paddlex.cpp 29.3 KB
Newer Older
C
Channingss 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
//   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
J
jack 已提交
14
#include <omp.h>
J
jack 已提交
15
#include <algorithm>
J
jack 已提交
16
#include <fstream>
J
jack 已提交
17
#include <cstring>
J
jack 已提交
18
#include "include/paddlex/paddlex.h"
C
Channingss 已提交
19 20 21 22
namespace PaddleX {

void Model::create_predictor(const std::string& model_dir,
                             bool use_gpu,
C
Channingss 已提交
23
                             bool use_trt,
C
Channingss 已提交
24
                             int gpu_id,
J
jack 已提交
25
                             std::string key) {
C
Channingss 已提交
26 27 28
  paddle::AnalysisConfig config;
  std::string model_file = model_dir + OS_PATH_SEP + "__model__";
  std::string params_file = model_dir + OS_PATH_SEP + "__params__";
J
jack 已提交
29
  std::string yaml_file = model_dir + OS_PATH_SEP + "model.yml";
J
jack 已提交
30
  std::string yaml_input = "";
C
Channingss 已提交
31
#ifdef WITH_ENCRYPTION
J
jack 已提交
32
  if (key != "") {
F
FlyingQianMM 已提交
33 34
    model_file = model_dir + OS_PATH_SEP + "__model__.encrypted";
    params_file = model_dir + OS_PATH_SEP + "__params__.encrypted";
J
jack 已提交
35
    yaml_file = model_dir + OS_PATH_SEP + "model.yml.encrypted";
J
jack 已提交
36 37
    paddle_security_load_model(
        &config, key.c_str(), model_file.c_str(), params_file.c_str());
J
jack 已提交
38
    yaml_input = decrypt_file(yaml_file.c_str(), key.c_str());
C
Channingss 已提交
39 40
  }
#endif
J
jack 已提交
41 42 43 44 45 46 47 48 49 50 51
  if (yaml_input == "") {
    // 读取配置文件
    std::ifstream yaml_fin(yaml_file);
    yaml_fin.seekg(0, std::ios::end);
    size_t yaml_file_size = yaml_fin.tellg();
    yaml_input.assign(yaml_file_size, ' ');
    yaml_fin.seekg(0);
    yaml_fin.read(&yaml_input[0], yaml_file_size);
  }
  // 读取配置文件内容
  if (!load_config(yaml_input)) {
J
jack 已提交
52 53 54 55
    std::cerr << "Parse file 'model.yml' failed!" << std::endl;
    exit(-1);
  }

J
jack 已提交
56
  if (key == "") {
C
Channingss 已提交
57 58
    config.SetModel(model_file, params_file);
  }
C
Channingss 已提交
59 60 61 62 63 64 65 66 67
  if (use_gpu) {
    config.EnableUseGpu(100, gpu_id);
  } else {
    config.DisableGpu();
  }
  config.SwitchUseFeedFetchOps(false);
  config.SwitchSpecifyInputNames(true);
  // 开启内存优化
  config.EnableMemoryOptim();
C
Channingss 已提交
68 69 70 71 72 73 74 75
  if (use_trt) {
    config.EnableTensorRtEngine(
        1 << 20 /* workspace_size*/,
        32 /* max_batch_size*/,
        20 /* min_subgraph_size*/,
        paddle::AnalysisConfig::Precision::kFloat32 /* precision*/,
        true /* use_static*/,
        false /* use_calib_mode*/);
C
Channingss 已提交
76
  }
C
Channingss 已提交
77 78 79
  predictor_ = std::move(CreatePaddlePredictor(config));
}

J
jack 已提交
80 81
bool Model::load_config(const std::string& yaml_input) {
  YAML::Node config = YAML::Load(yaml_input);
C
Channingss 已提交
82 83
  type = config["_Attributes"]["model_type"].as<std::string>();
  name = config["Model"].as<std::string>();
F
FlyingQianMM 已提交
84 85
  std::string version = config["version"].as<std::string>();
  if (version[0] == '0') {
J
jack 已提交
86 87 88 89 90
    std::cerr << "[Init] Version of the loaded model is lower than 1.0.0, "
              << "deployment cannot be done, please refer to "
              << "https://github.com/PaddlePaddle/PaddleX/blob/develop/docs"
              << "/tutorials/deploy/upgrade_version.md "
              << "to transfer version." << std::endl;
F
FlyingQianMM 已提交
91 92
    return false;
  }
C
Channingss 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
  bool to_rgb = true;
  if (config["TransformsMode"].IsDefined()) {
    std::string mode = config["TransformsMode"].as<std::string>();
    if (mode == "BGR") {
      to_rgb = false;
    } else if (mode != "RGB") {
      std::cerr << "[Init] Only 'RGB' or 'BGR' is supported for TransformsMode"
                << std::endl;
      return false;
    }
  }
  // 构建数据处理流
  transforms_.Init(config["Transforms"], to_rgb);
  // 读入label list
  labels.clear();
  for (const auto& item : config["_Attributes"]["labels"]) {
    int index = labels.size();
    labels[index] = item.as<std::string>();
  }
  return true;
}

bool Model::preprocess(const cv::Mat& input_im, ImageBlob* blob) {
  cv::Mat im = input_im.clone();
117
  if (!transforms_.Run(&im, blob)) {
C
Channingss 已提交
118 119 120 121 122
    return false;
  }
  return true;
}

