layers.py 64.7 KB
Newer Older
C
Chang Xu 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
C
ceci3 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import os
C
ceci3 已提交
16 17
import numpy as np
import logging
C
ceci3 已提交
18
import paddle
C
ceci3 已提交
19 20 21

from ...common import get_logger
from .utils.utils import compute_start_end, get_same_padding, convert_to_list
22
from .layers_base import *
23
from paddle.framework import in_dygraph_mode
C
ceci3 已提交
24 25 26

__all__ = [
    'SuperConv2D', 'SuperConv2DTranspose', 'SuperSeparableConv2D',
27
    'SuperBatchNorm2D', 'SuperLinear', 'SuperInstanceNorm2D',
C
ceci3 已提交
28
    'SuperGroupConv2D', 'SuperDepthwiseConv2D', 'SuperGroupConv2DTranspose',
C
Chang Xu 已提交
29 30
    'SuperDepthwiseConv2DTranspose', 'SuperLayerNorm', 'SuperEmbedding',
    'SuperSyncBatchNorm'
C
ceci3 已提交
31 32 33 34 35 36 37
]

_logger = get_logger(__name__, level=logging.INFO)

### TODO: if task is elastic width, need to add re_organize_middle_weight in 1x1 conv in MBBlock


W
whs 已提交
38
class SuperConv2D(paddle.nn.Conv2D):
W
whs 已提交
39
    """This interface is used to construct a callable object of the ``SuperConv2D``  class.
C
ceci3 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
    Note: the channel in config need to less than first defined.
    The super convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
    the feature map, H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of output feature map,
    C is the number of input feature map, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more details.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
    For each input :math:`X`, the equation is:
    .. math::
C
ceci3 已提交
57
        Out = sigma (W \\ast X + b)
C
ceci3 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
    Where:
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
    Example:
        - Input:
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
        - Output:
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
        Where
        .. math::
C
ceci3 已提交
73
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1   
C
ceci3 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
    Parameters:
        num_channels(int): The number of channels in the input image.
        num_filters(int): The number of filter. It is as same as the output
            feature map.
        filter_size (int or tuple): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        candidate_config(dict, optional): Dictionary descripts candidate config of this layer,
            such as {'kernel_size': (3, 5, 7), 'channel': (4, 6, 8)}, means the kernel size of 
            this layer can be choose from (3, 5, 7), the key of candidate_config
            only can be 'kernel_size', 'channel' and 'expand_ratio', 'channel' and 'expand_ratio'
            CANNOT be set at the same time. Default: None.
        transform_kernel(bool, optional): Whether to use transform matrix to transform a large filter
            to a small filter. Default: False.
        stride (int or tuple, optional): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: 1.
        padding (int or tuple, optional): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: 0.
        dilation (int or tuple, optional): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: 1.
        groups (int, optional): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
W
whs 已提交
104 105
            of conv2d. If it is set to None or one attribute of paddle.ParamAttr, conv2d
            will create paddle.ParamAttr as param_attr. If the Initializer of the param_attr
C
ceci3 已提交
106
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
W
whs 已提交
107
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\\_elem\\_num})^{0.5}`. Default: None.
C
ceci3 已提交
108 109
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
W
whs 已提交
110 111
            If it is set to None or one attribute of paddle.ParamAttr, conv2d
            will create paddle.ParamAttr as bias_attr. If the Initializer of the bias_attr
C
ceci3 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
            is not set, the bias is initialized zero. Default: None.
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            Default: None.
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
    Attribute:
        **weight** (Parameter): the learnable weights of filter of this layer.
        **bias** (Parameter or None): the learnable bias of this layer.
    Returns:
        None
    
    Raises:
        ValueError: if ``use_cudnn`` is not a bool value.
    Examples:
        .. code-block:: python
C
ceci3 已提交
128 129
          import paddle 
          from paddleslim.nas.ofa.layers import SuperConv2D
C
ceci3 已提交
130 131
          import numpy as np
          data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32')
C
ceci3 已提交
132 133
          super_conv2d = SuperConv2D(3, 10, 3)
          config = {'channel': 5}
C
ceci3 已提交
134
          data = paddle.to_tensor(data)
C
ceci3 已提交
135
          conv = super_conv2d(data, config)
C
ceci3 已提交
136 137 138 139
    """

    ### NOTE: filter_size, num_channels and num_filters must be the max of candidate to define a largest network.
    def __init__(self,
C
ceci3 已提交
140 141 142
                 in_channels,
                 out_channels,
                 kernel_size,
C
ceci3 已提交
143 144 145 146
                 candidate_config={},
                 transform_kernel=False,
                 stride=1,
                 padding=0,
C
ceci3 已提交
147 148 149 150
                 dilation=1,
                 groups=1,
                 padding_mode='zeros',
                 weight_attr=None,
C
ceci3 已提交
151
                 bias_attr=None,
C
ceci3 已提交
152
                 data_format='NCHW'):
C
ceci3 已提交
153
        super(SuperConv2D, self).__init__(
C
ceci3 已提交
154 155 156 157 158 159 160 161 162 163 164
            in_channels,
            out_channels,
            kernel_size,
            stride=stride,
            padding=padding,
            padding_mode=padding_mode,
            dilation=dilation,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)
C
ceci3 已提交
165 166

        self.candidate_config = candidate_config
C
Chang Xu 已提交
167
        self.cur_config = None
C
ceci3 已提交
168 169 170 171 172 173 174 175 176 177 178
        if len(candidate_config.items()) != 0:
            for k, v in candidate_config.items():
                candidate_config[k] = list(set(v))

        self.ks_set = candidate_config[
            'kernel_size'] if 'kernel_size' in candidate_config else None

        self.expand_ratio = candidate_config[
            'expand_ratio'] if 'expand_ratio' in candidate_config else None
        self.channel = candidate_config[
            'channel'] if 'channel' in candidate_config else None
C
ceci3 已提交
179
        self.base_channel = self._out_channels
C
ceci3 已提交
180
        if self.expand_ratio != None:
C
ceci3 已提交
181
            self.base_channel = int(self._out_channels / max(self.expand_ratio))
C
ceci3 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194

        self.transform_kernel = transform_kernel
        if self.ks_set != None:
            self.ks_set.sort()
        if self.transform_kernel != False:
            scale_param = dict()
            ### create parameter to transform kernel
            for i in range(len(self.ks_set) - 1):
                ks_small = self.ks_set[i]
                ks_large = self.ks_set[i + 1]
                param_name = '%dto%d_matrix' % (ks_large, ks_small)
                ks_t = ks_small**2
                scale_param[param_name] = self.create_parameter(
C
ceci3 已提交
195
                    attr=paddle.ParamAttr(
C
ceci3 已提交
196
                        name=self._full_name + param_name,
W
whs 已提交
197
                        initializer=paddle.nn.initializer.Assign(np.eye(ks_t))),
C
ceci3 已提交
198 199 200 201 202 203 204
                    shape=(ks_t, ks_t),
                    dtype=self._dtype)

            for name, param in scale_param.items():
                setattr(self, name, param)

