layers.py 41.3 KB
Newer Older
C
ceci3 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import logging
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.dygraph_utils as dygraph_utils
from paddle.fluid.data_feeder import check_variable_and_dtype
from paddle.fluid.framework import in_dygraph_mode, _varbase_creator
from paddle.fluid.dygraph.nn import InstanceNorm, Conv2D, Conv2DTranspose, BatchNorm

from ...common import get_logger
from .utils.utils import compute_start_end, get_same_padding, convert_to_list

__all__ = [
    'SuperConv2D', 'SuperConv2DTranspose', 'SuperSeparableConv2D',
    'SuperBatchNorm', 'SuperLinear', 'SuperInstanceNorm', 'Block',
    'SuperGroupConv2D', 'SuperDepthwiseConv2D', 'SuperGroupConv2DTranspose',
    'SuperDepthwiseConv2DTranspose'
]

_logger = get_logger(__name__, level=logging.INFO)

### TODO: if task is elastic width, need to add re_organize_middle_weight in 1x1 conv in MBBlock

_cnt = 0


def counter():
    global _cnt
    _cnt += 1
    return _cnt


class BaseBlock(fluid.dygraph.Layer):
    def __init__(self, key=None):
        super(BaseBlock, self).__init__()
        if key is not None:
            self._key = str(key)
        else:
            self._key = self.__class__.__name__ + str(counter())

    # set SuperNet class
    def set_supernet(self, supernet):
        self.__dict__['supernet'] = supernet

    @property
    def key(self):
        return self._key


class Block(BaseBlock):
    """
    Model is composed of nest blocks.

    Parameters:
        fn(Layer): instance of super layers, such as: SuperConv2D(3, 5, 3).
        key(str, optional): key of this layer, one-to-one correspondence between key and candidate config. Default: None.
    """

    def __init__(self, fn, key=None):
        super(Block, self).__init__(key)
        self.fn = fn
        self.candidate_config = self.fn.candidate_config

    def forward(self, *inputs, **kwargs):
        out = self.supernet.layers_forward(self, *inputs, **kwargs)
        return out


class SuperConv2D(fluid.dygraph.Conv2D):
    """
    This interface is used to construct a callable object of the ``SuperConv2D``  class.
    The difference between ```SuperConv2D``` and ```Conv2D``` is: ```SuperConv2D``` need 
    to feed a config dictionary with the format of {'channel', num_of_channel} represents 
    the channels of the outputs, used to change the first dimension of weight and bias, 
    only train the first channels of the weight and bias.

    Note: the channel in config need to less than first defined.

    The super convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
    the feature map, H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of output feature map,
    C is the number of input feature map, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more details.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
    For each input :math:`X`, the equation is:
    .. math::
        Out = \\sigma (W \\ast X + b)
    Where:
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:
        - Input:
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
        - Output:
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
        Where
        .. math::
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
    Parameters:
        num_channels(int): The number of channels in the input image.
        num_filters(int): The number of filter. It is as same as the output
            feature map.
        filter_size (int or tuple): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        candidate_config(dict, optional): Dictionary descripts candidate config of this layer,
            such as {'kernel_size': (3, 5, 7), 'channel': (4, 6, 8)}, means the kernel size of 
            this layer can be choose from (3, 5, 7), the key of candidate_config
            only can be 'kernel_size', 'channel' and 'expand_ratio', 'channel' and 'expand_ratio'
            CANNOT be set at the same time. Default: None.
        transform_kernel(bool, optional): Whether to use transform matrix to transform a large filter
            to a small filter. Default: False.
        stride (int or tuple, optional): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: 1.
        padding (int or tuple, optional): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: 0.
        dilation (int or tuple, optional): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: 1.
        groups (int, optional): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            Default: None.
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
    Attribute:
        **weight** (Parameter): the learnable weights of filter of this layer.
        **bias** (Parameter or None): the learnable bias of this layer.
    Returns:
        None
    
    Raises:
        ValueError: if ``use_cudnn`` is not a bool value.
    Examples:
        .. code-block:: python
          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddleslim.core.layers import SuperConv2D
          import numpy as np
          data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32')
          with fluid.dygraph.guard():
              super_conv2d = SuperConv2D(3, 10, 3)
              config = {'channel': 5}
              data = to_variable(data)
              conv = super_conv2d(data, config)