J
jack 已提交
123
// use openmp
J
jack 已提交
124 125 126
bool Model::preprocess(const std::vector<cv::Mat>& input_im_batch,
                       std::vector<ImageBlob>* blob_batch,
                       int thread_num) {
J
jack 已提交
127
  int batch_size = input_im_batch.size();
J
jack 已提交
128
  bool success = true;
J
jack 已提交
129 130
  thread_num = std::min(thread_num, batch_size);
  #pragma omp parallel for num_threads(thread_num)
J
jack 已提交
131
  for (int i = 0; i < input_im_batch.size(); ++i) {
J
jack 已提交
132
    cv::Mat im = input_im_batch[i].clone();
J
jack 已提交
133
    if (!transforms_.Run(&im, &(*blob_batch)[i])) {
J
jack 已提交
134 135 136 137 138 139
      success = false;
    }
  }
  return success;
}

C
Channingss 已提交
140 141 142 143 144
bool Model::predict(const cv::Mat& im, ClsResult* result) {
  inputs_.clear();
  if (type == "detector") {
    std::cerr << "Loading model is a 'detector', DetResult should be passed to "
                 "function predict()!"
J
jack 已提交
145
                 "to function predict()!" << std::endl;
C
Channingss 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
    return false;
  }
  // 处理输入图像
  if (!preprocess(im, &inputs_)) {
    std::cerr << "Preprocess failed!" << std::endl;
    return false;
  }
  // 使用加载的模型进行预测
  auto in_tensor = predictor_->GetInputTensor("image");
  int h = inputs_.new_im_size_[0];
  int w = inputs_.new_im_size_[1];
  in_tensor->Reshape({1, 3, h, w});
  in_tensor->copy_from_cpu(inputs_.im_data_.data());
  predictor_->ZeroCopyRun();
  // 取出模型的输出结果
  auto output_names = predictor_->GetOutputNames();
  auto output_tensor = predictor_->GetOutputTensor(output_names[0]);
  std::vector<int> output_shape = output_tensor->shape();
  int size = 1;
  for (const auto& i : output_shape) {
    size *= i;
  }
  outputs_.resize(size);
  output_tensor->copy_to_cpu(outputs_.data());
  // 对模型输出结果进行后处理
  auto ptr = std::max_element(std::begin(outputs_), std::end(outputs_));
  result->category_id = std::distance(std::begin(outputs_), ptr);
  result->score = *ptr;
  result->category = labels[result->category_id];
J
jack 已提交
175
  return true;
C
Channingss 已提交
176 177
}

J
jack 已提交
178 179 180 181
bool Model::predict(const std::vector<cv::Mat>& im_batch,
                    std::vector<ClsResult>* results,
                    int thread_num) {
  for (auto& inputs : inputs_batch_) {
J
jack 已提交
182 183 184 185
    inputs.clear();
  }
  if (type == "detector") {
    std::cerr << "Loading model is a 'detector', DetResult should be passed to "
J
jack 已提交
186
                 "function predict()!" << std::endl;
J
jack 已提交
187 188 189
    return false;
  } else if (type == "segmenter") {
    std::cerr << "Loading model is a 'segmenter', SegResult should be passed "
J
jack 已提交
190
                 "to function predict()!" << std::endl;
J
jack 已提交
191 192
    return false;
  }
J
jack 已提交
193
  inputs_batch_.assign(im_batch.size(), ImageBlob());
J
jack 已提交
194
  // 处理输入图像
J
jack 已提交
195
  if (!preprocess(im_batch, &inputs_batch_, thread_num)) {
J
jack 已提交
196 197 198 199 200 201 202 203 204 205
    std::cerr << "Preprocess failed!" << std::endl;
    return false;
  }
  // 使用加载的模型进行预测
  int batch_size = im_batch.size();
  auto in_tensor = predictor_->GetInputTensor("image");
  int h = inputs_batch_[0].new_im_size_[0];
  int w = inputs_batch_[0].new_im_size_[1];
  in_tensor->Reshape({batch_size, 3, h, w});
  std::vector<float> inputs_data(batch_size * 3 * h * w);
J
jack 已提交
206 207 208 209
  for (int i = 0; i < batch_size; ++i) {
    std::copy(inputs_batch_[i].im_data_.begin(),
              inputs_batch_[i].im_data_.end(),
              inputs_data.begin() + i * 3 * h * w);
J
jack 已提交
210 211
  }
  in_tensor->copy_from_cpu(inputs_data.data());
J
jack 已提交
212
  // in_tensor->copy_from_cpu(inputs_.im_data_.data());
J
jack 已提交
213 214 215 216 217 218 219 220 221 222 223 224 225
  predictor_->ZeroCopyRun();
  // 取出模型的输出结果
  auto output_names = predictor_->GetOutputNames();
  auto output_tensor = predictor_->GetOutputTensor(output_names[0]);
  std::vector<int> output_shape = output_tensor->shape();
  int size = 1;
  for (const auto& i : output_shape) {
    size *= i;
  }
  outputs_.resize(size);
  output_tensor->copy_to_cpu(outputs_.data());
  // 对模型输出结果进行后处理
  int single_batch_size = size / batch_size;
J
jack 已提交
226
  for (int i = 0; i < batch_size; ++i) {
J
jack 已提交
227 228 229 230 231
    auto start_ptr = std::begin(outputs_);
    auto end_ptr = std::begin(outputs_);
    std::advance(start_ptr, i * single_batch_size);
    std::advance(end_ptr, (i + 1) * single_batch_size);
    auto ptr = std::max_element(start_ptr, end_ptr);
J
jack 已提交
232 233 234
    (*results)[i].category_id = std::distance(start_ptr, ptr);
    (*results)[i].score = *ptr;
    (*results)[i].category = labels[(*results)[i].category_id];
J
jack 已提交
235 236 237 238
  }
  return true;
}

