols
;
data
->
im_size_before_resize_
.
push_back
({
im
->
rows
,
im
->
cols
});
data
->
reshape_order_
.
push_back
(
"resize"
);
cv
::
resize
(
...
...
paddlex/command.py
浏览文件 @
c3b50efe
...
...
@@ -29,7 +29,11 @@ def arg_parser():
action
=
"store_true"
,
default
=
False
,
help
=
"export inference model for C++/Python deployment"
)
parser
.
add_argument
(
"--fixed_input_shape"
,
"-fs"
,
default
=
None
,
help
=
"export inference model with fixed input shape(TensorRT need)"
)
return
parser
...
...
@@ -53,8 +57,11 @@ def main():
if
args
.
export_inference
:
assert
args
.
model_dir
is
not
None
,
"--model_dir should be defined while exporting inference model"
assert
args
.
save_dir
is
not
None
,
"--save_dir should be defined to save inference model"
model
=
pdx
.
load_model
(
args
.
model_dir
)
model
.
export_inference_model
(
args
.
save_dir
)
fixed_input_shape
=
eval
(
args
.
fixed_input_shape
)
assert
len
(
fixed_input_shape
)
==
2
,
"len of fixed input shape must == 2"
model
=
pdx
.
load_model
(
args
.
model_dir
,
fixed_input_shape
)
model
.
export_inference_model
(
args
.
save_dir
,
fixed_input_shape
)
if
__name__
==
"__main__"
:
...
...
paddlex/cv/models/base.py
浏览文件 @
c3b50efe
...
...
@@ -283,7 +283,7 @@ class BaseAPI:
open
(
osp
.
join
(
save_dir
,
'.success'
),
'w'
).
close
()
logging
.
info
(
"Model saved in {}."
.
format
(
save_dir
))
def
export_inference_model
(
self
,
save_dir
):
def
export_inference_model
(
self
,
save_dir
,
fixed_input_shape
=
None
):
test_input_names
=
[
var
.
name
for
var
in
list
(
self
.
test_inputs
.
values
())
]
...
...
@@ -316,11 +316,30 @@ class BaseAPI:
model_info
[
'_ModelInputsOutputs'
][
'test_outputs'
]
=
[
[
k
,
v
.
name
]
for
k
,
v
in
self
.
test_outputs
.
items
()
]
resize
=
{
'ResizeByShort'
:
{}}
padding
=
{
'Padding'
:{}}
if
model_info
[
'_Attributes'
][
'model_type'
]
==
'classifier'
:
crop_size
=
0
for
transform
in
model_info
[
'Transforms'
]:
if
'CenterCrop'
in
transform
:
crop_size
=
transform
[
'CenterCrop'
][
'crop_size'
]
break
assert
crop_size
==
fixed_input_shape
[
0
],
"fixed_input_shape must == CenterCrop:crop_size:{}"
.
format
(
crop_size
)
assert
crop_size
==
fixed_input_shape
[
1
],
"fixed_input_shape must == CenterCrop:crop_size:{}"
.
format
(
crop_size
)
if
crop_size
==
0
:
logging
.
warning
(
"fixed_input_shape must == input shape when trainning"
)
else
:
resize
[
'ResizeByShort'
][
'short_size'
]
=
min
(
fixed_input_shape
)
resize
[
'ResizeByShort'
][
'max_size'
]
=
max
(
fixed_input_shape
)
padding
[
'Padding'
][
'target_size'
]
=
list
(
fixed_input_shape
)
model_info
[
'Transforms'
].
append
(
resize
)
model_info
[
'Transforms'
].
append
(
padding
)
with
open
(
osp
.
join
(
save_dir
,
'model.yml'
),
encoding
=
'utf-8'
,
mode
=
'w'
)
as
f
:
yaml
.
dump
(
model_info
,
f
)
# 模型保存成功的标志
open
(
osp
.
join
(
save_dir
,
'.success'
),
'w'
).
close
()
logging
.
info
(
...
...
paddlex/cv/models/classifier.py
浏览文件 @
c3b50efe
...
...