    def get_active_filter(self, in_nc, out_nc, kernel_size):
C
ceci3 已提交
205
        start, end = compute_start_end(self._kernel_size[0], kernel_size)
C
ceci3 已提交
206
        ### if NOT transform kernel, intercept a center filter with kernel_size from largest filter
207 208 209 210
        if self.weight.shape[0] <= out_nc and self.weight.shape[1] <= in_nc:
            filters = self.weight
        else:
            filters = self.weight[:out_nc, :in_nc, start:end, start:end]
211
        if self.transform_kernel != False and kernel_size < self._kernel_size[0]:
C
ceci3 已提交
212 213 214 215 216 217 218 219 220
            ### if transform kernel, then use matrix to transform
            start_filter = self.weight[:out_nc, :in_nc, :, :]
            for i in range(len(self.ks_set) - 1, 0, -1):
                src_ks = self.ks_set[i]
                if src_ks <= kernel_size:
                    break
                target_ks = self.ks_set[i - 1]
                start, end = compute_start_end(src_ks, target_ks)
                _input_filter = start_filter[:, :, start:end, start:end]
C
ceci3 已提交
221
                _input_filter = paddle.reshape(
C
ceci3 已提交
222 223 224
                    _input_filter,
                    shape=[(_input_filter.shape[0] * _input_filter.shape[1]),
                           -1])
225 226 227 228 229
                _input_filter = paddle.matmul(_input_filter,
                                              self.__getattr__(
                                                  '%dto%d_matrix' %
                                                  (src_ks, target_ks)), False,
                                              False)
C
ceci3 已提交
230
                _input_filter = paddle.reshape(
C
ceci3 已提交
231 232 233 234 235 236 237 238 239
                    _input_filter,
                    shape=[
                        filters.shape[0], filters.shape[1], target_ks, target_ks
                    ])
                start_filter = _input_filter
            filters = start_filter
        return filters

    def get_groups_in_out_nc(self, in_nc, out_nc):
C
ceci3 已提交
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
        if self._groups == 1:
            ### standard conv
            return self._groups, in_nc, out_nc
        elif self._groups == self._in_channels:
            ### depthwise convolution
            if in_nc != out_nc:
                _logger.debug(
                    "input channel and output channel in depthwise conv is different, change output channel to input channel! origin channel:(in_nc {}, out_nc {}): ".
                    format(in_nc, out_nc))
            groups = in_nc
            out_nc = in_nc
            return groups, in_nc, out_nc
        else:
            ### groups convolution
            ### conv: weight: (Cout, Cin/G, Kh, Kw)
            groups = self._groups
            in_nc = int(in_nc // groups)
            return groups, in_nc, out_nc
C
ceci3 已提交
258 259

    def forward(self, input, kernel_size=None, expand_ratio=None, channel=None):
C
ceci3 已提交
260 261 262 263 264 265 266
        """
        Parameters:
            input(Tensor): Input tensor.
            kernel_size(int, optional): the kernel size of the filter in actual calculation. Default: None.
            expand_ratio(int|float, optional): the expansion ratio of filter's channel number in actual calculation. Default: None.
            channel(int, optional): the expansion ratio of filter's channel number in actual calculation. Default: None.
        """
C
ceci3 已提交
267 268 269 270 271
        self.cur_config = {
            'kernel_size': kernel_size,
            'expand_ratio': expand_ratio,
            'channel': channel
        }
C
ceci3 已提交
272 273 274 275 276 277 278 279 280
        in_nc = int(input.shape[1])
        assert (
            expand_ratio == None or channel == None
        ), "expand_ratio and channel CANNOT be NOT None at the same time."
        if expand_ratio != None:
            out_nc = int(expand_ratio * self.base_channel)
        elif channel != None:
            out_nc = int(channel)
        else:
C
ceci3 已提交
281
            out_nc = self._out_channels
282 283
        ks = int(
            self._kernel_size[0]) if kernel_size == None else int(kernel_size)
C
ceci3 已提交
284

285 286
        groups, weight_in_nc, weight_out_nc = self.get_groups_in_out_nc(
            in_nc, out_nc)
C
ceci3 已提交
287 288

        weight = self.get_active_filter(weight_in_nc, weight_out_nc, ks)
C
ceci3 已提交
289 290 291 292 293

        if kernel_size != None or 'kernel_size' in self.candidate_config.keys():
            padding = convert_to_list(get_same_padding(ks), 2)
        else:
            padding = self._padding
C
ceci3 已提交
294 295

        if self.bias is not None:
296
            ### if conv is depthwise conv, expand_ratio=0, but conv' expand
C
ceci3 已提交
297 298 299 300 301 302 303 304
            ### ratio before depthwise conv is not equal to 1.0, the shape of the weight
            ### about this depthwise conv is changed, but out_nc is not change,
            ### so need to change bias shape according to the weight_out_nc.
            ### if in_nc > groups > 1, the actual output of conv is weight_out_nc * groups,
            ### so slice the shape of bias by weight_out_nc and groups.
            ### if in_nc = groups, slice the shape of bias by weight_out_nc.
            if groups != in_nc:
                weight_out_nc = weight_out_nc * groups
305 306 307 308
            if weight_out_nc >= self.bias.shape[0]:
                bias = self.bias
            else:
                bias = self.bias[:weight_out_nc]
C
ceci3 已提交
309
        else:
C
ceci3 已提交
310
            bias = self.bias
C
Chang Xu 已提交
311
        self.cur_config['prune_dim'] = list(weight.shape)
C
Chang Xu 已提交
312
        self.cur_config['prune_group'] = groups
W
whs 已提交
313
        out = paddle.nn.functional.conv2d(
C
ceci3 已提交
314 315 316 317 318 319
            input,
            weight,
            bias=bias,
            stride=self._stride,
            padding=padding,
            dilation=self._dilation,
C
ceci3 已提交
320
            groups=groups,
C
ceci3 已提交
321 322
            data_format=self._data_format)
        return out
C
ceci3 已提交
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345


class SuperGroupConv2D(SuperConv2D):
    def get_groups_in_out_nc(self, in_nc, out_nc):
        ### groups convolution
        ### conv: weight: (Cout, Cin/G, Kh, Kw)
        groups = self._groups
        in_nc = int(in_nc // groups)
        return groups, in_nc, out_nc


class SuperDepthwiseConv2D(SuperConv2D):
    ### depthwise convolution
    def get_groups_in_out_nc(self, in_nc, out_nc):
        if in_nc != out_nc:
            _logger.debug(
                "input channel and output channel in depthwise conv is different, change output channel to input channel! origin channel:(in_nc {}, out_nc {}): ".
                format(in_nc, out_nc))
        groups = in_nc
        out_nc = in_nc
        return groups, in_nc, out_nc


W
whs 已提交
346
class SuperConv2DTranspose(paddle.nn.Conv2DTranspose):
C
ceci3 已提交
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
    """
    This interface is used to construct a callable object of the ``SuperConv2DTranspose`` 
    class.
    Note: the channel in config need to less than first defined.
    The super convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input and output
    are in NCHW format. Where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of input feature map,
    C is the number of output feature map, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
    The details of convolution transpose layer, please refer to the following explanation and references
    `conv2dtranspose <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_ .
    For each input :math:`X`, the equation is:
    .. math::
W
whs 已提交
366
        Out = \\sigma (W \\ast X + b)
C
ceci3 已提交
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
    Where:
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
    Example:
        - Input:
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
        - Output:
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
        Where
        .. math::
W
whs 已提交
382 383 384 385
           H^\\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\\in [ H^\\prime_{out}, H^\\prime_{out} + strides[0] ) \\\\
           W_{out} &\\in [ W^\\prime_{out}, W^\\prime_{out} + strides[1] )
C
ceci3 已提交
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
    Parameters:
        num_channels(int): The number of channels in the input image.
        num_filters(int): The number of the filter. It is as same as the output
            feature map.
        filter_size(int or tuple): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        candidate_config(dict, optional): Dictionary descripts candidate config of this layer,
            such as {'kernel_size': (3, 5, 7), 'channel': (4, 6, 8)}, means the kernel size of 
            this layer can be choose from (3, 5, 7), the key of candidate_config
            only can be 'kernel_size', 'channel' and 'expand_ratio', 'channel' and 'expand_ratio'
            CANNOT be set at the same time. Default: None.
        transform_kernel(bool, optional): Whether to use transform matrix to transform a large filter
            to a small filter. Default: False.
        output_size(int or tuple, optional): The output image size. If output size is a
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above. Default: None.
        padding(int or tuple, optional): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: 0.
        stride(int or tuple, optional): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: 1.
        dilation(int or tuple, optional): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: 1.
        groups(int, optional): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
W
whs 已提交
421 422
            of conv2d_transpose. If it is set to None or one attribute of paddle.ParamAttr, conv2d_transpose
            will create paddle.ParamAttr as param_attr. If the Initializer of the param_attr
C
ceci3 已提交
423 424 425
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
W
whs 已提交
426 427
            If it is set to None or one attribute of paddle.ParamAttr, conv2d_transpose
            will create paddle.ParamAttr as bias_attr. If the Initializer of the bias_attr
C
ceci3 已提交
428 429 430 431 432 433 434 435 436 437 438 439 440
            is not set, the bias is initialized zero. Default: None.
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            Default: None.
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
        **bias** (Parameter or None): the learnable bias of this layer.
    Returns:
        None
    Examples:
       .. code-block:: python
C
ceci3 已提交
441
          import paddle
C
ceci3 已提交
442
          import numpy as np
C
ceci3 已提交
443 444 445
          from paddleslim.nas.ofa.layers import SuperConv2DTranspose
          data = np.random.random((3, 32, 32, 5)).astype('float32')
          config = {'channel': 5}
C
ceci3 已提交
446 447
          super_convtranspose = SuperConv2DTranspose(32, 10, 3)
          ret = super_convtranspose(paddle.to_tensor(data), config)
C
ceci3 已提交
448 449 450
    """