C
Channingss 已提交
239
bool Model::predict(const cv::Mat& im, DetResult* result) {
J
jack 已提交
240
  inputs_.clear();
C
Channingss 已提交
241 242 243
  result->clear();
  if (type == "classifier") {
    std::cerr << "Loading model is a 'classifier', ClsResult should be passed "
J
jack 已提交
244
                 "to function predict()!" << std::endl;
C
Channingss 已提交
245 246 247
    return false;
  } else if (type == "segmenter") {
    std::cerr << "Loading model is a 'segmenter', SegResult should be passed "
J
jack 已提交
248
                 "to function predict()!" << std::endl;
C
Channingss 已提交
249 250 251 252 253 254 255 256 257 258 259 260 261 262
    return false;
  }

  // 处理输入图像
  if (!preprocess(im, &inputs_)) {
    std::cerr << "Preprocess failed!" << std::endl;
    return false;
  }

  int h = inputs_.new_im_size_[0];
  int w = inputs_.new_im_size_[1];
  auto im_tensor = predictor_->GetInputTensor("image");
  im_tensor->Reshape({1, 3, h, w});
  im_tensor->copy_from_cpu(inputs_.im_data_.data());
J
jack 已提交
263

C
Channingss 已提交
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
  if (name == "YOLOv3") {
    auto im_size_tensor = predictor_->GetInputTensor("im_size");
    im_size_tensor->Reshape({1, 2});
    im_size_tensor->copy_from_cpu(inputs_.ori_im_size_.data());
  } else if (name == "FasterRCNN" || name == "MaskRCNN") {
    auto im_info_tensor = predictor_->GetInputTensor("im_info");
    auto im_shape_tensor = predictor_->GetInputTensor("im_shape");
    im_info_tensor->Reshape({1, 3});
    im_shape_tensor->Reshape({1, 3});
    float ori_h = static_cast<float>(inputs_.ori_im_size_[0]);
    float ori_w = static_cast<float>(inputs_.ori_im_size_[1]);
    float new_h = static_cast<float>(inputs_.new_im_size_[0]);
    float new_w = static_cast<float>(inputs_.new_im_size_[1]);
    float im_info[] = {new_h, new_w, inputs_.scale};
    float im_shape[] = {ori_h, ori_w, 1.0};
    im_info_tensor->copy_from_cpu(im_info);
    im_shape_tensor->copy_from_cpu(im_shape);
  }
  // 使用加载的模型进行预测
  predictor_->ZeroCopyRun();