@@ -35,9 +35,10 @@ class BaseClassifier(BaseAPI):
'MobileNetV1', 'MobileNetV2', 'Xception41',
'Xception65', 'Xception71']。默认为'ResNet50'。
num_classes (int): 类别数。默认为1000。
fixed_input_shape (list): 长度为2,维度为1的list,如:[640,720],用来固定模型输入:'image'的shape,默认为None。
"""
def
__init__
(
self
,
model_name
=
'ResNet50'
,
num_classes
=
1000
):
def
__init__
(
self
,
model_name
=
'ResNet50'
,
num_classes
=
1000
,
fixed_input_shape
=
None
):
self
.
init_params
=
locals
()
super
(
BaseClassifier
,
self
).
__init__
(
'classifier'
)
if
not
hasattr
(
paddlex
.
cv
.
nets
,
str
.
lower
(
model_name
)):
...
...
@@ -46,10 +47,16 @@ class BaseClassifier(BaseAPI):
self
.
model_name
=
model_name
self
.
labels
=
None
self
.
num_classes
=
num_classes
self
.
fixed_input_shape
=
fixed_input_shape
def
build_net
(
self
,
mode
=
'train'
):
image
=
fluid
.
data
(
dtype
=
'float32'
,
shape
=
[
None
,
3
,
None
,
None
],
name
=
'image'
)
if
self
.
fixed_input_shape
is
not
None
:
input_shape
=
[
None
,
3
,
self
.
fixed_input_shape
[
0
],
self
.
fixed_input_shape
[
1
]]
image
=
fluid
.
data
(
dtype
=
'float32'
,
shape
=
input_shape
,
name
=
'image'
)
else
:
image
=
fluid
.
data
(
dtype
=
'float32'
,
shape
=
[
None
,
3
,
None
,
None
],
name
=
'image'
)
if
mode
!=
'test'
:
label
=
fluid
.
data
(
dtype
=
'int64'
,
shape
=
[
None
,
1
],
name
=
'label'
)
model
=
getattr
(
paddlex
.
cv
.
nets
,
str
.
lower
(
self
.
model_name
))
...
...
paddlex/cv/models/deeplabv3p.py
浏览文件 @
c3b50efe
...
...
@@ -48,7 +48,7 @@ class DeepLabv3p(BaseAPI):
自行计算相应的权重,每一类的权重为:每类的比例 * num_classes。class_weight取默认值None时,各类的权重1,
即平时使用的交叉熵损失函数。
ignore_index (int): label上忽略的值,label为ignore_index的像素不参与损失函数的计算。默认255。
fixed_input_shape (list): 长度为2,维度为1的list,如:[640,720],用来固定模型输入:'image'的shape,默认为None。
Raises:
ValueError: use_bce_loss或use_dice_loss为真且num_calsses > 2。
ValueError: backbone取值不在['Xception65', 'Xception41', 'MobileNetV2_x0.25',
...
...
@@ -69,7 +69,8 @@ class DeepLabv3p(BaseAPI):
use_bce_loss
=
False
,
use_dice_loss
=
False
,
class_weight
=
None
,
ignore_index
=
255
):
ignore_index
=
255
,
fixed_input_shape
=
None
):
self
.
init_params
=
locals
()
super
(
DeepLabv3p
,
self
).
__init__
(
'segmenter'
)
# dice_loss或bce_loss只适用两类分割中
...
...
@@ -118,6 +119,7 @@ class DeepLabv3p(BaseAPI):
self
.
enable_decoder
=
enable_decoder
self
.
labels
=
None
self
.
sync_bn
=
True
self
.
fixed_input_shape
=
fixed_input_shape
def
_get_backbone
(
self
,
backbone
):
def
mobilenetv2
(
backbone
):
...
...
@@ -182,7 +184,8 @@ class DeepLabv3p(BaseAPI):
use_bce_loss
=
self
.
use_bce_loss
,
use_dice_loss
=
self
.
use_dice_loss
,
class_weight
=
self
.
class_weight
,
ignore_index
=
self
.
ignore_index
)
ignore_index
=
self
.
ignore_index
,
fixed_input_shape
=
self
.
fixed_input_shape
)
inputs
=
model
.
generate_inputs
()
model_out
=
model
.
build_net
(
inputs
)
outputs
=
OrderedDict
()
...
...
paddlex/cv/models/faster_rcnn.py
浏览文件 @
c3b50efe
...
...
@@ -36,6 +36,7 @@ class FasterRCNN(BaseAPI):
with_fpn (bool): 是否使用FPN结构。默认为True。
aspect_ratios (list): 生成anchor高宽比的可选值。默认为[0.5, 1.0, 2.0]。
anchor_sizes (list): 生成anchor大小的可选值。默认为[32, 64, 128, 256, 512]。
fixed_input_shape (list): 长度为2,维度为1的list,如:[640,720],用来固定模型输入:'image'的shape,默认为None。
"""
def
__init__
(
self
,
...