    """

    ### NOTE: filter_size, num_channels and num_filters must be the max of candidate to define a largest network.
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 candidate_config={},
                 transform_kernel=False,
                 stride=1,
                 dilation=1,
                 padding=0,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
                 act=None,
                 dtype='float32'):
        ### NOTE: padding always is 0, add padding in forward because of kernel size is uncertain
        ### TODO: change padding to any padding
        super(SuperConv2D, self).__init__(
            num_channels, num_filters, filter_size, stride, padding, dilation,
            groups, param_attr, bias_attr, use_cudnn, act, dtype)

        if isinstance(self._filter_size, int):
            self._filter_size = convert_to_list(self._filter_size, 2)

        self.candidate_config = candidate_config
        if len(candidate_config.items()) != 0:
            for k, v in candidate_config.items():
                candidate_config[k] = list(set(v))

        self.ks_set = candidate_config[
            'kernel_size'] if 'kernel_size' in candidate_config else None

        self.expand_ratio = candidate_config[
            'expand_ratio'] if 'expand_ratio' in candidate_config else None
        self.channel = candidate_config[
            'channel'] if 'channel' in candidate_config else None
        self.base_channel = None
        if self.expand_ratio != None:
            self.base_channel = int(self._num_filters / max(self.expand_ratio))

        self.transform_kernel = transform_kernel
        if self.ks_set != None:
            self.ks_set.sort()
        if self.transform_kernel != False:
            scale_param = dict()
            ### create parameter to transform kernel
            for i in range(len(self.ks_set) - 1):
                ks_small = self.ks_set[i]
                ks_large = self.ks_set[i + 1]
                param_name = '%dto%d_matrix' % (ks_large, ks_small)
                ks_t = ks_small**2
                scale_param[param_name] = self.create_parameter(
                    attr=fluid.ParamAttr(
                        name=self._full_name + param_name,
                        initializer=fluid.initializer.NumpyArrayInitializer(
                            np.eye(ks_t))),
                    shape=(ks_t, ks_t),
                    dtype=self._dtype)

            for name, param in scale_param.items():
                setattr(self, name, param)

    def get_active_filter(self, in_nc, out_nc, kernel_size):
        start, end = compute_start_end(self._filter_size[0], kernel_size)
        ### if NOT transform kernel, intercept a center filter with kernel_size from largest filter
        filters = self.weight[:out_nc, :in_nc, start:end, start:end]
        if self.transform_kernel != False and kernel_size < self._filter_size[
                0]:
            ### if transform kernel, then use matrix to transform
            start_filter = self.weight[:out_nc, :in_nc, :, :]
            for i in range(len(self.ks_set) - 1, 0, -1):
                src_ks = self.ks_set[i]
                if src_ks <= kernel_size:
                    break
                target_ks = self.ks_set[i - 1]
                start, end = compute_start_end(src_ks, target_ks)
                _input_filter = start_filter[:, :, start:end, start:end]
                _input_filter = fluid.layers.reshape(
                    _input_filter,
                    shape=[(_input_filter.shape[0] * _input_filter.shape[1]),
                           -1])
                core.ops.matmul(_input_filter,
                                self.__getattr__('%dto%d_matrix' %
                                                 (src_ks, target_ks)),
                                _input_filter, 'transpose_X', False,
                                'transpose_Y', False, "alpha", 1)
                _input_filter = fluid.layers.reshape(
                    _input_filter,
                    shape=[
                        filters.shape[0], filters.shape[1], target_ks, target_ks
                    ])
                start_filter = _input_filter
            filters = start_filter
        return filters

    def get_groups_in_out_nc(self, in_nc, out_nc):
        ### standard conv
        return self._groups, in_nc, out_nc

    def forward(self, input, kernel_size=None, expand_ratio=None, channel=None):

        if not in_dygraph_mode():
            _logger.error("NOT support static graph")

        in_nc = int(input.shape[1])
        assert (
            expand_ratio == None or channel == None
        ), "expand_ratio and channel CANNOT be NOT None at the same time."
        if expand_ratio != None:
            out_nc = int(expand_ratio * self.base_channel)
        elif channel != None:
            out_nc = int(channel)
        else:
            out_nc = self._num_filters
        ks = int(self._filter_size[0]) if kernel_size == None else int(
            kernel_size)

