layers.py 54.3 KB
Newer Older
C
ceci3 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

C
ceci3 已提交
15 16
### NOTE: the API of this file is based on Paddle2.0, the API in layers_old.py is based on Paddle1.8

C
ceci3 已提交
17 18
import numpy as np
import logging
C
ceci3 已提交
19 20 21
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
C
ceci3 已提交
22 23 24 25 26 27 28
import paddle.fluid.core as core

from ...common import get_logger
from .utils.utils import compute_start_end, get_same_padding, convert_to_list

__all__ = [
    'SuperConv2D', 'SuperConv2DTranspose', 'SuperSeparableConv2D',
C
ceci3 已提交
29
    'SuperBatchNorm2D', 'SuperLinear', 'SuperInstanceNorm2D', 'Block',
C
ceci3 已提交
30
    'SuperGroupConv2D', 'SuperDepthwiseConv2D', 'SuperGroupConv2DTranspose',
C
ceci3 已提交
31
    'SuperDepthwiseConv2DTranspose', 'SuperLayerNorm', 'SuperEmbedding'
C
ceci3 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
]

_logger = get_logger(__name__, level=logging.INFO)

### TODO: if task is elastic width, need to add re_organize_middle_weight in 1x1 conv in MBBlock

_cnt = 0


def counter():
    global _cnt
    _cnt += 1
    return _cnt


C
ceci3 已提交
47
class BaseBlock(paddle.nn.Layer):
C
ceci3 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
    def __init__(self, key=None):
        super(BaseBlock, self).__init__()
        if key is not None:
            self._key = str(key)
        else:
            self._key = self.__class__.__name__ + str(counter())

    # set SuperNet class
    def set_supernet(self, supernet):
        self.__dict__['supernet'] = supernet

    @property
    def key(self):
        return self._key


class Block(BaseBlock):
    """
    Model is composed of nest blocks.

    Parameters:
C
ceci3 已提交
69 70
        fn(paddle.nn.Layer): instance of super layers, such as: SuperConv2D(3, 5, 3).
        fixed(bool, optional): whether to fix the shape of the weight in this layer. Default: False.
C
ceci3 已提交
71 72 73
        key(str, optional): key of this layer, one-to-one correspondence between key and candidate config. Default: None.
    """

C
ceci3 已提交
74
    def __init__(self, fn, fixed=False, key=None):
C
ceci3 已提交
75 76
        super(Block, self).__init__(key)
        self.fn = fn
C
ceci3 已提交
77
        self.fixed = fixed
C
ceci3 已提交
78 79 80 81 82 83 84
        self.candidate_config = self.fn.candidate_config

    def forward(self, *inputs, **kwargs):
        out = self.supernet.layers_forward(self, *inputs, **kwargs)
        return out


C
ceci3 已提交
85
class SuperConv2D(nn.Conv2D):
C
ceci3 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
    """
    This interface is used to construct a callable object of the ``SuperConv2D``  class.

    Note: the channel in config need to less than first defined.

    The super convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
    the feature map, H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of output feature map,
    C is the number of input feature map, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more details.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
    For each input :math:`X`, the equation is:
    .. math::
        Out = \\sigma (W \\ast X + b)
    Where:
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:
        - Input:
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
        - Output:
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
        Where
        .. math::
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
    Parameters:
        num_channels(int): The number of channels in the input image.
        num_filters(int): The number of filter. It is as same as the output
            feature map.
        filter_size (int or tuple): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        candidate_config(dict, optional): Dictionary descripts candidate config of this layer,
            such as {'kernel_size': (3, 5, 7), 'channel': (4, 6, 8)}, means the kernel size of 
            this layer can be choose from (3, 5, 7), the key of candidate_config
            only can be 'kernel_size', 'channel' and 'expand_ratio', 'channel' and 'expand_ratio'
            CANNOT be set at the same time. Default: None.
        transform_kernel(bool, optional): Whether to use transform matrix to transform a large filter
            to a small filter. Default: False.
        stride (int or tuple, optional): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: 1.
        padding (int or tuple, optional): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: 0.
        dilation (int or tuple, optional): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: 1.
        groups (int, optional): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            Default: None.
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
    Attribute:
        **weight** (Parameter): the learnable weights of filter of this layer.
        **bias** (Parameter or None): the learnable bias of this layer.
    Returns:
        None
    