  std::vector<float> output_box;
  auto output_names = predictor_->GetOutputNames();
  auto output_box_tensor = predictor_->GetOutputTensor(output_names[0]);
  std::vector<int> output_box_shape = output_box_tensor->shape();
  int size = 1;
  for (const auto& i : output_box_shape) {
    size *= i;
  }
  output_box.resize(size);
  output_box_tensor->copy_to_cpu(output_box.data());
  if (size < 6) {
    std::cerr << "[WARNING] There's no object detected." << std::endl;
    return true;
  }
  int num_boxes = size / 6;
  // 解析预测框box
  for (int i = 0; i < num_boxes; ++i) {
    Box box;
    box.category_id = static_cast<int>(round(output_box[i * 6]));
    box.category = labels[box.category_id];
    box.score = output_box[i * 6 + 1];
    float xmin = output_box[i * 6 + 2];
    float ymin = output_box[i * 6 + 3];
    float xmax = output_box[i * 6 + 4];
    float ymax = output_box[i * 6 + 5];
    float w = xmax - xmin + 1;
    float h = ymax - ymin + 1;
    box.coordinate = {xmin, ymin, w, h};
    result->boxes.push_back(std::move(box));
  }
  // 实例分割需解析mask
  if (name == "MaskRCNN") {
    std::vector<float> output_mask;
    auto output_mask_tensor = predictor_->GetOutputTensor(output_names[1]);
    std::vector<int> output_mask_shape = output_mask_tensor->shape();
    int masks_size = 1;
    for (const auto& i : output_mask_shape) {
      masks_size *= i;
    }
    int mask_pixels = output_mask_shape[2] * output_mask_shape[3];
    int classes = output_mask_shape[1];
    output_mask.resize(masks_size);
    output_mask_tensor->copy_to_cpu(output_mask.data());
    result->mask_resolution = output_mask_shape[2];
    for (int i = 0; i < result->boxes.size(); ++i) {
      Box* box = &result->boxes[i];
      auto begin_mask =
          output_mask.begin() + (i * classes + box->category_id) * mask_pixels;
      auto end_mask = begin_mask + mask_pixels;
      box->mask.data.assign(begin_mask, end_mask);
      box->mask.shape = {static_cast<int>(box->coordinate[2]),
                         static_cast<int>(box->coordinate[3])};
    }
  }
J
jack 已提交
339
  return true;
C
Channingss 已提交
340 341
}

J
jack 已提交
342 343 344 345
bool Model::predict(const std::vector<cv::Mat>& im_batch,
                    std::vector<DetResult>* result,
                    int thread_num) {
  for (auto& inputs : inputs_batch_) {
J
jack 已提交
346 347
    inputs.clear();
  }
J
jack 已提交
348 349
  if (type == "classifier") {
    std::cerr << "Loading model is a 'classifier', ClsResult should be passed "
J
jack 已提交
350
                 "to function predict()!" << std::endl;
J
jack 已提交
351 352 353
    return false;
  } else if (type == "segmenter") {
    std::cerr << "Loading model is a 'segmenter', SegResult should be passed "
J
jack 已提交
354
                 "to function predict()!" << std::endl;
J
jack 已提交
355 356 357
    return false;
  }

J
jack 已提交
358
  inputs_batch_.assign(im_batch.size(), ImageBlob());
J
jack 已提交
359
  int batch_size = im_batch.size();
J
jack 已提交
360
  // 处理输入图像
J
jack 已提交
361
  if (!preprocess(im_batch, &inputs_batch_, thread_num)) {
J
jack 已提交
362 363 364
    std::cerr << "Preprocess failed!" << std::endl;
    return false;
  }
J
jack 已提交
365 366 367 368 369
  // 对RCNN类模型做批量padding
  if (batch_size > 1) {
    if (name == "FasterRCNN" || name == "MaskRCNN") {
      int max_h = -1;
      int max_w = -1;
J
jack 已提交
370
      for (int i = 0; i < batch_size; ++i) {
J
jack 已提交
371 372
        max_h = std::max(max_h, inputs_batch_[i].new_im_size_[0]);
        max_w = std::max(max_w, inputs_batch_[i].new_im_size_[1]);
J
jack 已提交
373 374
        // std::cout << "(" << inputs_batch_[i].new_im_size_[0]
        //          << ", " << inputs_batch_[i].new_im_size_[1]
J
jack 已提交
375
        //          <<  ")" << std::endl;
J
jack 已提交
376
      }
J
jack 已提交
377 378
      thread_num = std::min(thread_num, batch_size);
      #pragma omp parallel for num_threads(thread_num)
J
jack 已提交
379
      for (int i = 0; i < batch_size; ++i) {
J
jack 已提交
380 381 382
        int h = inputs_batch_[i].new_im_size_[0];
        int w = inputs_batch_[i].new_im_size_[1];
        int c = im_batch[i].channels();
J
jack 已提交
383
        if (max_h != h || max_w != w) {
J
jack 已提交
384
          std::vector<float> temp_buffer(c * max_h * max_w);
J
jack 已提交
385 386 387
          float* temp_ptr = temp_buffer.data();
          float* ptr = inputs_batch_[i].im_data_.data();
          for (int cur_channel = c - 1; cur_channel >= 0; --cur_channel) {
J
jack 已提交
388 389
            int ori_pos = cur_channel * h * w + (h - 1) * w;
            int des_pos = cur_channel * max_h * max_w + (h - 1) * max_w;
J
jack 已提交
390 391 392
            int last_pos = cur_channel * h * w;
            for (; ori_pos >= last_pos; ori_pos -= w, des_pos -= max_w) {
              memcpy(temp_ptr + des_pos, ptr + ori_pos, w * sizeof(float));
J
jack 已提交
393 394 395 396
            }
          }
          inputs_batch_[i].im_data_.swap(temp_buffer);
          inputs_batch_[i].new_im_size_[0] = max_h;
J
jack 已提交
397
          inputs_batch_[i].new_im_size_[1] = max_w;
J
jack 已提交
398 399 400 401
        }
      }
    }
  }
J
jack 已提交
402 403 404 405 406
  int h = inputs_batch_[0].new_im_size_[0];
  int w = inputs_batch_[0].new_im_size_[1];
  auto im_tensor = predictor_->GetInputTensor("image");
  im_tensor->Reshape({batch_size, 3, h, w});
  std::vector<float> inputs_data(batch_size * 3 * h * w);
J
jack 已提交
407 408 409 410
  for (int i = 0; i < batch_size; ++i) {
    std::copy(inputs_batch_[i].im_data_.begin(),
              inputs_batch_[i].im_data_.end(),
              inputs_data.begin() + i * 3 * h * w);
J
jack 已提交
411 412 413 414 415
  }
  im_tensor->copy_from_cpu(inputs_data.data());
  if (name == "YOLOv3") {
    auto im_size_tensor = predictor_->GetInputTensor("im_size");
    im_size_tensor->Reshape({batch_size, 2});
J
jack 已提交
416 417 418 419 420
    std::vector<int> inputs_data_size(batch_size * 2);
    for (int i = 0; i < batch_size; ++i) {
      std::copy(inputs_batch_[i].ori_im_size_.begin(),
                inputs_batch_[i].ori_im_size_.end(),
                inputs_data_size.begin() + 2 * i);
J
jack 已提交
421 422 423 424 425 426 427
    }
    im_size_tensor->copy_from_cpu(inputs_data_size.data());
  } else if (name == "FasterRCNN" || name == "MaskRCNN") {
    auto im_info_tensor = predictor_->GetInputTensor("im_info");
    auto im_shape_tensor = predictor_->GetInputTensor("im_shape");
    im_info_tensor->Reshape({batch_size, 3});
    im_shape_tensor->Reshape({batch_size, 3});
J
jack 已提交
428