        groups, weight_in_nc, weight_out_nc = self.get_groups_in_out_nc(in_nc,
                                                                        out_nc)

        weight = self.get_active_filter(weight_in_nc, weight_out_nc, ks)
        padding = convert_to_list(get_same_padding(ks), 2)

        if self._l_type == 'conv2d':
            attrs = ('strides', self._stride, 'paddings', padding, 'dilations',
                     self._dilation, 'groups', groups
                     if groups else 1, 'use_cudnn', self._use_cudnn)
            out = core.ops.conv2d(input, weight, *attrs)
        elif self._l_type == 'depthwise_conv2d':
            attrs = ('strides', self._stride, 'paddings', padding, 'dilations',
                     self._dilation, 'groups', groups
                     if groups else self._groups, 'use_cudnn', self._use_cudnn)
            out = core.ops.depthwise_conv2d(input, weight, *attrs)
        else:
            raise ValueError("conv type error")

        pre_bias = out
        out_nc = int(pre_bias.shape[1])
        if self.bias is not None:
            bias = self.bias[:out_nc]
            pre_act = dygraph_utils._append_bias_in_dygraph(pre_bias, bias, 1)
        else:
            pre_act = pre_bias

        return dygraph_utils._append_activation_in_dygraph(pre_act, self._act)


class SuperGroupConv2D(SuperConv2D):
    def get_groups_in_out_nc(self, in_nc, out_nc):
        ### groups convolution
        ### conv: weight: (Cout, Cin/G, Kh, Kw)
        groups = self._groups
        in_nc = int(in_nc // groups)
        return groups, in_nc, out_nc


class SuperDepthwiseConv2D(SuperConv2D):
    ### depthwise convolution
    def get_groups_in_out_nc(self, in_nc, out_nc):
        if in_nc != out_nc:
            _logger.debug(
                "input channel and output channel in depthwise conv is different, change output channel to input channel! origin channel:(in_nc {}, out_nc {}): ".
                format(in_nc, out_nc))
        groups = in_nc
        out_nc = in_nc
        return groups, in_nc, out_nc


class SuperConv2DTranspose(fluid.dygraph.Conv2DTranspose):
    """
    This interface is used to construct a callable object of the ``SuperConv2DTranspose`` 
    class.
    The difference between ```SuperConv2DTranspose``` and ```Conv2DTranspose``` is: 
    ```SuperConv2DTranspose``` need to feed a config dictionary with the format of 
    {'channel', num_of_channel} represents the channels of the outputs, used to change 
    the first dimension of weight and bias, only train the first channels of the weight 
    and bias.

    Note: the channel in config need to less than first defined.

    The super convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input and output
    are in NCHW format. Where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of input feature map,
    C is the number of output feature map, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
    The details of convolution transpose layer, please refer to the following explanation and references
    `conv2dtranspose <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_ .
    For each input :math:`X`, the equation is:
    .. math::
        Out = \sigma (W \\ast X + b)
    Where:
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
    Example:
        - Input:
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
        - Output:
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
        Where
        .. math::
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
    Parameters:
        num_channels(int): The number of channels in the input image.
        num_filters(int): The number of the filter. It is as same as the output
            feature map.
        filter_size(int or tuple): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        candidate_config(dict, optional): Dictionary descripts candidate config of this layer,
            such as {'kernel_size': (3, 5, 7), 'channel': (4, 6, 8)}, means the kernel size of 
            this layer can be choose from (3, 5, 7), the key of candidate_config
            only can be 'kernel_size', 'channel' and 'expand_ratio', 'channel' and 'expand_ratio'
            CANNOT be set at the same time. Default: None.
        transform_kernel(bool, optional): Whether to use transform matrix to transform a large filter
            to a small filter. Default: False.
        output_size(int or tuple, optional): The output image size. If output size is a
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above. Default: None.
        padding(int or tuple, optional): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: 0.
        stride(int or tuple, optional): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: 1.
        dilation(int or tuple, optional): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: 1.
        groups(int, optional): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            Default: None.
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
        **bias** (Parameter or None): the learnable bias of this layer.
    Returns:
        None
    Examples:
       .. code-block:: python
          import paddle.fluid as fluid
          from paddleslim.core.layers import SuperConv2DTranspose
          import numpy as np
          with fluid.dygraph.guard():
              data = np.random.random((3, 32, 32, 5)).astype('float32')
              config = {'channel': 5
              super_convtranspose = SuperConv2DTranspose(num_channels=32, num_filters=10, filter_size=3)
              ret = super_convtranspose(fluid.dygraph.base.to_variable(data), config)
    """