    Raises:
        ValueError: if ``use_cudnn`` is not a bool value.
    Examples:
        .. code-block:: python
C
ceci3 已提交
179 180
          import paddle 
          from paddleslim.nas.ofa.layers import SuperConv2D
C
ceci3 已提交
181 182
          import numpy as np
          data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32')
C
ceci3 已提交
183 184 185 186
          super_conv2d = SuperConv2D(3, 10, 3)
          config = {'channel': 5}
          data = paddle.to_variable(data)
          conv = super_conv2d(data, config)
C
ceci3 已提交
187 188 189 190 191

    """

    ### NOTE: filter_size, num_channels and num_filters must be the max of candidate to define a largest network.
    def __init__(self,
C
ceci3 已提交
192 193 194
                 in_channels,
                 out_channels,
                 kernel_size,
C
ceci3 已提交
195 196 197 198
                 candidate_config={},
                 transform_kernel=False,
                 stride=1,
                 padding=0,
C
ceci3 已提交
199 200 201 202
                 dilation=1,
                 groups=1,
                 padding_mode='zeros',
                 weight_attr=None,
C
ceci3 已提交
203
                 bias_attr=None,
C
ceci3 已提交
204
                 data_format='NCHW'):
C
ceci3 已提交
205
        super(SuperConv2D, self).__init__(
C
ceci3 已提交
206 207 208 209 210 211 212 213 214 215 216
            in_channels,
            out_channels,
            kernel_size,
            stride=stride,
            padding=padding,
            padding_mode=padding_mode,
            dilation=dilation,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)
C
ceci3 已提交
217 218 219 220 221 222 223 224 225 226 227 228 229

        self.candidate_config = candidate_config
        if len(candidate_config.items()) != 0:
            for k, v in candidate_config.items():
                candidate_config[k] = list(set(v))

        self.ks_set = candidate_config[
            'kernel_size'] if 'kernel_size' in candidate_config else None

        self.expand_ratio = candidate_config[
            'expand_ratio'] if 'expand_ratio' in candidate_config else None
        self.channel = candidate_config[
            'channel'] if 'channel' in candidate_config else None
C
ceci3 已提交
230
        self.base_channel = self._out_channels
C
ceci3 已提交
231
        if self.expand_ratio != None:
C
ceci3 已提交
232
            self.base_channel = int(self._out_channels / max(self.expand_ratio))
C
ceci3 已提交
233 234 235 236 237 238 239 240 241 242 243 244 245

        self.transform_kernel = transform_kernel
        if self.ks_set != None:
            self.ks_set.sort()
        if self.transform_kernel != False:
            scale_param = dict()
            ### create parameter to transform kernel
            for i in range(len(self.ks_set) - 1):
                ks_small = self.ks_set[i]
                ks_large = self.ks_set[i + 1]
                param_name = '%dto%d_matrix' % (ks_large, ks_small)
                ks_t = ks_small**2
                scale_param[param_name] = self.create_parameter(
C
ceci3 已提交
246
                    attr=paddle.ParamAttr(
C
ceci3 已提交
247
                        name=self._full_name + param_name,
C
ceci3 已提交
248
                        initializer=nn.initializer.Assign(np.eye(ks_t))),
C
ceci3 已提交
249 250 251 252 253 254 255
                    shape=(ks_t, ks_t),
                    dtype=self._dtype)

            for name, param in scale_param.items():
                setattr(self, name, param)