    def __init__(self,
C
ceci3 已提交
451 452 453
                 in_channels,
                 out_channels,
                 kernel_size,
C
ceci3 已提交
454 455 456 457
                 candidate_config={},
                 transform_kernel=False,
                 stride=1,
                 padding=0,
C
ceci3 已提交
458 459 460 461
                 output_padding=0,
                 dilation=1,
                 groups=1,
                 weight_attr=None,
C
ceci3 已提交
462
                 bias_attr=None,
C
ceci3 已提交
463
                 data_format="NCHW"):
C
ceci3 已提交
464
        super(SuperConv2DTranspose, self).__init__(
C
ceci3 已提交
465 466 467 468 469 470 471 472 473 474 475 476
            in_channels,
            out_channels,
            kernel_size,
            stride=stride,
            padding=padding,
            dilation=dilation,
            output_padding=output_padding,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)

C
ceci3 已提交
477
        self.candidate_config = candidate_config
C
Chang Xu 已提交
478
        self.cur_config = None
C
ceci3 已提交
479 480 481 482 483 484 485 486 487
        if len(self.candidate_config.items()) != 0:
            for k, v in candidate_config.items():
                candidate_config[k] = list(set(v))
        self.ks_set = candidate_config[
            'kernel_size'] if 'kernel_size' in candidate_config else None
        self.expand_ratio = candidate_config[
            'expand_ratio'] if 'expand_ratio' in candidate_config else None
        self.channel = candidate_config[
            'channel'] if 'channel' in candidate_config else None
C
ceci3 已提交
488
        self.base_channel = self._out_channels
C
ceci3 已提交
489
        if self.expand_ratio:
C
ceci3 已提交
490
            self.base_channel = int(self._out_channels / max(self.expand_ratio))
C
ceci3 已提交
491 492 493 494 495 496 497 498 499 500 501 502 503

        self.transform_kernel = transform_kernel
        if self.ks_set != None:
            self.ks_set.sort()
        if self.transform_kernel != False:
            scale_param = dict()
            ### create parameter to transform kernel
            for i in range(len(self.ks_set) - 1):
                ks_small = self.ks_set[i]
                ks_large = self.ks_set[i + 1]
                param_name = '%dto%d_matrix' % (ks_large, ks_small)
                ks_t = ks_small**2
                scale_param[param_name] = self.create_parameter(
C
ceci3 已提交
504
                    attr=paddle.ParamAttr(
C
ceci3 已提交
505
                        name=self._full_name + param_name,
W
whs 已提交
506
                        initializer=paddle.nn.initializer.Assign(np.eye(ks_t))),
C
ceci3 已提交
507 508 509 510 511 512 513
                    shape=(ks_t, ks_t),
                    dtype=self._dtype)

            for name, param in scale_param.items():
                setattr(self, name, param)

    def get_active_filter(self, in_nc, out_nc, kernel_size):
C
ceci3 已提交
514
        start, end = compute_start_end(self._kernel_size[0], kernel_size)
C
ceci3 已提交
515
        filters = self.weight[:in_nc, :out_nc, start:end, start:end]
516
        if self.transform_kernel != False and kernel_size < self._kernel_size[0]:
C
ceci3 已提交
517 518 519 520 521 522 523 524
            start_filter = self.weight[:in_nc, :out_nc, :, :]
            for i in range(len(self.ks_set) - 1, 0, -1):
                src_ks = self.ks_set[i]
                if src_ks <= kernel_size:
                    break
                target_ks = self.ks_set[i - 1]
                start, end = compute_start_end(src_ks, target_ks)
                _input_filter = start_filter[:, :, start:end, start:end]
C
ceci3 已提交
525
                _input_filter = paddle.reshape(
C
ceci3 已提交
526 527 528
                    _input_filter,
                    shape=[(_input_filter.shape[0] * _input_filter.shape[1]),
                           -1])
529 530 531 532 533
                _input_filter = paddle.matmul(_input_filter,
                                              self.__getattr__(
                                                  '%dto%d_matrix' %
                                                  (src_ks, target_ks)), False,
                                              False)
C
ceci3 已提交
534
                _input_filter = paddle.reshape(
C
ceci3 已提交
535 536 537 538 539 540 541 542 543
                    _input_filter,
                    shape=[
                        filters.shape[0], filters.shape[1], target_ks, target_ks
                    ])
                start_filter = _input_filter
            filters = start_filter
        return filters

    def get_groups_in_out_nc(self, in_nc, out_nc):
C
ceci3 已提交
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
        if self._groups == 1:
            ### standard conv
            return self._groups, in_nc, out_nc
        elif self._groups == self._in_channels:
            ### depthwise convolution
            if in_nc != out_nc:
                _logger.debug(
                    "input channel and output channel in depthwise conv is different, change output channel to input channel! origin channel:(in_nc {}, out_nc {}): ".
                    format(in_nc, out_nc))
            groups = in_nc
            out_nc = in_nc
            return groups, in_nc, out_nc
        else:
            ### groups convolution
            ### groups conv transpose: weight: (Cin, Cout/G, Kh, Kw)
            groups = self._groups
            out_nc = int(out_nc // groups)
            return groups, in_nc, out_nc

    def forward(self,
                input,
                output_size=None,
                kernel_size=None,
                expand_ratio=None,
                channel=None):
        """
        Parameters:
            input(Tensor): input tensor.
            output_size(int, optional): the size of the feature map after transpose convolution. Default: None.
            kernel_size(int, optional): the kernel size of the filter in actual calculation. Default: None.
            expand_ratio(int|float, optional): the expansion ratio of filter's channel number in actual calculation. Default: None.
            channel(int, optional): the expansion ratio of filter's channel number in actual calculation. Default: None.
        """
C
ceci3 已提交
577 578 579 580 581
        self.cur_config = {
            'kernel_size': kernel_size,
            'expand_ratio': expand_ratio,
            'channel': channel
        }
C
ceci3 已提交
582 583 584 585 586 587 588 589 590
        in_nc = int(input.shape[1])
        assert (
            expand_ratio == None or channel == None
        ), "expand_ratio and channel CANNOT be NOT None at the same time."
        if expand_ratio != None:
            out_nc = int(expand_ratio * self.base_channel)
        elif channel != None:
            out_nc = int(channel)
        else:
C
ceci3 已提交
591
            out_nc = self._out_channels
C
ceci3 已提交
592

593 594
        ks = int(
            self._kernel_size[0]) if kernel_size == None else int(kernel_size)
C
ceci3 已提交
595