...
@@ -43,7 +44,8 @@ class FasterRCNN(BaseAPI):
backbone
=
'ResNet50'
,
with_fpn
=
True
,
aspect_ratios
=
[
0.5
,
1.0
,
2.0
],
anchor_sizes
=
[
32
,
64
,
128
,
256
,
512
]):
anchor_sizes
=
[
32
,
64
,
128
,
256
,
512
],
fixed_input_shape
=
None
):
self
.
init_params
=
locals
()
super
(
FasterRCNN
,
self
).
__init__
(
'detector'
)
backbones
=
[
...
...
@@ -57,6 +59,7 @@ class FasterRCNN(BaseAPI):
self
.
aspect_ratios
=
aspect_ratios
self
.
anchor_sizes
=
anchor_sizes
self
.
labels
=
None
self
.
fixed_input_shape
=
fixed_input_shape
def
_get_backbone
(
self
,
backbone_name
):
norm_type
=
None
...
...
@@ -109,7 +112,8 @@ class FasterRCNN(BaseAPI):
aspect_ratios
=
self
.
aspect_ratios
,
anchor_sizes
=
self
.
anchor_sizes
,
train_pre_nms_top_n
=
train_pre_nms_top_n
,
test_pre_nms_top_n
=
test_pre_nms_top_n
)
test_pre_nms_top_n
=
test_pre_nms_top_n
,
fixed_input_shape
=
self
.
fixed_input_shape
)
inputs
=
model
.
generate_inputs
()
if
mode
==
'train'
:
model_out
=
model
.
build_net
(
inputs
)
...
...
paddlex/cv/models/load_model.py
浏览文件 @
c3b50efe
...
...
@@ -23,7 +23,7 @@ import paddlex
import
paddlex.utils.logging
as
logging
def
load_model
(
model_dir
):
def
load_model
(
model_dir
,
fixed_input_shape
=
None
):
if
not
osp
.
exists
(
osp
.
join
(
model_dir
,
"model.yml"
)):
raise
Exception
(
"There's not model.yml in {}"
.
format
(
model_dir
))
with
open
(
osp
.
join
(
model_dir
,
"model.yml"
))
as
f
:
...
...
@@ -39,6 +39,8 @@ def load_model(model_dir):
raise
Exception
(
"There's no attribute {} in paddlex.cv.models"
.
format
(
info
[
'Model'
]))
info
[
'_init_params'
][
'fixed_input_shape'
]
=
fixed_input_shape
if
info
[
'_Attributes'
][
'model_type'
]
==
'classifier'
:
model
=
paddlex
.
cv
.
models
.
BaseClassifier
(
**
info
[
'_init_params'
])
else
:
...
...
paddlex/cv/models/mask_rcnn.py
浏览文件 @
c3b50efe
...
...
@@ -36,6 +36,7 @@ class MaskRCNN(FasterRCNN):
with_fpn (bool): 是否使用FPN结构。默认为True。
aspect_ratios (list): 生成anchor高宽比的可选值。默认为[0.5, 1.0, 2.0]。
anchor_sizes (list): 生成anchor大小的可选值。默认为[32, 64, 128, 256, 512]。
fixed_input_shape (list): 长度为2,维度为1的list,如:[640,720],用来固定模型输入:'image'的shape,默认为None。
"""
def
__init__
(
self
,
...
...
@@ -43,7 +44,8 @@ class MaskRCNN(FasterRCNN):
backbone
=
'ResNet50'
,
with_fpn
=
True
,
aspect_ratios
=
[
0.5
,
1.0
,
2.0
],
anchor_sizes
=
[
32
,
64
,
128
,
256
,
512
]):
anchor_sizes
=
[
32
,
64
,
128
,
256
,
512
],
fixed_input_shape
=
None
):
self
.
init_params
=
locals
()
backbones
=
[
'ResNet18'
,
'ResNet50'
,
'ResNet50vd'
,
'ResNet101'
,
'ResNet101vd'
...
...
@@ -60,6 +62,7 @@ class MaskRCNN(FasterRCNN):
self
.
mask_head_resolution
=
28
else
:
self
.
mask_head_resolution
=
14
self
.
fixed_input_shape
=
fixed_input_shape
def
build_net
(
self
,
mode
=
'train'
):
train_pre_nms_top_n
=
2000
if
self
.
with_fpn
else
12000
...