J
jack 已提交
429 430
    std::vector<float> im_info(3 * batch_size);
    std::vector<float> im_shape(3 * batch_size);
J
jack 已提交
431
    for (int i = 0; i < batch_size; ++i) {
J
jack 已提交
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
      float ori_h = static_cast<float>(inputs_batch_[i].ori_im_size_[0]);
      float ori_w = static_cast<float>(inputs_batch_[i].ori_im_size_[1]);
      float new_h = static_cast<float>(inputs_batch_[i].new_im_size_[0]);
      float new_w = static_cast<float>(inputs_batch_[i].new_im_size_[1]);
      im_info[i * 3] = new_h;
      im_info[i * 3 + 1] = new_w;
      im_info[i * 3 + 2] = inputs_batch_[i].scale;
      im_shape[i * 3] = ori_h;
      im_shape[i * 3 + 1] = ori_w;
      im_shape[i * 3 + 2] = 1.0;
    }
    im_info_tensor->copy_from_cpu(im_info.data());
    im_shape_tensor->copy_from_cpu(im_shape.data());
  }
  // 使用加载的模型进行预测
  predictor_->ZeroCopyRun();

  // 读取所有box
  std::vector<float> output_box;
  auto output_names = predictor_->GetOutputNames();
  auto output_box_tensor = predictor_->GetOutputTensor(output_names[0]);
  std::vector<int> output_box_shape = output_box_tensor->shape();
  int size = 1;
  for (const auto& i : output_box_shape) {
    size *= i;
  }
  output_box.resize(size);
  output_box_tensor->copy_to_cpu(output_box.data());
  if (size < 6) {
    std::cerr << "[WARNING] There's no object detected." << std::endl;
    return true;
  }
  auto lod_vector = output_box_tensor->lod();
  int num_boxes = size / 6;
  // 解析预测框box
  for (int i = 0; i < lod_vector[0].size() - 1; ++i) {
J
jack 已提交
468
    for (int j = lod_vector[0][i]; j < lod_vector[0][i + 1]; ++j) {
J
jack 已提交
469
      Box box;
J
jack 已提交
470
      box.category_id = static_cast<int>(round(output_box[j * 6]));
J
jack 已提交
471 472 473 474 475 476 477 478 479
      box.category = labels[box.category_id];
      box.score = output_box[j * 6 + 1];
      float xmin = output_box[j * 6 + 2];
      float ymin = output_box[j * 6 + 3];
      float xmax = output_box[j * 6 + 4];
      float ymax = output_box[j * 6 + 5];
      float w = xmax - xmin + 1;
      float h = ymax - ymin + 1;
      box.coordinate = {xmin, ymin, w, h};
J
jack 已提交
480
      (*result)[i].boxes.push_back(std::move(box));
J
jack 已提交
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
    }
  }