596 597
        groups, weight_in_nc, weight_out_nc = self.get_groups_in_out_nc(
            in_nc, out_nc)
C
ceci3 已提交
598 599

        weight = self.get_active_filter(weight_in_nc, weight_out_nc, ks)
C
ceci3 已提交
600

C
ceci3 已提交
601 602 603 604
        if kernel_size != None or 'kernel_size' in self.candidate_config.keys():
            padding = convert_to_list(get_same_padding(ks), 2)
        else:
            padding = self._padding
C
ceci3 已提交
605

C
ceci3 已提交
606 607 608 609 610
        if output_size is None:
            output_padding = self.output_padding
        else:
            output_padding = 0

C
ceci3 已提交
611
        if self.bias is not None:
C
ceci3 已提交
612 613 614
            if groups != in_nc:
                weight_out_nc = weight_out_nc * groups
            bias = self.bias[:weight_out_nc]
C
ceci3 已提交
615
        else:
C
ceci3 已提交
616
            bias = self.bias
C
Chang Xu 已提交
617
        self.cur_config['prune_dim'] = list(weight.shape)
C
Chang Xu 已提交
618
        self.cur_config['prune_group'] = groups
W
whs 已提交
619
        out = paddle.nn.functional.conv2d_transpose(
C
ceci3 已提交
620 621 622 623 624 625 626
            input,
            weight,
            bias=bias,
            padding=padding,
            output_padding=output_padding,
            stride=self._stride,
            dilation=self._dilation,
C
ceci3 已提交
627
            groups=groups,
C
ceci3 已提交
628 629 630
            output_size=output_size,
            data_format=self._data_format)
        return out
C
ceci3 已提交
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653


class SuperGroupConv2DTranspose(SuperConv2DTranspose):
    def get_groups_in_out_nc(self, in_nc, out_nc):
        ### groups convolution
        ### groups conv transpose: weight: (Cin, Cout/G, Kh, Kw)
        groups = self._groups
        out_nc = int(out_nc // groups)
        return groups, in_nc, out_nc


class SuperDepthwiseConv2DTranspose(SuperConv2DTranspose):
    def get_groups_in_out_nc(self, in_nc, out_nc):
        if in_nc != out_nc:
            _logger.debug(
                "input channel and output channel in depthwise conv transpose is different, change output channel to input channel! origin channel:(in_nc {}, out_nc {}): ".
                format(in_nc, out_nc))
        groups = in_nc
        out_nc = in_nc
        return groups, in_nc, out_nc


### NOTE: only search channel, write for GAN-compression, maybe change to SuperDepthwiseConv and SuperConv after.
W
whs 已提交
654
class SuperSeparableConv2D(paddle.nn.Layer):
C
ceci3 已提交
655 656 657 658 659 660 661 662
    """
    This interface is used to construct a callable object of the ``SuperSeparableConv2D``
    class.
    The difference between ```SuperSeparableConv2D``` and ```SeparableConv2D``` is: 
    ```SuperSeparableConv2D``` need to feed a config dictionary with the format of 
    {'channel', num_of_channel} represents the channels of the first conv's outputs and
    the second conv's inputs, used to change the first dimension of weight and bias, 
    only train the first channels of the weight and bias.
C
ceci3 已提交
663 664
    The architecture of super separable convolution2D op is [Conv2D, norm layer(may be BatchNorm2D
    or InstanceNorm2D), Conv2D]. The first conv is depthwise conv, the filter number is input channel
C
ceci3 已提交
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
    multiply scale_factor, the group is equal to the number of input channel. The second conv
    is standard conv, which filter size and stride size are 1. 
    Parameters:
        num_channels(int): The number of channels in the input image.
        num_filters(int): The number of the second conv's filter. It is as same as the output
            feature map.
        filter_size(int or tuple): The first conv's filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        padding(int or tuple, optional): The first conv's padding size. If padding is a tuple, 
            it must contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: 0.
        stride(int or tuple, optional): The first conv's stride size. If stride is a tuple,
            it must contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: 1.
        dilation(int or tuple, optional): The first conv's dilation size. If dilation is a tuple, 
            it must contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: 1.
C
ceci3 已提交
683
        norm_layer(class): The normalization layer between two convolution. Default: InstanceNorm2D.
C
ceci3 已提交
684 685
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of convolution.
            If it is set to False, no bias will be added to the output units.
W
whs 已提交
686 687
            If it is set to None or one attribute of paddle.ParamAttr, convolution
            will create paddle.ParamAttr as bias_attr. If the Initializer of the bias_attr
C
ceci3 已提交
688 689 690 691 692 693 694
            is not set, the bias is initialized zero. Default: None.
        scale_factor(float): The scale factor of the first conv's output channel. Default: 1.
    Returns:
        None
    """

    def __init__(self,
C
ceci3 已提交
695 696 697
                 in_channels,
                 out_channels,
                 kernel_size,
C
ceci3 已提交
698 699 700 701
                 candidate_config={},
                 stride=1,
                 padding=0,
                 dilation=1,
W
whs 已提交
702
                 norm_layer=paddle.nn.InstanceNorm2D,
C
ceci3 已提交
703
                 bias_attr=None,
C
ceci3 已提交
704
                 scale_factor=1):
C
ceci3 已提交
705
        super(SuperSeparableConv2D, self).__init__()
W
whs 已提交
706 707
        self.conv = paddle.nn.LayerList([
            paddle.nn.Conv2D(
C
ceci3 已提交
708 709 710
                in_channels=in_channels,
                out_channels=in_channels * scale_factor,
                kernel_size=kernel_size,
C
ceci3 已提交
711 712
                stride=stride,
                padding=padding,
C
ceci3 已提交
713
                groups=in_channels,
C
ceci3 已提交
714 715 716
                bias_attr=bias_attr)
        ])

C
ceci3 已提交
717
        self.conv.extend([norm_layer(in_channels * scale_factor)])
C
ceci3 已提交
718 719

        self.conv.extend([
W
whs 已提交
720
            paddle.nn.Conv2D(
C
ceci3 已提交
721 722 723
                in_channels=in_channels * scale_factor,
                out_channels=out_channels,
                kernel_size=1,
C
ceci3 已提交
724 725 726 727 728
                stride=1,
                bias_attr=bias_attr)
        ])

        self.candidate_config = candidate_config
C
Chang Xu 已提交
729
        self.cur_config = None
C
ceci3 已提交
730 731
        self.expand_ratio = candidate_config[
            'expand_ratio'] if 'expand_ratio' in candidate_config else None
C
ceci3 已提交
732
        self.base_output_dim = self.conv[0]._out_channels
C
ceci3 已提交
733
        if self.expand_ratio != None:
734 735
            self.base_output_dim = int(
                self.conv[0]._out_channels / max(self.expand_ratio))
C
ceci3 已提交
736 737

    def forward(self, input, expand_ratio=None, channel=None):
C
ceci3 已提交
738 739 740 741 742 743
        """
        Parameters:
            input(Tensor): input tensor.
            expand_ratio(int|float, optional): the expansion ratio of filter's channel number in actual calculation. Default: None.
            channel(int, optional): the expansion ratio of filter's channel number in actual calculation. Default: None.
        """
C
ceci3 已提交
744
        self.cur_config = {'expand_ratio': expand_ratio, 'channel': channel}
C
ceci3 已提交
745 746 747 748 749 750 751 752 753
        in_nc = int(input.shape[1])
        assert (
            expand_ratio == None or channel == None
        ), "expand_ratio and channel CANNOT be NOT None at the same time."
        if expand_ratio != None:
            out_nc = int(expand_ratio * self.base_output_dim)
        elif channel != None:
            out_nc = int(channel)
        else:
C
ceci3 已提交
754
            out_nc = self.conv[0]._out_channels
C
ceci3 已提交
755 756 757 758 759 760

        weight = self.conv[0].weight[:in_nc]
        ###  conv1
        if self.conv[0].bias is not None:
            bias = self.conv[0].bias[:in_nc]
        else:
C
ceci3 已提交
761 762
            bias = self.conv[0].bias