...
@@ -73,7 +76,8 @@ class MaskRCNN(FasterRCNN):
train_pre_nms_top_n
=
train_pre_nms_top_n
,
test_pre_nms_top_n
=
test_pre_nms_top_n
,
num_convs
=
num_convs
,
mask_head_resolution
=
self
.
mask_head_resolution
)
mask_head_resolution
=
self
.
mask_head_resolution
,
fixed_input_shape
=
self
.
fixed_input_shape
)
inputs
=
model
.
generate_inputs
()
if
mode
==
'train'
:
model_out
=
model
.
build_net
(
inputs
)
...
...
paddlex/cv/models/unet.py
浏览文件 @
c3b50efe
...
...
@@ -33,6 +33,7 @@ class UNet(DeepLabv3p):
自行计算相应的权重,每一类的权重为:每类的比例 * num_classes。class_weight取默认值None是,各类的权重1,
即平时使用的交叉熵损失函数。
ignore_index (int): label上忽略的值,label为ignore_index的像素不参与损失函数的计算。默认255。
fixed_input_shape (list): 长度为2,维度为1的list,如:[640,720],用来固定模型输入:'image'的shape,默认为None。
Raises:
ValueError: use_bce_loss或use_dice_loss为真且num_calsses > 2。
...
...
@@ -47,7 +48,8 @@ class UNet(DeepLabv3p):
use_bce_loss
=
False
,
use_dice_loss
=
False
,
class_weight
=
None
,
ignore_index
=
255
):
ignore_index
=
255
,
fixed_input_shape
=
None
):
self
.
init_params
=
locals
()
super
(
DeepLabv3p
,
self
).
__init__
(
'segmenter'
)
# dice_loss或bce_loss只适用两类分割中
...
...
@@ -77,6 +79,7 @@ class UNet(DeepLabv3p):
self
.
class_weight
=
class_weight
self
.
ignore_index
=
ignore_index
self
.
labels
=
None
self
.
fixed_input_shape
=
fixed_input_shape
def
build_net
(
self
,
mode
=
'train'
):
model
=
paddlex
.
cv
.
nets
.
segmentation
.
UNet
(
...
...
@@ -86,7 +89,8 @@ class UNet(DeepLabv3p):
use_bce_loss
=
self
.
use_bce_loss
,
use_dice_loss
=
self
.
use_dice_loss
,
class_weight
=
self
.
class_weight
,
ignore_index
=
self
.
ignore_index
)
ignore_index
=
self
.
ignore_index
,
fixed_input_shape
=
self
.
fixed_input_shape
)
inputs
=
model
.
generate_inputs
()
model_out
=
model
.
build_net
(
inputs
)
outputs
=
OrderedDict
()
...
...
paddlex/cv/models/yolo_v3.py
浏览文件 @
c3b50efe
...
...
@@ -60,7 +60,8 @@ class YOLOv3(BaseAPI):
label_smooth
=
False
,
train_random_shapes
=
[
320
,
352
,
384
,
416
,
448
,
480
,
512
,
544
,
576
,
608
]):
],
fixed_input_shape
=
None
):
self
.
init_params
=
locals
()
super
(
YOLOv3
,
self
).
__init__
(
'detector'
)
backbones
=
[
...
...
@@ -80,6 +81,7 @@ class YOLOv3(BaseAPI):
self
.
label_smooth
=
label_smooth
self
.
sync_bn
=
True
self
.
train_random_shapes
=
train_random_shapes
self
.
fixed_input_shape
=
fixed_input_shape
def
_get_backbone
(
self
,
backbone_name
):
if
backbone_name
==
'DarkNet53'
:
...
...
@@ -113,7 +115,8 @@ class YOLOv3(BaseAPI):
nms_topk
=
self
.
nms_topk
,
nms_keep_topk
=
self
.
nms_keep_topk
,
nms_iou_threshold
=
self
.
nms_iou_threshold
,
train_random_shapes
=
self
.
train_random_shapes
)
train_random_shapes
=
self
.
train_random_shapes
,
fixed_input_shape
=
self
.
fixed_input_shape
)
inputs
=
model
.
generate_inputs
()
model_out
=
model
.
build_net
(
inputs
)
outputs
=
OrderedDict
([(
'bbox'
,
model_out
)])
...