    def get_active_filter(self, in_nc, out_nc, kernel_size):
C
ceci3 已提交
256
        start, end = compute_start_end(self._kernel_size[0], kernel_size)
C
ceci3 已提交
257 258
        ### if NOT transform kernel, intercept a center filter with kernel_size from largest filter
        filters = self.weight[:out_nc, :in_nc, start:end, start:end]
C
ceci3 已提交
259
        if self.transform_kernel != False and kernel_size < self._kernel_size[
C
ceci3 已提交
260 261 262 263 264 265 266 267 268 269
                0]:
            ### if transform kernel, then use matrix to transform
            start_filter = self.weight[:out_nc, :in_nc, :, :]
            for i in range(len(self.ks_set) - 1, 0, -1):
                src_ks = self.ks_set[i]
                if src_ks <= kernel_size:
                    break
                target_ks = self.ks_set[i - 1]
                start, end = compute_start_end(src_ks, target_ks)
                _input_filter = start_filter[:, :, start:end, start:end]
C
ceci3 已提交
270
                _input_filter = paddle.reshape(
C
ceci3 已提交
271 272 273
                    _input_filter,
                    shape=[(_input_filter.shape[0] * _input_filter.shape[1]),
                           -1])
C
ceci3 已提交
274 275 276 277 278
                _input_filter = paddle.matmul(
                    _input_filter,
                    self.__getattr__('%dto%d_matrix' %
                                     (src_ks, target_ks)), False, False)
                _input_filter = paddle.reshape(
C
ceci3 已提交
279 280 281 282 283 284 285 286 287
                    _input_filter,
                    shape=[
                        filters.shape[0], filters.shape[1], target_ks, target_ks
                    ])
                start_filter = _input_filter
            filters = start_filter
        return filters

    def get_groups_in_out_nc(self, in_nc, out_nc):
C
ceci3 已提交
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
        if self._groups == 1:
            ### standard conv
            return self._groups, in_nc, out_nc
        elif self._groups == self._in_channels:
            ### depthwise convolution
            if in_nc != out_nc:
                _logger.debug(
                    "input channel and output channel in depthwise conv is different, change output channel to input channel! origin channel:(in_nc {}, out_nc {}): ".
                    format(in_nc, out_nc))
            groups = in_nc
            out_nc = in_nc
            return groups, in_nc, out_nc
        else:
            ### groups convolution
            ### conv: weight: (Cout, Cin/G, Kh, Kw)
            groups = self._groups
            in_nc = int(in_nc // groups)
            return groups, in_nc, out_nc
C
ceci3 已提交
306 307

    def forward(self, input, kernel_size=None, expand_ratio=None, channel=None):
C
ceci3 已提交
308 309 310 311 312 313 314
        """
        Parameters:
            input(Tensor): Input tensor.
            kernel_size(int, optional): the kernel size of the filter in actual calculation. Default: None.
            expand_ratio(int|float, optional): the expansion ratio of filter's channel number in actual calculation. Default: None.
            channel(int, optional): the expansion ratio of filter's channel number in actual calculation. Default: None.
        """
C
ceci3 已提交
315 316 317 318 319
        self.cur_config = {
            'kernel_size': kernel_size,
            'expand_ratio': expand_ratio,
            'channel': channel
        }
C
ceci3 已提交
320 321 322 323 324 325 326 327 328
        in_nc = int(input.shape[1])
        assert (
            expand_ratio == None or channel == None
        ), "expand_ratio and channel CANNOT be NOT None at the same time."
        if expand_ratio != None:
            out_nc = int(expand_ratio * self.base_channel)
        elif channel != None:
            out_nc = int(channel)
        else:
C
ceci3 已提交
329 330
            out_nc = self._out_channels
        ks = int(self._kernel_size[0]) if kernel_size == None else int(
C
ceci3 已提交
331 332 333 334 335 336
            kernel_size)

        groups, weight_in_nc, weight_out_nc = self.get_groups_in_out_nc(in_nc,
                                                                        out_nc)

        weight = self.get_active_filter(weight_in_nc, weight_out_nc, ks)
C
ceci3 已提交
337 338 339 340 341

        if kernel_size != None or 'kernel_size' in self.candidate_config.keys():
            padding = convert_to_list(get_same_padding(ks), 2)
        else:
            padding = self._padding
C
ceci3 已提交
342 343 344 345

        if self.bias is not None:
            bias = self.bias[:out_nc]
        else:
C
ceci3 已提交
346 347 348 349 350 351 352 353 354 355 356 357
            bias = self.bias

        out = F.conv2d(
            input,
            weight,
            bias=bias,
            stride=self._stride,
            padding=padding,
            dilation=self._dilation,
            groups=self._groups,
            data_format=self._data_format)
        return out
C
ceci3 已提交
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380


class SuperGroupConv2D(SuperConv2D):
    def get_groups_in_out_nc(self, in_nc, out_nc):
        ### groups convolution
        ### conv: weight: (Cout, Cin/G, Kh, Kw)
        groups = self._groups
        in_nc = int(in_nc // groups)
        return groups, in_nc, out_nc


class SuperDepthwiseConv2D(SuperConv2D):
    ### depthwise convolution
    def get_groups_in_out_nc(self, in_nc, out_nc):
        if in_nc != out_nc:
            _logger.debug(
                "input channel and output channel in depthwise conv is different, change output channel to input channel! origin channel:(in_nc {}, out_nc {}): ".
                format(in_nc, out_nc))
        groups = in_nc
        out_nc = in_nc
        return groups, in_nc, out_nc