W
whs 已提交
763
        conv0_out = paddle.nn.functional.conv2d(
C
ceci3 已提交
764 765 766 767 768 769 770 771
            input,
            weight,
            bias,
            stride=self.conv[0]._stride,
            padding=self.conv[0]._padding,
            dilation=self.conv[0]._dilation,
            groups=in_nc,
            data_format=self.conv[0]._data_format)
C
ceci3 已提交
772 773 774 775 776 777 778 779

        norm_out = self.conv[1](conv0_out)

        weight = self.conv[2].weight[:out_nc, :in_nc, :, :]

        if self.conv[2].bias is not None:
            bias = self.conv[2].bias[:out_nc]
        else:
C
ceci3 已提交
780
            bias = self.conv[2].bias
C
Chang Xu 已提交
781
        self.cur_config['prune_dim'] = list(weight.shape)
W
whs 已提交
782
        conv1_out = paddle.nn.functional.conv2d(
C
ceci3 已提交
783 784 785 786 787 788 789 790
            norm_out,
            weight,
            bias,
            stride=self.conv[2]._stride,
            padding=self.conv[2]._padding,
            dilation=self.conv[2]._dilation,
            groups=self.conv[2]._groups,
            data_format=self.conv[2]._data_format)
C
ceci3 已提交
791 792 793
        return conv1_out


W
whs 已提交
794
class SuperLinear(paddle.nn.Linear):
C
ceci3 已提交
795
    """
C
ceci3 已提交
796 797 798 799 800 801 802
    Super Fully-connected linear transformation layer. 
    
    For each input :math:`X` , the equation is:
    .. math::
        Out = XW + b
    where :math:`W` is the weight and :math:`b` is the bias.
    Linear layer takes only one multi-dimensional tensor as input with the
W
whs 已提交
803
    shape :math:`[batch\\_size, *, in\\_features]` , where :math:`*` means any
C
ceci3 已提交
804
    number of additional dimensions. It multiplies input tensor with the weight
W
whs 已提交
805 806 807 808
    (a 2-D tensor of shape :math:`[in\\_features, out\\_features]` ) and produces
    an output tensor of shape :math:`[batch\\_size, *, out\\_features]` .
    If :math:`bias\\_attr` is not False, the bias (a 1-D tensor of
    shape :math:`[out\\_features]` ) will be created and added to the output.
C
ceci3 已提交
809 810 811 812 813 814 815 816 817 818 819 820 821
    Parameters:
        in_features (int): The number of input units.
        out_features (int): The number of output units.
        candidate_config(dict, optional): Dictionary descripts candidate config of this layer,
            such as {'channel': (4, 6, 8)}, the key of candidate_config
            only can be 'channel' and 'expand_ratio', 'channel' and 'expand_ratio'
            CANNOT be set at the same time. Default: None.
        weight_attr (ParamAttr, optional): The attribute for the learnable
            weight of this layer. The default value is None and the weight will be
            initialized to zero. For detailed information, please refer to
            paddle.ParamAttr.
        bias_attr (ParamAttr|bool, optional): The attribute for the learnable bias
            of this layer. If it is set to False, no bias will be added to the output.
W
whs 已提交
822 823
            If it is set to None or one kind of paddle.ParamAttr, a bias parameter will
            be created according to paddle.ParamAttr. For detailed information, please refer
C
ceci3 已提交
824 825 826 827 828 829 830 831
            to paddle.ParamAttr. The default value is None and the bias will be
            initialized to zero.
        name (str, optional): Normally there is no need for user to set this parameter.
            For detailed information, please refer to :ref:`api_guide_Name` .
    Attribute:
        **weight** (Parameter): the learnable weight of this layer.
        **bias** (Parameter): the learnable bias of this layer.
    Shape:
W
whs 已提交
832 833
        - input: Multi-dimentional tensor with shape :math:`[batch\\_size, *, in\\_features]` .
        - output: Multi-dimentional tensor with shape :math:`[batch\\_size, *, out\\_features]` .
C
ceci3 已提交
834 835 836 837 838 839
    Examples:
        .. code-block:: python
          import numpy as np
          import paddle
          from paddleslim.nas.ofa.layers import SuperLinear
          
C
ceci3 已提交
840
          data = np.random.uniform(-1, 1, [32, 64]).astype('float32')
C
ceci3 已提交
841
          config = {'channel': 16}
C
ceci3 已提交
842 843
          linear = SuperLinear(64, 64)
          data = paddle.to_tensor(data)
C
ceci3 已提交
844
          res = linear(data, **config)
C
ceci3 已提交
845 846 847
    """

    def __init__(self,
C
ceci3 已提交
848 849
                 in_features,
                 out_features,
C
ceci3 已提交
850
                 candidate_config={},
C
ceci3 已提交
851
                 weight_attr=None,
C
ceci3 已提交
852
                 bias_attr=None,
C
ceci3 已提交
853 854 855 856
                 name=None):
        super(SuperLinear, self).__init__(in_features, out_features,
                                          weight_attr, bias_attr, name)
        self._weight_attr = weight_attr
C
ceci3 已提交
857
        self._bias_attr = bias_attr
C
ceci3 已提交
858 859
        self._in_features = in_features
        self._out_features = out_features
C
ceci3 已提交
860
        self.candidate_config = candidate_config
C
Chang Xu 已提交
861
        self.cur_config = None
C
ceci3 已提交
862 863
        self.expand_ratio = candidate_config[
            'expand_ratio'] if 'expand_ratio' in candidate_config else None
C
ceci3 已提交
864
        self.base_output_dim = self._out_features
C
ceci3 已提交
865
        if self.expand_ratio != None:
866 867
            self.base_output_dim = int(
                self._out_features / max(self.expand_ratio))
C
ceci3 已提交
868 869

    def forward(self, input, expand_ratio=None, channel=None):
C
ceci3 已提交
870 871 872 873 874 875
        """
        Parameters:
            input(Tensor): input tensor.
            expand_ratio(int|float, optional): the expansion ratio of filter's channel number in actual calculation. Default: None.
            channel(int, optional): the expansion ratio of filter's channel number in actual calculation. Default: None.
        """
C
ceci3 已提交
876
        self.cur_config = {'expand_ratio': expand_ratio, 'channel': channel}
C
ceci3 已提交
877
        ### weight: (Cin, Cout)
C
ceci3 已提交
878
        in_nc = int(input.shape[-1])
C
ceci3 已提交
879 880 881 882 883 884 885 886
        assert (
            expand_ratio == None or channel == None
        ), "expand_ratio and channel CANNOT be NOT None at the same time."
        if expand_ratio != None:
            out_nc = int(expand_ratio * self.base_output_dim)
        elif channel != None:
            out_nc = int(channel)
        else:
C
ceci3 已提交
887
            out_nc = self._out_features
888 889 890 891
        if self.weight.shape[0] <= in_nc and self.weight.shape[1] <= out_nc:
            weight = self.weight
        else:
            weight = self.weight[:in_nc, :out_nc]
C
ceci3 已提交
892
        if self._bias_attr != False:
893 894 895 896
            if self.bias.shape[0] <= out_nc:
                bias = self.bias
            else:
                bias = self.bias[:out_nc]
C
ceci3 已提交
897
        else:
C
ceci3 已提交
898
            bias = self.bias
C
Chang Xu 已提交
899
        self.cur_config['prune_dim'] = list(weight.shape)
W
whs 已提交
900 901
        out = paddle.nn.functional.linear(
            x=input, weight=weight, bias=bias, name=self.name)
C
ceci3 已提交
902
        return out
C
ceci3 已提交
903 904