...
paddlex/cv/nets/detection/faster_rcnn.py
浏览文件 @
c3b50efe
...
...
@@ -76,7 +76,8 @@ class FasterRCNN(object):
fg_thresh
=
.
5
,
bg_thresh_hi
=
.
5
,
bg_thresh_lo
=
0.
,
bbox_reg_weights
=
[
0.1
,
0.1
,
0.2
,
0.2
]):
bbox_reg_weights
=
[
0.1
,
0.1
,
0.2
,
0.2
],
fixed_input_shape
=
None
):
super
(
FasterRCNN
,
self
).
__init__
()
self
.
backbone
=
backbone
self
.
mode
=
mode
...
...
@@ -148,6 +149,7 @@ class FasterRCNN(object):
self
.
bg_thresh_lo
=
bg_thresh_lo
self
.
bbox_reg_weights
=
bbox_reg_weights
self
.
rpn_only
=
rpn_only
self
.
fixed_input_shape
=
fixed_input_shape
def
build_net
(
self
,
inputs
):
im
=
inputs
[
'image'
]
...
...
@@ -219,8 +221,14 @@ class FasterRCNN(object):
def
generate_inputs
(
self
):
inputs
=
OrderedDict
()
inputs
[
'image'
]
=
fluid
.
data
(
dtype
=
'float32'
,
shape
=
[
None
,
3
,
None
,
None
],
name
=
'image'
)
if
self
.
fixed_input_shape
is
not
None
:
input_shape
=
[
None
,
3
,
self
.
fixed_input_shape
[
0
],
self
.
fixed_input_shape
[
1
]]
inputs
[
'image'
]
=
fluid
.
data
(
dtype
=
'float32'
,
shape
=
input_shape
,
name
=
'image'
)
else
:
inputs
[
'image'
]
=
fluid
.
data
(
dtype
=
'float32'
,
shape
=
[
None
,
3
,
None
,
None
],
name
=
'image'
)
if
self
.
mode
==
'train'
:
inputs
[
'im_info'
]
=
fluid
.
data
(
dtype
=
'float32'
,
shape
=
[
None
,
3
],
name
=
'im_info'
)
...
...
paddlex/cv/nets/detection/mask_rcnn.py
浏览文件 @
c3b50efe
...
...
@@ -86,7 +86,8 @@ class MaskRCNN(object):
fg_thresh
=
.
5
,
bg_thresh_hi
=
.
5
,
bg_thresh_lo
=
0.
,
bbox_reg_weights
=
[
0.1
,
0.1
,
0.2
,
0.2
]):
bbox_reg_weights
=
[
0.1
,
0.1
,
0.2
,
0.2
],
fixed_input_shape
=
None
):
super
(
MaskRCNN
,
self
).
__init__
()
self
.
backbone
=
backbone
self
.
mode
=
mode
...
...
@@ -167,6 +168,7 @@ class MaskRCNN(object):
self
.
bg_thresh_lo
=
bg_thresh_lo
self
.
bbox_reg_weights
=
bbox_reg_weights
self
.
rpn_only
=
rpn_only
self
.
fixed_input_shape
=
fixed_input_shape
def
build_net
(
self
,
inputs
):
im
=
inputs
[
'image'
]
...
...
@@ -306,8 +308,14 @@ class MaskRCNN(object):
def
generate_inputs
(
self
):
inputs
=
OrderedDict
()
inputs
[
'image'
]
=
fluid
.
data
(
dtype
=
'float32'
,
shape
=
[
None
,
3
,
None
,
None
],
name
=
'image'
)
if
self
.
fixed_input_shape
is
not
None
:
input_shape
=
[
None
,
3
,
self
.
fixed_input_shape
[
0
],
self
.
fixed_input_shape
[
1
]]
inputs
[
'image'
]
=
fluid
.
data
(
dtype
=
'float32'
,
shape
=
input_shape
,
name
=
'image'
)
else
:
inputs
[
'image'
]
=
fluid
.
data
(
dtype
=
'float32'
,
shape
=
[
None
,
3
,
None
,
None
],
name
=
'image'
)
if
self
.
mode
==
'train'
:
inputs
[
'im_info'
]
=
fluid
.
data
(
dtype
=
'float32'
,
shape
=
[
None
,
3
],
name
=
'im_info'
)
...
...
paddlex/cv/nets/detection/yolo_v3.py
浏览文件 @
c3b50efe
...
...