  // 实例分割需解析mask
  if (name == "MaskRCNN") {
    std::vector<float> output_mask;
    auto output_mask_tensor = predictor_->GetOutputTensor(output_names[1]);
    std::vector<int> output_mask_shape = output_mask_tensor->shape();
    int masks_size = 1;
    for (const auto& i : output_mask_shape) {
      masks_size *= i;
    }
    int mask_pixels = output_mask_shape[2] * output_mask_shape[3];
    int classes = output_mask_shape[1];
    output_mask.resize(masks_size);
    output_mask_tensor->copy_to_cpu(output_mask.data());
    int mask_idx = 0;
J
jack 已提交
498 499 500 501 502 503 504
    for (int i = 0; i < lod_vector[0].size() - 1; ++i) {
      (*result)[i].mask_resolution = output_mask_shape[2];
      for (int j = 0; j < (*result)[i].boxes.size(); ++j) {
        Box* box = &(*result)[i].boxes[j];
        int category_id = box->category_id;
        auto begin_mask = output_mask.begin() +
                          (mask_idx * classes + category_id) * mask_pixels;
J
jack 已提交
505 506 507 508 509 510 511 512
        auto end_mask = begin_mask + mask_pixels;
        box->mask.data.assign(begin_mask, end_mask);
        box->mask.shape = {static_cast<int>(box->coordinate[2]),
                           static_cast<int>(box->coordinate[3])};
        mask_idx++;
      }
    }
  }
J
jack 已提交
513
  return true;
J
jack 已提交
514 515
}

C
Channingss 已提交
516 517 518 519 520
bool Model::predict(const cv::Mat& im, SegResult* result) {
  result->clear();
  inputs_.clear();
  if (type == "classifier") {
    std::cerr << "Loading model is a 'classifier', ClsResult should be passed "
J
jack 已提交
521
                 "to function predict()!" << std::endl;
C
Channingss 已提交
522 523 524
    return false;
  } else if (type == "detector") {
    std::cerr << "Loading model is a 'detector', DetResult should be passed to "
J
jack 已提交
525
                 "function predict()!" << std::endl;
C
Channingss 已提交
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
    return false;
  }

  // 处理输入图像
  if (!preprocess(im, &inputs_)) {
    std::cerr << "Preprocess failed!" << std::endl;
    return false;
  }

  int h = inputs_.new_im_size_[0];
  int w = inputs_.new_im_size_[1];
  auto im_tensor = predictor_->GetInputTensor("image");
  im_tensor->Reshape({1, 3, h, w});
  im_tensor->copy_from_cpu(inputs_.im_data_.data());

  // 使用加载的模型进行预测
  predictor_->ZeroCopyRun();

  // 获取预测置信度,经过argmax后的labelmap
  auto output_names = predictor_->GetOutputNames();
  auto output_label_tensor = predictor_->GetOutputTensor(output_names[0]);
  std::vector<int> output_label_shape = output_label_tensor->shape();
  int size = 1;
  for (const auto& i : output_label_shape) {
    size *= i;
    result->label_map.shape.push_back(i);
  }
J
jack 已提交
553

C
Channingss 已提交
554 555 556 557 558 559 560 561 562 563 564
  result->label_map.data.resize(size);
  output_label_tensor->copy_to_cpu(result->label_map.data.data());

  // 获取预测置信度scoremap
  auto output_score_tensor = predictor_->GetOutputTensor(output_names[1]);
  std::vector<int> output_score_shape = output_score_tensor->shape();
  size = 1;
  for (const auto& i : output_score_shape) {
    size *= i;
    result->score_map.shape.push_back(i);
  }
J
jack 已提交
565

C
Channingss 已提交
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
  result->score_map.data.resize(size);
  output_score_tensor->copy_to_cpu(result->score_map.data.data());

  // 解析输出结果到原图大小
  std::vector<uint8_t> label_map(result->label_map.data.begin(),
                                 result->label_map.data.end());
  cv::Mat mask_label(result->label_map.shape[1],
                     result->label_map.shape[2],
                     CV_8UC1,
                     label_map.data());