W
whs 已提交
905
class SuperBatchNorm2D(paddle.nn.BatchNorm2D):
C
ceci3 已提交
906
    """
C
ceci3 已提交
907 908 909 910 911 912
    This interface is used to construct a callable object of the ``SuperBatchNorm2D`` class. 
    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
W
whs 已提交
913 914
            of batch_norm. If it is set to None or one attribute of paddle.ParamAttr, batch_norm
            will create paddle.ParamAttr as weight_attr. If it is set to Fasle, the weight is not learnable.
C
ceci3 已提交
915 916
            If the Initializer of the weight_attr is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of batch_norm.
W
whs 已提交
917 918
            If it is set to None or one attribute of paddle.ParamAttr, batch_norm
            will create paddle.ParamAttr as bias_attr. If it is set to Fasle, the weight is not learnable.
C
ceci3 已提交
919 920 921 922 923 924 925 926 927 928 929 930 931 932
            If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None.
        data_format(str, optional): Specify the input data format, the data format can be "NCHW" or "NHWC". Default: NCHW.
        name(str, optional): Name for the BatchNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..
    Examples:
       .. code-block:: python
         import paddle
         import numpy as np
         from paddleslim.nas.ofa.layers import SuperBatchNorm2D
         
         np.random.seed(123)
         x_data = np.random.random(size=(2, 5, 2, 3)).astype('float32')
         x = paddle.to_tensor(x_data)
         batch_norm = SuperBatchNorm2D(5)
         batch_norm_out = batch_norm(x)
C
ceci3 已提交
933 934 935
    """

    def __init__(self,
C
ceci3 已提交
936
                 num_features,
C
ceci3 已提交
937 938
                 momentum=0.9,
                 epsilon=1e-05,
C
ceci3 已提交
939
                 weight_attr=None,
C
ceci3 已提交
940
                 bias_attr=None,
C
ceci3 已提交
941
                 data_format='NCHW',
C
ceci3 已提交
942
                 use_global_stats=None,
C
ceci3 已提交
943
                 name=None):
944 945 946
        super(SuperBatchNorm2D,
              self).__init__(num_features, momentum, epsilon, weight_attr,
                             bias_attr, data_format, use_global_stats, name)
C
Chang Xu 已提交
947
        self.cur_config = None
C
ceci3 已提交
948 949

    def forward(self, input):
C
ceci3 已提交
950 951
        self._check_data_format(self._data_format)
        self._check_input_dim(input)
C
ceci3 已提交
952 953
        feature_dim = int(input.shape[1])

954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
        if self.weight.shape[0] <= feature_dim:
            weight = self.weight
        else:
            weight = self.weight[:feature_dim]
        if self.bias.shape[0] <= feature_dim:
            bias = self.bias
        else:
            bias = self.bias[:feature_dim]
        if self._mean.shape[0] <= feature_dim:
            mean = self._mean
        else:
            mean = self._mean[:feature_dim]
        if self._variance.shape[0] <= feature_dim:
            variance = self._variance
        else:
            variance = self._variance[:feature_dim]
C
ceci3 已提交
970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986

        mean_out = self._mean
        variance_out = self._variance
        mean_out_tmp = mean
        variance_out_tmp = variance

        if self._use_global_stats == None:
            self._use_global_stats = not self.training
            trainable_statistics = False
        else:
            trainable_statistics = not self._use_global_stats

        attrs = ("momentum", self._momentum, "epsilon", self._epsilon,
                 "is_test", not self.training, "data_layout", self._data_format,
                 "use_mkldnn", False, "fuse_with_relu", False,
                 "use_global_stats", self._use_global_stats,
                 "trainable_statistics", trainable_statistics)
987

988 989
        if in_dygraph_mode():
            paddle_compile = os.environ.get("paddle_compile")
C
Chang Xu 已提交
990
            if feature_dim != self._mean.shape[0]:
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
                if not paddle_compile or "Develop" in paddle_compile:
                    # fit paddle develop
                    batch_norm_out, t1, t2, t3, t4, _ = paddle._C_ops.batch_norm(
                        input, mean, variance, weight, bias, not self.training,
                        self._momentum, self._epsilon, self._data_format,
                        self._use_global_stats, trainable_statistics)
                else:
                    # fit paddle release
                    batch_norm_out, t1, t2, t3, t4, _ = paddle._C_ops.batch_norm(
                        input, weight, bias, mean, variance, self._momentum,
                        self._epsilon, self._data_format, not self.training,
                        self._use_global_stats, trainable_statistics, False,
                        False)

C
Chang Xu 已提交
1005 1006 1007 1008
                self._mean[:feature_dim].set_value(mean)
                self._variance[:feature_dim].set_value(variance)
                mean_out[:feature_dim].set_value(mean_out_tmp)
                variance_out[:feature_dim].set_value(variance_out_tmp)
1009
                return batch_norm_out
C
Chang Xu 已提交
1010
            else:
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
                if not paddle_compile or "Develop" in paddle_compile:
                    # fit paddle develop
                    batch_norm_out, t1, t2, t3, t4, _ = paddle._C_ops.batch_norm(
                        input, mean, variance, weight, bias, not self.training,
                        self._momentum, self._epsilon, self._data_format,
                        self._use_global_stats, trainable_statistics)

                else:
                    # fit paddle release
                    batch_norm_out, t1, t2, t3, t4, _ = paddle._C_ops.batch_norm(
                        input, weight, bias, mean, variance, self._momentum,
                        self._epsilon, self._data_format, not self.training,
                        self._use_global_stats, trainable_statistics, False)

1025 1026
                return batch_norm_out

W
whs 已提交
1027
        paddle.common_ops_import.check_variable_and_dtype(
W
whs 已提交
1028
            input, 'input', ['float16', 'float32', 'float64'], 'BatchNorm')
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048

        # for static need dict
        attrs = {
            "momentum": self._momentum,
            "epsilon": self._epsilon,
            "is_test": not self.training,
            "data_layout": self._data_format,
            "use_mkldnn": False,
            "fuse_with_relu": False,
            "use_global_stats": self._use_global_stats,
            "trainable_statistics": trainable_statistics,
        }

        inputs = {
            "X": [input],
            "Scale": [weight],
            "Bias": [bias],
            "Mean": [mean],
            "Variance": [variance]
        }
C
ceci3 已提交
1049

C
ceci3 已提交
1050 1051 1052 1053 1054 1055
        saved_mean = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        saved_variance = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        reserve_space = self._helper.create_variable_for_type_inference(
            dtype=self._helper.input_dtype(input), stop_gradient=True)
1056

C
ceci3 已提交
1057 1058 1059
        batch_norm_out = (
            input if self._in_place else
            self._helper.create_variable_for_type_inference(self._dtype))
1060 1061 1062 1063 1064 1065 1066 1067 1068

        outputs = {
            "Y": [batch_norm_out],
            "MeanOut": [mean],
            "VarianceOut": [variance],
            "SavedMean": [saved_mean],
            "SavedVariance": [saved_variance]
        }

C
ceci3 已提交
1069
        if reserve_space is not None:
1070 1071
            outputs["ReserveSpace"] = [reserve_space]

C
ceci3 已提交
1072
        self._helper.append_op(
1073
            type="batch_norm", inputs=inputs, outputs=outputs, attrs=attrs)
C
Chang Xu 已提交
1074
        self.cur_config = {'prune_dim': feature_dim}
1075
        return batch_norm_out
C
ceci3 已提交
1076 1077


W
whs 已提交
1078
class SuperSyncBatchNorm(paddle.nn.SyncBatchNorm):
C
Chang Xu 已提交
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
    def __init__(self,
                 num_features,
                 momentum=0.9,
                 epsilon=1e-05,
                 weight_attr=None,
                 bias_attr=None,
                 data_format='NCHW',
                 name=None):
        super(SuperSyncBatchNorm,
              self).__init__(num_features, momentum, epsilon, weight_attr,
                             bias_attr, data_format, name)
C
Chang Xu 已提交
1090
        self.cur_config = None
C
Chang Xu 已提交
1091 1092

    def forward(self, input):
C
ceci3 已提交
1093
        self._check_data_format()
C
Chang Xu 已提交
1094 1095 1096 1097 1098 1099 1100
        feature_dim = int(input.shape[1])

        weight = self.weight[:feature_dim]
        bias = self.bias[:feature_dim]
        mean = self._mean[:feature_dim]
        variance = self._variance[:feature_dim]