@@ -33,7 +33,8 @@ class YOLOv3:
nms_iou_threshold
=
0.45
,
train_random_shapes
=
[
320
,
352
,
384
,
416
,
448
,
480
,
512
,
544
,
576
,
608
]):
],
fixed_input_shape
=
None
):
if
anchors
is
None
:
anchors
=
[[
10
,
13
],
[
16
,
30
],
[
33
,
23
],
[
30
,
61
],
[
62
,
45
],
[
59
,
119
],
[
116
,
90
],
[
156
,
198
],
[
373
,
326
]]
...
...
@@ -54,6 +55,7 @@ class YOLOv3:
self
.
norm_decay
=
0.0
self
.
prefix_name
=
''
self
.
train_random_shapes
=
train_random_shapes
self
.
fixed_input_shape
=
fixed_input_shape
def
_head
(
self
,
feats
):
outputs
=
[]
...
...
@@ -247,8 +249,13 @@ class YOLOv3:
def
generate_inputs
(
self
):
inputs
=
OrderedDict
()
inputs
[
'image'
]
=
fluid
.
data
(
dtype
=
'float32'
,
shape
=
[
None
,
3
,
None
,
None
],
name
=
'image'
)
if
self
.
fixed_input_shape
is
not
None
:
input_shape
=
[
None
,
3
,
self
.
fixed_input_shape
[
0
],
self
.
fixed_input_shape
[
1
]]
inputs
[
'image'
]
=
fluid
.
data
(
dtype
=
'float32'
,
shape
=
input_shape
,
name
=
'image'
)
else
:
inputs
[
'image'
]
=
fluid
.
data
(
dtype
=
'float32'
,
shape
=
[
None
,
3
,
None
,
None
],
name
=
'image'
)
if
self
.
mode
==
'train'
:
inputs
[
'gt_box'
]
=
fluid
.
data
(
dtype
=
'float32'
,
shape
=
[
None
,
None
,
4
],
name
=
'gt_box'
)
...
...
paddlex/cv/nets/segmentation/deeplabv3p.py
浏览文件 @
c3b50efe
...
...
@@ -61,6 +61,7 @@ class DeepLabv3p(object):
自行计算相应的权重,每一类的权重为:每类的比例 * num_classes。class_weight取默认值None是,各类的权重1,
即平时使用的交叉熵损失函数。
ignore_index (int): label上忽略的值,label为ignore_index的像素不参与损失函数的计算。
fixed_input_shape (list): 长度为2,维度为1的list,如:[640,720],用来固定模型输入:'image'的shape,默认为None。
Raises:
ValueError: use_bce_loss或use_dice_loss为真且num_calsses > 2。
...
...
@@ -81,7 +82,8 @@ class DeepLabv3p(object):
use_bce_loss
=
False
,
use_dice_loss
=
False
,
class_weight
=
None
,
ignore_index
=
255
):
ignore_index
=
255
,
fixed_input_shape
=
None
):
# dice_loss或bce_loss只适用两类分割中
if
num_classes
>
2
and
(
use_bce_loss
or
use_dice_loss
):
raise
ValueError
(
...
...
@@ -115,6 +117,7 @@ class DeepLabv3p(object):
self
.
decoder_use_sep_conv
=
decoder_use_sep_conv
self
.
encoder_with_aspp
=
encoder_with_aspp
self
.
enable_decoder
=
enable_decoder
self
.
fixed_input_shape
=
fixed_input_shape
def
_encoder
(
self
,
input
):
# 编码器配置,采用ASPP架构,pooling + 1x1_conv + 三个不同尺度的空洞卷积并行, concat后1x1conv
...
...
@@ -310,8 +313,14 @@ class DeepLabv3p(object):
def
generate_inputs
(
self
):
inputs
=
OrderedDict
()
inputs
[
'image'
]
=
fluid
.
data
(
dtype
=
'float32'
,
shape
=
[
None
,
3
,
None
,
None
],
name
=
'image'
)
if
self
.
fixed_input_shape
is
not
None
:
input_shape
=
[
None
,
3
,
self
.
fixed_input_shape
[
0
],
self
.
fixed_input_shape
[
1
]]
inputs
[
'image'
]
=
fluid
.
data
(
dtype
=
'float32'
,
shape
=
input_shape
,
name
=
'image'
)
else
:
inputs
[
'image'
]
=
fluid
.
data
(
dtype
=
'float32'
,
shape
=
[
None
,
3
,
None
,
None
],
name
=
'image'
)
if
self
.
mode
==
'train'
:
inputs
[
'label'
]
=
fluid
.
data
(
dtype
=
'int32'
,
shape
=
[
None
,
1
,
None
,
None
],
name
=
'label'
)
...