  cv::Mat mask_score(result->score_map.shape[2],
                     result->score_map.shape[3],
                     CV_32FC1,
                     result->score_map.data.data());
C
Channingss 已提交
581
  int idx = 1;
C
Channingss 已提交
582
  int len_postprocess = inputs_.im_size_before_resize_.size();
C
Channingss 已提交
583 584
  for (std::vector<std::string>::reverse_iterator iter =
           inputs_.reshape_order_.rbegin();
C
Channingss 已提交
585 586
       iter != inputs_.reshape_order_.rend();
       ++iter) {
C
Channingss 已提交
587
    if (*iter == "padding") {
C
Channingss 已提交
588
      auto before_shape = inputs_.im_size_before_resize_[len_postprocess - idx];
C
Channingss 已提交
589 590 591
      inputs_.im_size_before_resize_.pop_back();
      auto padding_w = before_shape[0];
      auto padding_h = before_shape[1];
J
jack 已提交
592 593
      mask_label = mask_label(cv::Rect(0, 0, padding_h, padding_w));
      mask_score = mask_score(cv::Rect(0, 0, padding_h, padding_w));
C
Channingss 已提交
594
    } else if (*iter == "resize") {
C
Channingss 已提交
595
      auto before_shape = inputs_.im_size_before_resize_[len_postprocess - idx];
C
Channingss 已提交
596 597 598
      inputs_.im_size_before_resize_.pop_back();
      auto resize_w = before_shape[0];
      auto resize_h = before_shape[1];
C
Channingss 已提交
599 600 601 602 603 604 605 606 607 608 609
      cv::resize(mask_label,
                 mask_label,
                 cv::Size(resize_h, resize_w),
                 0,
                 0,
                 cv::INTER_NEAREST);
      cv::resize(mask_score,
                 mask_score,
                 cv::Size(resize_h, resize_w),
                 0,
                 0,
J
jack 已提交
610
                 cv::INTER_LINEAR);
C
Channingss 已提交
611
    }
C
Channingss 已提交
612
    ++idx;
C
Channingss 已提交
613 614 615 616 617 618 619
  }
  result->label_map.data.assign(mask_label.begin<uint8_t>(),
                                mask_label.end<uint8_t>());
  result->label_map.shape = {mask_label.rows, mask_label.cols};
  result->score_map.data.assign(mask_score.begin<float>(),
                                mask_score.end<float>());
  result->score_map.shape = {mask_score.rows, mask_score.cols};
J
jack 已提交
620 621 622
  return true;
}

J
jack 已提交
623 624 625 626
bool Model::predict(const std::vector<cv::Mat>& im_batch,
                    std::vector<SegResult>* result,
                    int thread_num) {
  for (auto& inputs : inputs_batch_) {
J
jack 已提交
627 628 629 630
    inputs.clear();
  }
  if (type == "classifier") {
    std::cerr << "Loading model is a 'classifier', ClsResult should be passed "
J
jack 已提交
631
                 "to function predict()!" << std::endl;
J
jack 已提交
632 633 634
    return false;
  } else if (type == "detector") {
    std::cerr << "Loading model is a 'detector', DetResult should be passed to "
J
jack 已提交
635
                 "function predict()!" << std::endl;
J
jack 已提交
636 637 638 639
    return false;
  }

  // 处理输入图像
J
jack 已提交
640
  inputs_batch_.assign(im_batch.size(), ImageBlob());
J
jack 已提交
641
  if (!preprocess(im_batch, &inputs_batch_, thread_num)) {
J
jack 已提交
642 643 644 645 646
    std::cerr << "Preprocess failed!" << std::endl;
    return false;
  }

  int batch_size = im_batch.size();
J
jack 已提交
647 648
  (*result).clear();
  (*result).resize(batch_size);
J
jack 已提交
649 650 651 652 653
  int h = inputs_batch_[0].new_im_size_[0];
  int w = inputs_batch_[0].new_im_size_[1];
  auto im_tensor = predictor_->GetInputTensor("image");
  im_tensor->Reshape({batch_size, 3, h, w});
  std::vector<float> inputs_data(batch_size * 3 * h * w);
J
jack 已提交
654 655 656 657
  for (int i = 0; i < batch_size; ++i) {
    std::copy(inputs_batch_[i].im_data_.begin(),
              inputs_batch_[i].im_data_.end(),
              inputs_data.begin() + i * 3 * h * w);
J
jack 已提交
658 659
  }
  im_tensor->copy_from_cpu(inputs_data.data());
J
jack 已提交
660
  // im_tensor->copy_from_cpu(inputs_.im_data_.data());
J
jack 已提交
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678

  // 使用加载的模型进行预测
  predictor_->ZeroCopyRun();

  // 获取预测置信度,经过argmax后的labelmap
  auto output_names = predictor_->GetOutputNames();
  auto output_label_tensor = predictor_->GetOutputTensor(output_names[0]);
  std::vector<int> output_label_shape = output_label_tensor->shape();
  int size = 1;
  for (const auto& i : output_label_shape) {
    size *= i;
  }

  std::vector<int64_t> output_labels(size, 0);
  output_label_tensor->copy_to_cpu(output_labels.data());
  auto output_labels_iter = output_labels.begin();

  int single_batch_size = size / batch_size;
J
jack 已提交
679 680 681 682 683
  for (int i = 0; i < batch_size; ++i) {
    (*result)[i].label_map.data.resize(single_batch_size);
    (*result)[i].label_map.shape.push_back(1);
    for (int j = 1; j < output_label_shape.size(); ++j) {
      (*result)[i].label_map.shape.push_back(output_label_shape[j]);
J
jack 已提交
684
    }
J
jack 已提交
685 686 687
    std::copy(output_labels_iter + i * single_batch_size,
              output_labels_iter + (i + 1) * single_batch_size,
              (*result)[i].label_map.data.data());
J
jack 已提交
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
  }