    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 output_size=None,
                 candidate_config={},
                 transform_kernel=False,
                 stride=1,
                 dilation=1,
                 padding=0,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
                 act=None,
                 dtype='float32'):
        ### NOTE: padding always is 0, add padding in forward because of kernel size is uncertain
        super(SuperConv2DTranspose, self).__init__(
            num_channels, num_filters, filter_size, output_size, padding,
            stride, dilation, groups, param_attr, bias_attr, use_cudnn, act,
            dtype)
        self.candidate_config = candidate_config
        if len(self.candidate_config.items()) != 0:
            for k, v in candidate_config.items():
                candidate_config[k] = list(set(v))
        self.ks_set = candidate_config[
            'kernel_size'] if 'kernel_size' in candidate_config else None

        if isinstance(self._filter_size, int):
            self._filter_size = convert_to_list(self._filter_size, 2)

        self.expand_ratio = candidate_config[
            'expand_ratio'] if 'expand_ratio' in candidate_config else None
        self.channel = candidate_config[
            'channel'] if 'channel' in candidate_config else None
        self.base_channel = None
        if self.expand_ratio:
            self.base_channel = int(self._num_filters / max(self.expand_ratio))

        self.transform_kernel = transform_kernel
        if self.ks_set != None:
            self.ks_set.sort()
        if self.transform_kernel != False:
            scale_param = dict()
            ### create parameter to transform kernel
            for i in range(len(self.ks_set) - 1):
                ks_small = self.ks_set[i]
                ks_large = self.ks_set[i + 1]
                param_name = '%dto%d_matrix' % (ks_large, ks_small)
                ks_t = ks_small**2
                scale_param[param_name] = self.create_parameter(
                    attr=fluid.ParamAttr(
                        name=self._full_name + param_name,
                        initializer=fluid.initializer.NumpyArrayInitializer(
                            np.eye(ks_t))),
                    shape=(ks_t, ks_t),
                    dtype=self._dtype)

            for name, param in scale_param.items():
                setattr(self, name, param)

    def get_active_filter(self, in_nc, out_nc, kernel_size):
        start, end = compute_start_end(self._filter_size[0], kernel_size)
        filters = self.weight[:in_nc, :out_nc, start:end, start:end]
        if self.transform_kernel != False and kernel_size < self._filter_size[
                0]:
            start_filter = self.weight[:in_nc, :out_nc, :, :]
            for i in range(len(self.ks_set) - 1, 0, -1):
                src_ks = self.ks_set[i]
                if src_ks <= kernel_size:
                    break
                target_ks = self.ks_set[i - 1]
                start, end = compute_start_end(src_ks, target_ks)
                _input_filter = start_filter[:, :, start:end, start:end]
                _input_filter = fluid.layers.reshape(
                    _input_filter,
                    shape=[(_input_filter.shape[0] * _input_filter.shape[1]),
                           -1])
                core.ops.matmul(_input_filter,
                                self.__getattr__('%dto%d_matrix' %
                                                 (src_ks, target_ks)),
                                _input_filter, 'transpose_X', False,
                                'transpose_Y', False, "alpha", 1)
                _input_filter = fluid.layers.reshape(
                    _input_filter,
                    shape=[
                        filters.shape[0], filters.shape[1], target_ks, target_ks
                    ])
                start_filter = _input_filter
            filters = start_filter
        return filters

    def get_groups_in_out_nc(self, in_nc, out_nc):
        ### standard conv
        return self._groups, in_nc, out_nc

    def forward(self, input, kernel_size=None, expand_ratio=None, channel=None):
        if not in_dygraph_mode():
            _logger.error("NOT support static graph")