...
paddlex/cv/nets/segmentation/unet.py
浏览文件 @
c3b50efe
...
...
@@ -54,6 +54,7 @@ class UNet(object):
自行计算相应的权重,每一类的权重为:每类的比例 * num_classes。class_weight取默认值None是,各类的权重1,
即平时使用的交叉熵损失函数。
ignore_index (int): label上忽略的值,label为ignore_index的像素不参与损失函数的计算。
fixed_input_shape (list): 长度为2,维度为1的list,如:[640,720],用来固定模型输入:'image'的shape,默认为None。
Raises:
ValueError: use_bce_loss或use_dice_loss为真且num_calsses > 2。
...
...
@@ -69,7 +70,8 @@ class UNet(object):
use_bce_loss
=
False
,
use_dice_loss
=
False
,
class_weight
=
None
,
ignore_index
=
255
):
ignore_index
=
255
,
fixed_input_shape
=
None
):
# dice_loss或bce_loss只适用两类分割中
if
num_classes
>
2
and
(
use_bce_loss
or
use_dice_loss
):
raise
Exception
(
...
...
@@ -97,6 +99,7 @@ class UNet(object):
self
.
use_dice_loss
=
use_dice_loss
self
.
class_weight
=
class_weight
self
.
ignore_index
=
ignore_index
self
.
fixed_input_shape
=
fixed_input_shape
def
_double_conv
(
self
,
data
,
out_ch
):
param_attr
=
fluid
.
ParamAttr
(
...
...
@@ -226,8 +229,14 @@ class UNet(object):
def
generate_inputs
(
self
):
inputs
=
OrderedDict
()
inputs
[
'image'
]
=
fluid
.
data
(
dtype
=
'float32'
,
shape
=
[
None
,
3
,
None
,
None
],
name
=
'image'
)
if
self
.
fixed_input_shape
is
not
None
:
input_shape
=
[
None
,
3
,
self
.
fixed_input_shape
[
0
],
self
.
fixed_input_shape
[
1
]]
inputs
[
'image'
]
=
fluid
.
data
(
dtype
=
'float32'
,
shape
=
input_shape
,
name
=
'image'
)
else
:
inputs
[
'image'
]
=
fluid
.
data
(
dtype
=
'float32'
,
shape
=
[
None
,
3
,
None
,
None
],
name
=
'image'
)
if
self
.
mode
==
'train'
:
inputs
[
'label'
]
=
fluid
.
data
(
dtype
=
'int32'
,
shape
=
[
None
,
1
,
None
,
None
],
name
=
'label'
)
...
...
paddlex/cv/transforms/det_transforms.py
浏览文件 @
c3b50efe
...
...
@@ -201,10 +201,12 @@ class Padding:
Args:
coarsest_stride (int): 填充后的图像长、宽为该参数的倍数,默认为1。
target_size (int|list): 填充后的图像长、宽,默认为1。
"""
def
__init__
(
self
,
coarsest_stride
=
1
):
def
__init__
(
self
,
coarsest_stride
=
1
,
target_size
=
None
):
self
.
coarsest_stride
=
coarsest_stride
self
.
target_size
=
target_size
def
__call__
(
self
,
im
,
im_info
=
None
,
label_info
=
None
):
"""
...
...
@@ -221,9 +223,10 @@ class Padding:
Raises:
TypeError: 形参数据类型不满足需求。
ValueError: 数据长度不匹配。
ValueError: target_size小于原图的大小。
"""
if
self
.
coarsest_stride
==
1
:
if
self
.
coarsest_stride
==
1
and
self
.
target_size
is
None
:
if
label_info
is
None
:
return
(
im
,
im_info
)
else
:
...
...