C
ceci3 已提交
381
class SuperConv2DTranspose(nn.Conv2DTranspose):
C
ceci3 已提交
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
    """
    This interface is used to construct a callable object of the ``SuperConv2DTranspose`` 
    class.

    Note: the channel in config need to less than first defined.

    The super convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input and output
    are in NCHW format. Where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of input feature map,
    C is the number of output feature map, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
    The details of convolution transpose layer, please refer to the following explanation and references
    `conv2dtranspose <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_ .
    For each input :math:`X`, the equation is:
    .. math::
        Out = \sigma (W \\ast X + b)
    Where:
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
    Example:
        - Input:
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
        - Output:
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
        Where
        .. math::
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
    Parameters:
        num_channels(int): The number of channels in the input image.
        num_filters(int): The number of the filter. It is as same as the output
            feature map.
        filter_size(int or tuple): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        candidate_config(dict, optional): Dictionary descripts candidate config of this layer,
            such as {'kernel_size': (3, 5, 7), 'channel': (4, 6, 8)}, means the kernel size of 
            this layer can be choose from (3, 5, 7), the key of candidate_config
            only can be 'kernel_size', 'channel' and 'expand_ratio', 'channel' and 'expand_ratio'
            CANNOT be set at the same time. Default: None.
        transform_kernel(bool, optional): Whether to use transform matrix to transform a large filter
            to a small filter. Default: False.
        output_size(int or tuple, optional): The output image size. If output size is a
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above. Default: None.
        padding(int or tuple, optional): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: 0.
        stride(int or tuple, optional): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: 1.
        dilation(int or tuple, optional): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: 1.
        groups(int, optional): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            Default: None.
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
        **bias** (Parameter or None): the learnable bias of this layer.
    Returns:
        None
    Examples:
       .. code-block:: python
C
ceci3 已提交
478
          import paddle
C
ceci3 已提交
479
          import numpy as np
C
ceci3 已提交
480 481 482 483 484
          from paddleslim.nas.ofa.layers import SuperConv2DTranspose
          data = np.random.random((3, 32, 32, 5)).astype('float32')
          config = {'channel': 5}
          super_convtranspose = SuperConv2DTranspose(num_channels=32, num_filters=10, filter_size=3)
          ret = super_convtranspose(paddle.to_variable(data), config)
C
ceci3 已提交
485 486 487
    """

    def __init__(self,
C
ceci3 已提交
488 489 490
                 in_channels,
                 out_channels,
                 kernel_size,
C
ceci3 已提交
491 492 493 494
                 candidate_config={},
                 transform_kernel=False,
                 stride=1,
                 padding=0,
C
ceci3 已提交
495 496 497 498
                 output_padding=0,
                 dilation=1,
                 groups=1,
                 weight_attr=None,
C
ceci3 已提交
499
                 bias_attr=None,
C
ceci3 已提交
500
                 data_format="NCHW"):
C
ceci3 已提交
501
        super(SuperConv2DTranspose, self).__init__(
C
ceci3 已提交
502 503 504 505 506 507 508 509 510 511 512 513
            in_channels,
            out_channels,
            kernel_size,
            stride=stride,
            padding=padding,
            dilation=dilation,
            output_padding=output_padding,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)