        in_nc = int(input.shape[1])
        assert (
            expand_ratio == None or channel == None
        ), "expand_ratio and channel CANNOT be NOT None at the same time."
        if expand_ratio != None:
            out_nc = int(expand_ratio * self.base_channel)
        elif channel != None:
            out_nc = int(channel)
        else:
            out_nc = self._num_filters

        ks = int(self._filter_size[0]) if kernel_size == None else int(
            kernel_size)

        groups, weight_in_nc, weight_out_nc = self.get_groups_in_out_nc(in_nc,
                                                                        out_nc)

        weight = self.get_active_filter(weight_in_nc, weight_out_nc, ks)
        padding = convert_to_list(get_same_padding(ks), 2)

        op = getattr(core.ops, self._op_type)
        out = op(input, weight, 'output_size', self._output_size, 'strides',
                 self._stride, 'paddings', padding, 'dilations', self._dilation,
                 'groups', groups, 'use_cudnn', self._use_cudnn)
        pre_bias = out
        out_nc = int(pre_bias.shape[1])
        if self.bias is not None:
            bias = self.bias[:out_nc]
            pre_act = dygraph_utils._append_bias_in_dygraph(pre_bias, bias, 1)
        else:
            pre_act = pre_bias

        return dygraph_utils._append_activation_in_dygraph(
            pre_act, act=self._act)


class SuperGroupConv2DTranspose(SuperConv2DTranspose):
    def get_groups_in_out_nc(self, in_nc, out_nc):
        ### groups convolution
        ### groups conv transpose: weight: (Cin, Cout/G, Kh, Kw)
        groups = self._groups
        out_nc = int(out_nc // groups)
        return groups, in_nc, out_nc


class SuperDepthwiseConv2DTranspose(SuperConv2DTranspose):
    def get_groups_in_out_nc(self, in_nc, out_nc):
        if in_nc != out_nc:
            _logger.debug(
                "input channel and output channel in depthwise conv transpose is different, change output channel to input channel! origin channel:(in_nc {}, out_nc {}): ".
                format(in_nc, out_nc))
        groups = in_nc
        out_nc = in_nc
        return groups, in_nc, out_nc


### NOTE: only search channel, write for GAN-compression, maybe change to SuperDepthwiseConv and SuperConv after.
class SuperSeparableConv2D(fluid.dygraph.Layer):
    """
    This interface is used to construct a callable object of the ``SuperSeparableConv2D``
    class.
    The difference between ```SuperSeparableConv2D``` and ```SeparableConv2D``` is: 
    ```SuperSeparableConv2D``` need to feed a config dictionary with the format of 
    {'channel', num_of_channel} represents the channels of the first conv's outputs and
    the second conv's inputs, used to change the first dimension of weight and bias, 
    only train the first channels of the weight and bias.

    The architecture of super separable convolution2D op is [Conv2D, norm layer(may be BatchNorm
    or InstanceNorm), Conv2D]. The first conv is depthwise conv, the filter number is input channel
    multiply scale_factor, the group is equal to the number of input channel. The second conv
    is standard conv, which filter size and stride size are 1. 

    Parameters:
        num_channels(int): The number of channels in the input image.
        num_filters(int): The number of the second conv's filter. It is as same as the output
            feature map.
        filter_size(int or tuple): The first conv's filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        padding(int or tuple, optional): The first conv's padding size. If padding is a tuple, 
            it must contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: 0.
        stride(int or tuple, optional): The first conv's stride size. If stride is a tuple,
            it must contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: 1.
        dilation(int or tuple, optional): The first conv's dilation size. If dilation is a tuple, 
            it must contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: 1.
        norm_layer(class): The normalization layer between two convolution. Default: InstanceNorm.
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of convolution.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, convolution
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        scale_factor(float): The scale factor of the first conv's output channel. Default: 1.
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True.
    Returns:
        None
    """