C
ceci3 已提交
1101 1102 1103 1104
        mean_out = self._mean
        variance_out = self._variance
        mean_out_tmp = mean
        variance_out_tmp = variance
C
Chang Xu 已提交
1105
        self.cur_config = {'prune_dim': feature_dim}
C
Chang Xu 已提交
1106 1107 1108 1109 1110 1111

        attrs = ("momentum", self._momentum, "epsilon", self._epsilon,
                 "is_test", not self.training, "data_layout", self._data_format,
                 "use_mkldnn", False, "fuse_with_relu", False,
                 "use_global_stats", False, 'trainable_statistics', False)

W
whs 已提交
1112
        if paddle.in_dynamic_mode():
1113
            if feature_dim != self._mean.shape[0]:
W
whs 已提交
1114
                sync_batch_norm_out, _, _, _, _, _ = paddle._legacy_C_ops.sync_batch_norm(
1115 1116 1117 1118 1119 1120 1121 1122
                    input, weight, bias, self._mean, self._variance, mean_out,
                    variance_out, *attrs)

                self._mean[:feature_dim].set_value(mean)
                self._variance[:feature_dim].set_value(variance)
                mean_out[:feature_dim].set_value(mean_out_tmp)
                variance_out[:feature_dim].set_value(variance_out_tmp)
            else:
W
whs 已提交
1123
                sync_batch_norm_out, _, _, _, _, _ = paddle._legacy_C_ops.sync_batch_norm(
1124 1125 1126 1127 1128
                    input, weight, bias, self._mean, self._variance, mean_out,
                    variance_out, *attrs)

            return sync_batch_norm_out

W
whs 已提交
1129
        paddle.common_ops_import.check_variable_and_dtype(
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
            input, 'input', ['float16', 'float32', 'float64'], 'SyncBatchNorm')

        attrs = {
            "momentum": self._momentum,
            "epsilon": self._epsilon,
            "is_test": not self.training,
            "data_layout": self._data_format,
            "use_mkldnn": False,
            "fuse_with_relu": False,
            "use_global_stats": False,
            "trainable_statistics": False,
        }

        inputs = {
            "X": [input],
            "Scale": [weight],
            "Bias": [bias],
            "Mean": [self._mean],
            "Variance": [self._variance]
        }

1151
        helper = paddle.fluid.layer_helper.LayerHelper('sync_batch_norm')
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169

        saved_mean = helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        saved_variance = helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        sync_batch_norm_out = helper.create_variable_for_type_inference(
            self._dtype)

        outputs = {
            "Y": [sync_batch_norm_out],
            "MeanOut": [mean_out],
            "VarianceOut": [variance_out],
            "SavedMean": [saved_mean],
            "SavedVariance": [saved_variance]
        }

        helper.append_op(
            type="sync_batch_norm", inputs=inputs, outputs=outputs, attrs=attrs)
C
Chang Xu 已提交
1170 1171 1172
        return sync_batch_norm_out


W
whs 已提交
1173
class SuperInstanceNorm2D(paddle.nn.InstanceNorm2D):
C
ceci3 已提交
1174
    """
C
ceci3 已提交
1175
    This interface is used to construct a callable object of the ``SuperInstanceNorm2D`` class. 
C
ceci3 已提交
1176 1177 1178 1179 1180
    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
W
whs 已提交
1181 1182
            of batch_norm. If it is set to None or one attribute of paddle.ParamAttr, batch_norm
            will create paddle.ParamAttr as weight_attr. If it is set to Fasle, the weight is not learnable.
C
ceci3 已提交
1183 1184
            If the Initializer of the weight_attr is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of batch_norm.
W
whs 已提交
1185 1186
            If it is set to None or one attribute of paddle.ParamAttr, batch_norm
            will create paddle.ParamAttr as bias_attr. If it is set to Fasle, the weight is not learnable.
C
ceci3 已提交
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
            If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None.
        data_format(str, optional): Specify the input data format, the data format can be "NCHW" or "NHWC". Default: NCHW.
        name(str, optional): Name for the BatchNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..
    Examples:
       .. code-block:: python
         import paddle
         import numpy as np
         from paddleslim.nas.ofa.layers import SuperInstanceNorm2D
         
         np.random.seed(123)
         x_data = np.random.random(size=(2, 5, 2, 3)).astype('float32')
         x = paddle.to_tensor(x_data)
         instance_norm = SuperInstanceNorm2D(5)
         out = instance_norm(x)
C
ceci3 已提交
1201 1202 1203
    """

    def __init__(self,
C
ceci3 已提交
1204
                 num_features,
C
ceci3 已提交
1205
                 epsilon=1e-05,
C
ceci3 已提交
1206 1207
                 momentum=0.9,
                 weight_attr=None,
C
ceci3 已提交
1208
                 bias_attr=None,
C
ceci3 已提交
1209 1210
                 data_format='NCHW',
                 name=None):
1211 1212 1213
        super(SuperInstanceNorm2D,
              self).__init__(num_features, epsilon, momentum, weight_attr,
                             bias_attr, data_format, name)
C
Chang Xu 已提交
1214
        self.cur_config = None
C
ceci3 已提交
1215 1216

    def forward(self, input):
C
ceci3 已提交
1217
        self._check_input_dim(input)
C
ceci3 已提交
1218 1219

        feature_dim = int(input.shape[1])
C
ceci3 已提交
1220
        if self._weight_attr == False and self._bias_attr == False:
C
ceci3 已提交
1221 1222 1223 1224 1225
            scale = None
            bias = None
        else:
            scale = self.scale[:feature_dim]
            bias = self.bias[:feature_dim]
C
Chang Xu 已提交
1226
        self.cur_config = {'prune_dim': feature_dim}
W
whs 已提交
1227 1228
        return paddle.nn.functional.instance_norm(
            input, scale, bias, eps=self._epsilon)
C
ceci3 已提交
1229 1230


W
whs 已提交
1231
class SuperLayerNorm(paddle.nn.LayerNorm):
C
ceci3 已提交
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
    """
    This interface is used to construct a callable object of the ``SuperLayerNorm`` class.
    The difference between ```SuperLayerNorm``` and ```LayerNorm``` is: 
    the trained weight and bias in ```SuperLayerNorm``` can be changed according to the shape of input,
    only train the first channels of the weight and bias.
    Parameters:
        normalized_shape(int|list|tuple): Input shape from an expected input of
            size :math:`[*, normalized_shape[0], normalized_shape[1], ..., normalized_shape[-1]]`.
            If it is a single integer, this module will normalize over the last dimension
            which is expected to be of that specific size.
        epsilon(float, optional): The small value added to the variance to prevent
            division by zero. Default: 1e-05.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for the learnable
            gain :math:`g`. If False, weight is None. If is None, a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the learnable
            bias :math:`b`. If is False, bias is None. If is None, a default :code:`ParamAttr` would be added as bias. The
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
        name(str, optional): Name for the LayerNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..
    Shape:
        - x: 2-D, 3-D, 4-D or 5-D tensor.
        - output: same shape as input x.
    Returns:
        None
    Examples:
        .. code-block:: python
          import paddle
          import numpy as np
          from paddleslim.nas.ofa.layers import SuperLayerNorm
          
          np.random.seed(123)
C
ceci3 已提交
1263
          x_data = np.random.random(size=(2, 3)).astype('float32')
C
ceci3 已提交
1264
          x = paddle.to_tensor(x_data)
C
ceci3 已提交
1265
          layer_norm = SuperLayerNorm(x_data.shape[1])
C
ceci3 已提交
1266 1267
          layer_norm_out = layer_norm(x)
    """
C
ceci3 已提交
1268 1269 1270 1271