C
ceci3 已提交
514 515 516 517 518 519 520 521 522 523
        self.candidate_config = candidate_config
        if len(self.candidate_config.items()) != 0:
            for k, v in candidate_config.items():
                candidate_config[k] = list(set(v))
        self.ks_set = candidate_config[
            'kernel_size'] if 'kernel_size' in candidate_config else None
        self.expand_ratio = candidate_config[
            'expand_ratio'] if 'expand_ratio' in candidate_config else None
        self.channel = candidate_config[
            'channel'] if 'channel' in candidate_config else None
C
ceci3 已提交
524
        self.base_channel = self._out_channels
C
ceci3 已提交
525
        if self.expand_ratio:
C
ceci3 已提交
526
            self.base_channel = int(self._out_channels / max(self.expand_ratio))
C
ceci3 已提交
527 528 529 530 531 532 533 534 535 536 537 538 539

        self.transform_kernel = transform_kernel
        if self.ks_set != None:
            self.ks_set.sort()
        if self.transform_kernel != False:
            scale_param = dict()
            ### create parameter to transform kernel
            for i in range(len(self.ks_set) - 1):
                ks_small = self.ks_set[i]
                ks_large = self.ks_set[i + 1]
                param_name = '%dto%d_matrix' % (ks_large, ks_small)
                ks_t = ks_small**2
                scale_param[param_name] = self.create_parameter(
C
ceci3 已提交
540
                    attr=paddle.ParamAttr(
C
ceci3 已提交
541
                        name=self._full_name + param_name,
C
ceci3 已提交
542
                        initializer=nn.initializer.Assign(np.eye(ks_t))),
C
ceci3 已提交
543 544 545 546 547 548 549
                    shape=(ks_t, ks_t),
                    dtype=self._dtype)

            for name, param in scale_param.items():
                setattr(self, name, param)

    def get_active_filter(self, in_nc, out_nc, kernel_size):
C
ceci3 已提交
550
        start, end = compute_start_end(self._kernel_size[0], kernel_size)
C
ceci3 已提交
551
        filters = self.weight[:in_nc, :out_nc, start:end, start:end]
C
ceci3 已提交
552
        if self.transform_kernel != False and kernel_size < self._kernel_size[
C
ceci3 已提交
553 554 555 556 557 558 559 560 561
                0]:
            start_filter = self.weight[:in_nc, :out_nc, :, :]
            for i in range(len(self.ks_set) - 1, 0, -1):
                src_ks = self.ks_set[i]
                if src_ks <= kernel_size:
                    break
                target_ks = self.ks_set[i - 1]
                start, end = compute_start_end(src_ks, target_ks)
                _input_filter = start_filter[:, :, start:end, start:end]
C
ceci3 已提交
562
                _input_filter = paddle.reshape(
C
ceci3 已提交
563 564 565
                    _input_filter,
                    shape=[(_input_filter.shape[0] * _input_filter.shape[1]),
                           -1])
C
ceci3 已提交
566 567 568 569 570
                _input_filter = paddle.matmul(
                    _input_filter,
                    self.__getattr__('%dto%d_matrix' %
                                     (src_ks, target_ks)), False, False)
                _input_filter = paddle.reshape(
C
ceci3 已提交
571 572 573 574 575 576 577 578 579
                    _input_filter,
                    shape=[
                        filters.shape[0], filters.shape[1], target_ks, target_ks
                    ])
                start_filter = _input_filter
            filters = start_filter
        return filters

    def get_groups_in_out_nc(self, in_nc, out_nc):
C
ceci3 已提交
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
        if self._groups == 1:
            ### standard conv
            return self._groups, in_nc, out_nc
        elif self._groups == self._in_channels:
            ### depthwise convolution
            if in_nc != out_nc:
                _logger.debug(
                    "input channel and output channel in depthwise conv is different, change output channel to input channel! origin channel:(in_nc {}, out_nc {}): ".
                    format(in_nc, out_nc))
            groups = in_nc
            out_nc = in_nc
            return groups, in_nc, out_nc
        else:
            ### groups convolution
            ### groups conv transpose: weight: (Cin, Cout/G, Kh, Kw)
            groups = self._groups
            out_nc = int(out_nc // groups)
            return groups, in_nc, out_nc