    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 candidate_config={},
                 stride=1,
                 padding=0,
                 dilation=1,
                 norm_layer=InstanceNorm,
                 bias_attr=None,
                 scale_factor=1,
                 use_cudnn=False):
        super(SuperSeparableConv2D, self).__init__()
        self.conv = fluid.dygraph.LayerList([
            fluid.dygraph.nn.Conv2D(
                num_channels=num_channels,
                num_filters=num_channels * scale_factor,
                filter_size=filter_size,
                stride=stride,
                padding=padding,
                use_cudnn=False,
                groups=num_channels,
                bias_attr=bias_attr)
        ])

        self.conv.extend([norm_layer(num_channels * scale_factor)])

        self.conv.extend([
            Conv2D(
                num_channels=num_channels * scale_factor,
                num_filters=num_filters,
                filter_size=1,
                stride=1,
                use_cudnn=use_cudnn,
                bias_attr=bias_attr)
        ])

        self.candidate_config = candidate_config
        self.expand_ratio = candidate_config[
            'expand_ratio'] if 'expand_ratio' in candidate_config else None
        self.base_output_dim = None
        if self.expand_ratio != None:
            self.base_output_dim = int(self.output_dim / max(self.expand_ratio))

    def forward(self, input, expand_ratio=None, channel=None):
        if not in_dygraph_mode():
            _logger.error("NOT support static graph")

        in_nc = int(input.shape[1])
        assert (
            expand_ratio == None or channel == None
        ), "expand_ratio and channel CANNOT be NOT None at the same time."
        if expand_ratio != None:
            out_nc = int(expand_ratio * self.base_output_dim)
        elif channel != None:
            out_nc = int(channel)
        else:
            out_nc = self.conv[0]._num_filters

        weight = self.conv[0].weight[:in_nc]
        ###  conv1
        if self.conv[0]._l_type == 'conv2d':
            attrs = ('strides', self.conv[0]._stride, 'paddings',
                     self.conv[0]._padding, 'dilations', self.conv[0]._dilation,
                     'groups', in_nc, 'use_cudnn', self.conv[0]._use_cudnn)
            out = core.ops.conv2d(input, weight, *attrs)
        elif self.conv[0]._l_type == 'depthwise_conv2d':
            attrs = ('strides', self.conv[0]._stride, 'paddings',
                     self.conv[0]._padding, 'dilations', self.conv[0]._dilation,
                     'groups', in_nc, 'use_cudnn', self.conv[0]._use_cudnn)
            out = core.ops.depthwise_conv2d(input, weight, *attrs)
        else:
            raise ValueError("conv type error")

        pre_bias = out
        if self.conv[0].bias is not None:
            bias = self.conv[0].bias[:in_nc]
            pre_act = dygraph_utils._append_bias_in_dygraph(pre_bias, bias, 1)
        else:
            pre_act = pre_bias

        conv0_out = dygraph_utils._append_activation_in_dygraph(
            pre_act, self.conv[0]._act)

        norm_out = self.conv[1](conv0_out)

        weight = self.conv[2].weight[:out_nc, :in_nc, :, :]

        if self.conv[2]._l_type == 'conv2d':
            attrs = ('strides', self.conv[2]._stride, 'paddings',
                     self.conv[2]._padding, 'dilations', self.conv[2]._dilation,
                     'groups', self.conv[2]._groups if self.conv[2]._groups else
                     1, 'use_cudnn', self.conv[2]._use_cudnn)
            out = core.ops.conv2d(norm_out, weight, *attrs)
        elif self.conv[2]._l_type == 'depthwise_conv2d':
            attrs = ('strides', self.conv[2]._stride, 'paddings',
                     self.conv[2]._padding, 'dilations', self.conv[2]._dilation,
                     'groups', self.conv[2]._groups, 'use_cudnn',
                     self.conv[2]._use_cudnn)
            out = core.ops.depthwise_conv2d(norm_out, weight, *attrs)
        else:
            raise ValueError("conv type error")

        pre_bias = out
        if self.conv[2].bias is not None:
            bias = self.conv[2].bias[:out_nc]
            pre_act = dygraph_utils._append_bias_in_dygraph(pre_bias, bias, 1)
        else:
            pre_act = pre_bias

        conv1_out = dygraph_utils._append_activation_in_dygraph(
            pre_act, self.conv[2]._act)

        return conv1_out


class SuperLinear(fluid.dygraph.Linear):
    """
    """