    def __init__(self,
                 normalized_shape,
                 epsilon=1e-05,
C
ceci3 已提交
1272
                 weight_attr=None,
C
ceci3 已提交
1273
                 bias_attr=None,
C
ceci3 已提交
1274 1275 1276
                 name=None):
        super(SuperLayerNorm, self).__init__(normalized_shape, epsilon,
                                             weight_attr, bias_attr, name)
C
Chang Xu 已提交
1277
        self.cur_config = None
C
ceci3 已提交
1278 1279 1280

    def forward(self, input):
        ### TODO(ceci3): fix if normalized_shape is not a single number
C
ceci3 已提交
1281 1282 1283
        input_ndim = len(list(input.shape))
        normalized_ndim = len(self._normalized_shape)
        begin_norm_axis = input_ndim - normalized_ndim
C
ceci3 已提交
1284
        feature_dim = int(input.shape[-1])
C
ceci3 已提交
1285
        if self._weight_attr != False:
1286 1287 1288 1289
            if self.weight.shape[0] <= feature_dim:
                weight = self.weight
            else:
                weight = self.weight[:feature_dim]
C
ceci3 已提交
1290 1291 1292
        else:
            weight = None
        if self._bias_attr != False:
1293 1294 1295 1296
            if self.bias.shape[0] <= feature_dim:
                bias = self.bias
            else:
                bias = self.bias[:feature_dim]
C
ceci3 已提交
1297 1298
        else:
            bias = None
C
Chang Xu 已提交
1299 1300
        self.cur_config = {'prune_dim': feature_dim}

W
whs 已提交
1301 1302 1303
        if paddle.in_dynamic_mode():
            out, _, _ = paddle._C_ops.layer_norm(
                input, weight, bias, self._epsilon, begin_norm_axis, False)
1304
        else:
W
whs 已提交
1305
            paddle.common_ops_import.check_variable_and_dtype(
W
whs 已提交
1306
                input, 'input', ['float32', 'float64'], 'LayerNorm')
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318

            inputs = dict()
            inputs['X'] = [input]
            if weight:
                inputs['Scale'] = [weight]
            if bias:
                inputs['Bias'] = [bias]
            attrs = {
                "epsilon": self._epsilon,
                "begin_norm_axis": begin_norm_axis
            }

1319
            helper = paddle.fluid.layer_helper.LayerHelper('layer_norm')
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341

            dtype = input.dtype
            mean_out = helper.create_variable_for_type_inference(
                dtype=dtype, stop_gradient=True)
            variance_out = helper.create_variable_for_type_inference(
                dtype=dtype, stop_gradient=True)
            layer_norm_out = helper.create_variable_for_type_inference(dtype)

            helper.append_op(
                type="layer_norm",
                inputs=inputs,
                outputs={
                    "Y": layer_norm_out,
                    "Mean": mean_out,
                    "Variance": variance_out,
                },
                attrs={
                    "epsilon": self._epsilon,
                    "begin_norm_axis": begin_norm_axis
                })
            return layer_norm_out

C
ceci3 已提交
1342
        return out
C
ceci3 已提交
1343 1344


W
whs 已提交
1345
class SuperEmbedding(paddle.nn.Embedding):
C
ceci3 已提交
1346 1347 1348 1349 1350 1351 1352
    """
    This interface is used to construct a callable object of the ``SuperEmbedding`` class.
    Parameters:
        num_embeddings (int): Just one element which indicate the size
            of the dictionary of embeddings.
        embedding_dim:  Just one element which indicate the size of each embedding vector respectively.
        padding_idx(int|long|None): padding_idx needs to be in the interval [-num_embeddings, num_embeddings).
W
whs 已提交
1353 1354 1355
            If :math:`padding\\_idx < 0`, the :math:`padding\\_idx` will automatically be converted
            to :math:`vocab\\_size + padding\\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\\_idx` in id. And the padding data will not be updated while training.
C
ceci3 已提交
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
            If set None, it makes no effect to output. Default: None.
        sparse(bool): The flag indicating whether to use sparse update. This parameter only
            affects the performance of the backwards gradient update. It is recommended to set
            True because sparse update is faster. But some optimizer does not support sparse update,
            such as :ref:`api_optimizer_AdadeltaOptimizer` , :ref:`api_optimizer_AdamaxOptimizer` ,
            :ref:`api_optimizer_DecayedAdagradOptimizer` , :ref:`api_optimizer_FtrlOptimizer` ,
            :ref:`api_optimizer_LambOptimizer` and :ref:`api_optimizer_LarsMomentumOptimizer` .
            In these case, sparse must be False. Default: False.
        weight_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_ParamAttr` . In addition,
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter.
            The local word vector needs to be transformed into numpy format, and the shape of local word
W
whs 已提交
1368
            vector should be consistent with :attr:`num_embeddings` . Then :ref:`api_initializer_Assign`
C
ceci3 已提交
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
            is used to load custom or pre-trained word vectors. See code example for details.
        name(str|None): For detailed information, please refer
               to :ref:`api_guide_Name`. Usually name is no need to set and
               None by default.
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
    Returns:
        None
    Examples:
        .. code-block:: python
          import numpy as np
          import paddle
          from paddleslim.nas.ofa.layers import SuperEmbedding
          
C
ceci3 已提交
1383
          data = np.random.uniform(-1, 1, [32, 64]).astype('int64')
C
ceci3 已提交
1384
          config = {'channel': 16}
C
ceci3 已提交
1385 1386
          emb = SuperEmbedding(64, 64)
          data = paddle.to_tensor(data)
C
ceci3 已提交
1387 1388 1389
          res = emb(data, **config)
    """

C
ceci3 已提交
1390
    def __init__(self,
C
ceci3 已提交
1391 1392
                 num_embeddings,
                 embedding_dim,
C
ceci3 已提交
1393 1394
                 candidate_config={},
                 padding_idx=None,
C
ceci3 已提交
1395 1396 1397
                 sparse=False,
                 weight_attr=None,
                 name=None):
1398 1399 1400
        super(SuperEmbedding,
              self).__init__(num_embeddings, embedding_dim, padding_idx, sparse,
                             weight_attr, name)
C
ceci3 已提交
1401
        self.candidate_config = candidate_config
C
Chang Xu 已提交
1402
        self.cur_config = None
C
ceci3 已提交
1403 1404
        self.expand_ratio = candidate_config[
            'expand_ratio'] if 'expand_ratio' in candidate_config else None
C
ceci3 已提交
1405
        self.base_output_dim = self._embedding_dim
C
ceci3 已提交
1406
        if self.expand_ratio != None:
1407 1408
            self.base_output_dim = int(
                self._embedding_dim / max(self.expand_ratio))
C
ceci3 已提交
1409 1410

    def forward(self, input, expand_ratio=None, channel=None):
C
ceci3 已提交
1411 1412 1413 1414 1415 1416
        """
        Parameters:
            input(Tensor): input tensor.
            expand_ratio(int|float, optional): the expansion ratio of filter's channel number in actual calculation. Default: None.
            channel(int, optional): the expansion ratio of filter's channel number in actual calculation. Default: None.
        """
C
ceci3 已提交
1417 1418 1419 1420 1421 1422 1423 1424
        assert (
            expand_ratio == None or channel == None
        ), "expand_ratio and channel CANNOT be NOT None at the same time."
        if expand_ratio != None:
            out_nc = int(expand_ratio * self.base_output_dim)
        elif channel != None:
            out_nc = int(channel)
        else:
C
ceci3 已提交
1425
            out_nc = self._embedding_dim
C
ceci3 已提交
1426

1427 1428 1429 1430
        if self.weight.shape[1] <= out_nc:
            weight = self.weight
        else:
            weight = self.weight[:, :out_nc]
C
Chang Xu 已提交
1431
        self.cur_config = {'prune_dim': list(weight.shape)}
W
whs 已提交
1432
        return paddle.nn.functional.embedding(
C
ceci3 已提交
1433 1434 1435 1436
            input,
            weight=weight,
            padding_idx=self._padding_idx,
            sparse=self._sparse,
C
Chang Xu 已提交
1437
            name=self._name)