    def forward(self,
                input,
                output_size=None,
                kernel_size=None,
                expand_ratio=None,
                channel=None):
        """
        Parameters:
            input(Tensor): input tensor.
            output_size(int, optional): the size of the feature map after transpose convolution. Default: None.
            kernel_size(int, optional): the kernel size of the filter in actual calculation. Default: None.
            expand_ratio(int|float, optional): the expansion ratio of filter's channel number in actual calculation. Default: None.
            channel(int, optional): the expansion ratio of filter's channel number in actual calculation. Default: None.
        """
C
ceci3 已提交
613 614 615 616 617
        self.cur_config = {
            'kernel_size': kernel_size,
            'expand_ratio': expand_ratio,
            'channel': channel
        }
C
ceci3 已提交
618 619 620 621 622 623 624 625 626
        in_nc = int(input.shape[1])
        assert (
            expand_ratio == None or channel == None
        ), "expand_ratio and channel CANNOT be NOT None at the same time."
        if expand_ratio != None:
            out_nc = int(expand_ratio * self.base_channel)
        elif channel != None:
            out_nc = int(channel)
        else:
C
ceci3 已提交
627
            out_nc = self._out_channels
C
ceci3 已提交
628

C
ceci3 已提交
629
        ks = int(self._kernel_size[0]) if kernel_size == None else int(
C
ceci3 已提交
630 631 632 633 634 635
            kernel_size)

        groups, weight_in_nc, weight_out_nc = self.get_groups_in_out_nc(in_nc,
                                                                        out_nc)

        weight = self.get_active_filter(weight_in_nc, weight_out_nc, ks)
C
ceci3 已提交
636

C
ceci3 已提交
637 638 639 640
        if kernel_size != None or 'kernel_size' in self.candidate_config.keys():
            padding = convert_to_list(get_same_padding(ks), 2)
        else:
            padding = self._padding
C
ceci3 已提交
641

C
ceci3 已提交
642 643 644 645 646
        if output_size is None:
            output_padding = self.output_padding
        else:
            output_padding = 0

C
ceci3 已提交
647 648 649
        if self.bias is not None:
            bias = self.bias[:out_nc]
        else:
C
ceci3 已提交
650 651 652 653 654 655 656 657 658 659 660 661 662 663
            bias = self.bias

        out = F.conv2d_transpose(
            input,
            weight,
            bias=bias,
            padding=padding,
            output_padding=output_padding,
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
            output_size=output_size,
            data_format=self._data_format)
        return out
C
ceci3 已提交
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686


class SuperGroupConv2DTranspose(SuperConv2DTranspose):
    def get_groups_in_out_nc(self, in_nc, out_nc):
        ### groups convolution
        ### groups conv transpose: weight: (Cin, Cout/G, Kh, Kw)
        groups = self._groups
        out_nc = int(out_nc // groups)
        return groups, in_nc, out_nc


class SuperDepthwiseConv2DTranspose(SuperConv2DTranspose):
    def get_groups_in_out_nc(self, in_nc, out_nc):
        if in_nc != out_nc:
            _logger.debug(
                "input channel and output channel in depthwise conv transpose is different, change output channel to input channel! origin channel:(in_nc {}, out_nc {}): ".
                format(in_nc, out_nc))
        groups = in_nc
        out_nc = in_nc
        return groups, in_nc, out_nc


### NOTE: only search channel, write for GAN-compression, maybe change to SuperDepthwiseConv and SuperConv after.
C
ceci3 已提交
687
class SuperSeparableConv2D(nn.Layer):
C
ceci3 已提交
688 689 690 691 692 693 694 695 696
    """
    This interface is used to construct a callable object of the ``SuperSeparableConv2D``
    class.
    The difference between ```SuperSeparableConv2D``` and ```SeparableConv2D``` is: 
    ```SuperSeparableConv2D``` need to feed a config dictionary with the format of 
    {'channel', num_of_channel} represents the channels of the first conv's outputs and
    the second conv's inputs, used to change the first dimension of weight and bias, 
    only train the first channels of the weight and bias.

C
ceci3 已提交
697 698
    The architecture of super separable convolution2D op is [Conv2D, norm layer(may be BatchNorm2D
    or InstanceNorm2D), Conv2D]. The first conv is depthwise conv, the filter number is input channel
C
ceci3 已提交
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
    multiply scale_factor, the group is equal to the number of input channel. The second conv
    is standard conv, which filter size and stride size are 1. 