    def __init__(self,
                 input_dim,
                 output_dim,
                 candidate_config={},
                 param_attr=None,
                 bias_attr=None,
                 act=None,
                 dtype="float32"):
        super(SuperLinear, self).__init__(input_dim, output_dim, param_attr,
                                          bias_attr, act, dtype)
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self.output_dim = output_dim
        self.candidate_config = candidate_config
        self.expand_ratio = candidate_config[
            'expand_ratio'] if 'expand_ratio' in candidate_config else None
        self.base_output_dim = None
        if self.expand_ratio != None:
            self.base_output_dim = int(self.output_dim / max(self.expand_ratio))

    def forward(self, input, expand_ratio=None, channel=None):
        if not in_dygraph_mode():
            _logger.error("NOT support static graph")

        ### weight: (Cin, Cout)
        in_nc = int(input.shape[1])
        assert (
            expand_ratio == None or channel == None
        ), "expand_ratio and channel CANNOT be NOT None at the same time."
        if expand_ratio != None:
            out_nc = int(expand_ratio * self.base_output_dim)
        elif channel != None:
            out_nc = int(channel)
        else:
            out_nc = self.output_dim

        weight = self.weight[:in_nc, :out_nc]
        if self._bias_attr != False:
            bias = self.bias[:out_nc]
            use_bias = True

        pre_bias = _varbase_creator(dtype=input.dtype)
        core.ops.matmul(input, weight, pre_bias, 'transpose_X', False,
                        'transpose_Y', False, "alpha", 1)
        if self._bias_attr != False:
            pre_act = dygraph_utils._append_bias_in_dygraph(
                pre_bias, bias, axis=len(input.shape) - 1)
        else:
            pre_act = pre_bias

        return dygraph_utils._append_activation_in_dygraph(pre_act, self._act)


class SuperBatchNorm(fluid.dygraph.BatchNorm):
    """
    add comment
    """

    def __init__(self,
                 num_channels,
                 act=None,
                 is_test=False,
                 momentum=0.9,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
                 dtype='float32',
                 data_layout='NCHW',
                 in_place=False,
                 moving_mean_name=None,
                 moving_variance_name=None,
                 do_model_average_for_mean_and_var=True,
                 use_global_stats=False,
                 trainable_statistics=False):
        super(SuperBatchNorm, self).__init__(
            num_channels, act, is_test, momentum, epsilon, param_attr,
            bias_attr, dtype, data_layout, in_place, moving_mean_name,
            moving_variance_name, do_model_average_for_mean_and_var,
            use_global_stats, trainable_statistics)

    def forward(self, input):
        if not in_dygraph_mode():
            _logger.error("NOT support static graph")

        feature_dim = int(input.shape[1])

        weight = self.weight[:feature_dim]
        bias = self.bias[:feature_dim]
        mean = self._mean[:feature_dim]
        variance = self._variance[:feature_dim]

        mean_out = mean
        variance_out = variance

        attrs = ("momentum", self._momentum, "epsilon", self._epsilon,
                 "is_test", not self.training, "data_layout", self._data_layout,
                 "use_mkldnn", False, "fuse_with_relu", self._fuse_with_relu,
                 "use_global_stats", self._use_global_stats,
                 'trainable_statistics', self._trainable_statistics)
        batch_norm_out, _, _, _, _, _ = core.ops.batch_norm(
            input, weight, bias, mean, variance, mean_out, variance_out, *attrs)
        return dygraph_utils._append_activation_in_dygraph(
            batch_norm_out, act=self._act)


class SuperInstanceNorm(fluid.dygraph.InstanceNorm):
    """
    """

    def __init__(self,
                 num_channels,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
                 dtype='float32'):
        super(SuperInstanceNorm, self).__init__(num_channels, epsilon,
                                                param_attr, bias_attr, dtype)

    def forward(self, input):
        if not in_dygraph_mode():
            _logger.error("NOT support static graph")

        feature_dim = int(input.shape[1])

        if self._param_attr == False and self._bias_attr == False:
            scale = None
            bias = None
        else:
            scale = self.scale[:feature_dim]
            bias = self.bias[:feature_dim]

        out, _, _ = core.ops.instance_norm(input, scale, bias, 'epsilon',
                                           self._epsilon)
        return out