  // 获取预测置信度scoremap
  auto output_score_tensor = predictor_->GetOutputTensor(output_names[1]);
  std::vector<int> output_score_shape = output_score_tensor->shape();
  size = 1;
  for (const auto& i : output_score_shape) {
    size *= i;
  }

  std::vector<float> output_scores(size, 0);
  output_score_tensor->copy_to_cpu(output_scores.data());
  auto output_scores_iter = output_scores.begin();

  int single_batch_score_size = size / batch_size;
J
jack 已提交
703 704 705 706 707
  for (int i = 0; i < batch_size; ++i) {
    (*result)[i].score_map.data.resize(single_batch_score_size);
    (*result)[i].score_map.shape.push_back(1);
    for (int j = 1; j < output_score_shape.size(); ++j) {
      (*result)[i].score_map.shape.push_back(output_score_shape[j]);
J
jack 已提交
708
    }
J
jack 已提交
709 710 711
    std::copy(output_scores_iter + i * single_batch_score_size,
              output_scores_iter + (i + 1) * single_batch_score_size,
              (*result)[i].score_map.data.data());
J
jack 已提交
712 713 714
  }

  // 解析输出结果到原图大小
J
jack 已提交
715 716 717 718 719
  for (int i = 0; i < batch_size; ++i) {
    std::vector<uint8_t> label_map((*result)[i].label_map.data.begin(),
                                   (*result)[i].label_map.data.end());
    cv::Mat mask_label((*result)[i].label_map.shape[1],
                       (*result)[i].label_map.shape[2],
J
jack 已提交
720 721
                       CV_8UC1,
                       label_map.data());
J
jack 已提交
722 723 724

    cv::Mat mask_score((*result)[i].score_map.shape[2],
                       (*result)[i].score_map.shape[3],
J
jack 已提交
725
                       CV_32FC1,
J
jack 已提交
726
                       (*result)[i].score_map.data.data());
J
jack 已提交
727 728 729 730 731 732 733
    int idx = 1;
    int len_postprocess = inputs_batch_[i].im_size_before_resize_.size();
    for (std::vector<std::string>::reverse_iterator iter =
             inputs_batch_[i].reshape_order_.rbegin();
         iter != inputs_batch_[i].reshape_order_.rend();
         ++iter) {
      if (*iter == "padding") {
J
jack 已提交
734 735
        auto before_shape =
            inputs_batch_[i].im_size_before_resize_[len_postprocess - idx];
J
jack 已提交
736 737 738 739 740 741
        inputs_batch_[i].im_size_before_resize_.pop_back();
        auto padding_w = before_shape[0];
        auto padding_h = before_shape[1];
        mask_label = mask_label(cv::Rect(0, 0, padding_h, padding_w));
        mask_score = mask_score(cv::Rect(0, 0, padding_h, padding_w));
      } else if (*iter == "resize") {
J
jack 已提交
742 743
        auto before_shape =
            inputs_batch_[i].im_size_before_resize_[len_postprocess - idx];
J
jack 已提交
744 745 746 747 748 749 750 751 752 753 754 755 756 757
        inputs_batch_[i].im_size_before_resize_.pop_back();
        auto resize_w = before_shape[0];
        auto resize_h = before_shape[1];
        cv::resize(mask_label,
                   mask_label,
                   cv::Size(resize_h, resize_w),
                   0,
                   0,
                   cv::INTER_NEAREST);
        cv::resize(mask_score,
                   mask_score,
                   cv::Size(resize_h, resize_w),
                   0,
                   0,
J
jack 已提交
758
                   cv::INTER_LINEAR);
J
jack 已提交
759 760 761
      }
      ++idx;
    }
J
jack 已提交
762 763 764 765 766 767
    (*result)[i].label_map.data.assign(mask_label.begin<uint8_t>(),
                                       mask_label.end<uint8_t>());
    (*result)[i].label_map.shape = {mask_label.rows, mask_label.cols};
    (*result)[i].score_map.data.assign(mask_score.begin<float>(),
                                       mask_score.end<float>());
    (*result)[i].score_map.shape = {mask_score.rows, mask_score.cols};
J
jack 已提交
768 769
  }
  return true;
C
Channingss 已提交
770 771
}

J
jack 已提交
772
}  // namespace PaddleX