@@ -240,6 +243,20 @@ class Padding:
np
.
ceil
(
im_h
/
self
.
coarsest_stride
)
*
self
.
coarsest_stride
)
padding_im_w
=
int
(
np
.
ceil
(
im_w
/
self
.
coarsest_stride
)
*
self
.
coarsest_stride
)
if
self
.
target_size
is
not
None
:
if
isinstance
(
self
.
target_size
,
int
):
padding_im_h
=
self
.
target_size
padding_im_w
=
self
.
target_size
else
:
padding_im_h
=
self
.
target_size
[
0
]
padding_im_w
=
self
.
target_size
[
1
]
pad_height
=
padding_im_h
-
im_h
pad_width
=
padding_im_w
-
im_w
if
pad_height
<
0
or
pad_width
<
0
:
raise
ValueError
(
'the size of image should be less than target_size, but the size of image ({}, {}), is larger than target_size ({}, {})'
.
format
(
im_w
,
im_h
,
padding_im_w
,
padding_im_h
))
padding_im
=
np
.
zeros
((
padding_im_h
,
padding_im_w
,
im_c
),
dtype
=
np
.
float32
)
padding_im
[:
im_h
,
:
im_w
,
:]
=
im
...
...
paddlex/cv/transforms/seg_transforms.py
浏览文件 @
c3b50efe
...
...
@@ -287,6 +287,76 @@ class ResizeByLong:
else
:
return
(
im
,
im_info
,
label
)
class
ResizeByShort
:
"""根据图像的短边调整图像大小(resize)。
1. 获取图像的长边和短边长度。
2. 根据短边与short_size的比例,计算长边的目标长度,
此时高、宽的resize比例为short_size/原图短边长度。
3. 如果max_size>0,调整resize比例:
如果长边的目标长度>max_size,则高、宽的resize比例为max_size/原图长边长度。
4. 根据调整大小的比例对图像进行resize。
Args:
target_size (int): 短边目标长度。默认为800。
max_size (int): 长边目标长度的最大限制。默认为1333。
Raises:
TypeError: 形参数据类型不满足需求。
"""
def
__init__
(
self
,
short_size
=
800
,
max_size
=
1333
):
self
.
max_size
=
int
(
max_size
)
if
not
isinstance
(
short_size
,
int
):
raise
TypeError
(
"Type of short_size is invalid. Must be Integer, now is {}"
.
format
(
type
(
short_size
)))
self
.
short_size
=
short_size
if
not
(
isinstance
(
self
.
max_size
,
int
)):
raise
TypeError
(
"max_size: input type is invalid."
)
def
__call__
(
self
,
im
,
im_info
=
None
,
label_info
=
None
):
"""
Args:
im (numnp.ndarraypy): 图像np.ndarray数据。
im_info (dict, 可选): 存储与图像相关的信息。
label_info (dict, 可选): 存储与标注框相关的信息。
Returns:
tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
存储与标注框相关信息的字典。
其中,im_info更新字段为:
- im_resize_info (np.ndarray): resize后的图像高、resize后的图像宽、resize后的图像相对原始图的缩放比例
三者组成的np.ndarray,形状为(3,)。
Raises:
TypeError: 形参数据类型不满足需求。
ValueError: 数据长度不匹配。
"""
if
im_info
is
None
:
im_info
=
dict
()
if
not
isinstance
(
im
,
np
.
ndarray
):
raise
TypeError
(
"ResizeByShort: image type is not numpy."
)
if
len
(
im
.
shape
)
!=
3
:
raise
ValueError
(
'ResizeByShort: image is not 3-dimensional.'
)
im_short_size
=
min
(
im
.
shape
[
0
],
im
.
shape
[
1
])
im_long_size
=
max
(
im
.
shape
[
0
],
im
.
shape
[
1
])
scale
=
float
(
self
.
short_size
)
/
im_short_size
if
self
.
max_size
>
0
and
np
.
round
(
scale
*
im_long_size
)
>
self
.
max_size
:
scale
=
float
(
self
.
max_size
)
/
float
(
im_long_size
)
resized_width
=
int
(
round
(
im
.
shape
[
1
]
*
scale
))
resized_height
=
int
(
round
(
im
.
shape
[
0
]
*
scale
))
im_resize_info
=
[
resized_height
,
resized_width
,
scale
]
im
=
cv2
.
resize
(
im
,
(
resized_width
,
resized_height
),
interpolation
=
cv2
.
INTER_LINEAR
)
im_info
[
'im_resize_info'
]
=
np
.
array
(
im_resize_info
).
astype
(
np
.
float32
)
if
label_info
is
None
:
return
(
im
,
im_info
)
else
:
return
(
im
,
im_info
,
label_info
)
class
ResizeRangeScaling
:
"""对图像长边随机resize到指定范围内,短边按比例进行缩放。当存在标注图像时,则同步进行处理。
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录