    Parameters:
        num_channels(int): The number of channels in the input image.
        num_filters(int): The number of the second conv's filter. It is as same as the output
            feature map.
        filter_size(int or tuple): The first conv's filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        padding(int or tuple, optional): The first conv's padding size. If padding is a tuple, 
            it must contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: 0.
        stride(int or tuple, optional): The first conv's stride size. If stride is a tuple,
            it must contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: 1.
        dilation(int or tuple, optional): The first conv's dilation size. If dilation is a tuple, 
            it must contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: 1.
C
ceci3 已提交
718
        norm_layer(class): The normalization layer between two convolution. Default: InstanceNorm2D.
C
ceci3 已提交
719 720 721 722 723 724 725 726 727 728 729
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of convolution.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, convolution
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        scale_factor(float): The scale factor of the first conv's output channel. Default: 1.
    Returns:
        None
    """

    def __init__(self,
C
ceci3 已提交
730 731 732
                 in_channels,
                 out_channels,
                 kernel_size,
C
ceci3 已提交
733 734 735 736
                 candidate_config={},
                 stride=1,
                 padding=0,
                 dilation=1,
C
ceci3 已提交
737
                 norm_layer=nn.InstanceNorm2D,
C
ceci3 已提交
738
                 bias_attr=None,
C
ceci3 已提交
739
                 scale_factor=1):
C
ceci3 已提交
740
        super(SuperSeparableConv2D, self).__init__()
C
ceci3 已提交
741 742 743 744 745
        self.conv = nn.LayerList([
            nn.Conv2D(
                in_channels=in_channels,
                out_channels=in_channels * scale_factor,
                kernel_size=kernel_size,
C
ceci3 已提交
746 747
                stride=stride,
                padding=padding,
C
ceci3 已提交
748
                groups=in_channels,
C
ceci3 已提交
749 750 751
                bias_attr=bias_attr)
        ])

C
ceci3 已提交
752
        self.conv.extend([norm_layer(in_channels * scale_factor)])
C
ceci3 已提交
753 754

        self.conv.extend([
C
ceci3 已提交
755 756 757 758
            nn.Conv2D(
                in_channels=in_channels * scale_factor,
                out_channels=out_channels,
                kernel_size=1,
C
ceci3 已提交
759 760 761 762 763 764 765
                stride=1,
                bias_attr=bias_attr)
        ])

        self.candidate_config = candidate_config
        self.expand_ratio = candidate_config[
            'expand_ratio'] if 'expand_ratio' in candidate_config else None
C
ceci3 已提交
766
        self.base_output_dim = self.conv[0]._out_channels
C
ceci3 已提交
767
        if self.expand_ratio != None:
C
ceci3 已提交
768
            self.base_output_dim = int(self.conv[0]._out_channels /
C
ceci3 已提交
769
                                       max(self.expand_ratio))
C
ceci3 已提交
770 771

    def forward(self, input, expand_ratio=None, channel=None):
C
ceci3 已提交
772 773 774 775 776 777
        """
        Parameters:
            input(Tensor): input tensor.
            expand_ratio(int|float, optional): the expansion ratio of filter's channel number in actual calculation. Default: None.
            channel(int, optional): the expansion ratio of filter's channel number in actual calculation. Default: None.
        """
C
ceci3 已提交
778
        self.cur_config = {'expand_ratio': expand_ratio, 'channel': channel}
C
ceci3 已提交
779 780 781 782 783 784 785 786 787
        in_nc = int(input.shape[1])
        assert (
            expand_ratio == None or channel == None
        ), "expand_ratio and channel CANNOT be NOT None at the same time."
        if expand_ratio != None:
            out_nc = int(expand_ratio * self.base_output_dim)
        elif channel != None:
            out_nc = int(channel)
        else:
C
ceci3 已提交
788
            out_nc = self.conv[0]._out_channels
C
ceci3 已提交
789 790 791 792 793 794

        weight = self.conv[0].weight[:in_nc]
        ###  conv1
        if self.conv[0].bias is not None:
            bias = self.conv[0].bias[:in_nc]
        else:
C
ceci3 已提交
795 796 797 798 799 800 801 802 803 804 805
            bias = self.conv[0].bias

        conv0_out = F.conv2d(
            input,
            weight,
            bias,
            stride=self.conv[0]._stride,
            padding=self.conv[0]._padding,
            dilation=self.conv[0]._dilation,
            groups=in_nc,
            data_format=self.conv[0]._data_format)
C
ceci3 已提交
806 807 808 809 810 811 812 813

        norm_out = self.conv[1](conv0_out)

        weight = self.conv[2].weight[:out_nc, :in_nc, :, :]

        if self.conv[2].bias is not None:
            bias = self.conv[2].bias[:out_nc]
        else:
C
ceci3 已提交
814 815 816 817 818 819 820 821 822 823 824
            bias = self.conv[2].bias

        conv1_out = F.conv2d(
            norm_out,
            weight,
            bias,
            stride=self.conv[2]._stride,
            padding=self.conv[2]._padding,
            dilation=self.conv[2]._dilation,
            groups=self.conv[2]._groups,
            data_format=self.conv[2]._data_format)
C
ceci3 已提交
825 826 827
        return conv1_out


C
ceci3 已提交
828
class SuperLinear(nn.Linear):
C
ceci3 已提交
829
    """
C
ceci3 已提交
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
    Super Fully-connected linear transformation layer. 
    
    For each input :math:`X` , the equation is:
    .. math::
        Out = XW + b
    where :math:`W` is the weight and :math:`b` is the bias.
    Linear layer takes only one multi-dimensional tensor as input with the
    shape :math:`[batch\_size, *, in\_features]` , where :math:`*` means any
    number of additional dimensions. It multiplies input tensor with the weight
    (a 2-D tensor of shape :math:`[in\_features, out\_features]` ) and produces
    an output tensor of shape :math:`[batch\_size, *, out\_features]` .
    If :math:`bias\_attr` is not False, the bias (a 1-D tensor of
    shape :math:`[out\_features]` ) will be created and added to the output.
    Parameters:
        in_features (int): The number of input units.
        out_features (int): The number of output units.
        candidate_config(dict, optional): Dictionary descripts candidate config of this layer,
            such as {'channel': (4, 6, 8)}, the key of candidate_config
            only can be 'channel' and 'expand_ratio', 'channel' and 'expand_ratio'
            CANNOT be set at the same time. Default: None.
        weight_attr (ParamAttr, optional): The attribute for the learnable
            weight of this layer. The default value is None and the weight will be
            initialized to zero. For detailed information, please refer to
            paddle.ParamAttr.
        bias_attr (ParamAttr|bool, optional): The attribute for the learnable bias
            of this layer. If it is set to False, no bias will be added to the output.
            If it is set to None or one kind of ParamAttr, a bias parameter will
            be created according to ParamAttr. For detailed information, please refer
            to paddle.ParamAttr. The default value is None and the bias will be
            initialized to zero.
        name (str, optional): Normally there is no need for user to set this parameter.
            For detailed information, please refer to :ref:`api_guide_Name` .
    Attribute:
        **weight** (Parameter): the learnable weight of this layer.
        **bias** (Parameter): the learnable bias of this layer.
    Shape:
        - input: Multi-dimentional tensor with shape :math:`[batch\_size, *, in\_features]` .
        - output: Multi-dimentional tensor with shape :math:`[batch\_size, *, out\_features]` .
    Examples:
        .. code-block:: python
          import numpy as np
          import paddle
          from paddleslim.nas.ofa.layers import SuperLinear
          
          data = np.random.uniform(-1, 1, [32, 64] ).astype('float32')
          config = {'channel': 16}
          linear = SuperLinear(32, 64)
          data = paddle.to_variable(data)
          res = linear(data, **config)
C
ceci3 已提交
879 880 881
    """

    def __init__(self,
C
ceci3 已提交
882 883
                 in_features,
                 out_features,
C
ceci3 已提交
884
                 candidate_config={},
C
ceci3 已提交
885
                 weight_attr=None,
C
ceci3 已提交
886
                 bias_attr=None,
C
ceci3 已提交
887 888 889 890
                 name=None):
        super(SuperLinear, self).__init__(in_features, out_features,
                                          weight_attr, bias_attr, name)
        self._weight_attr = weight_attr
C
ceci3 已提交
891
        self._bias_attr = bias_attr
C
ceci3 已提交
892 893
        self._in_features = in_features
        self._out_features = out_features
C
ceci3 已提交
894 895 896
        self.candidate_config = candidate_config
        self.expand_ratio = candidate_config[
            'expand_ratio'] if 'expand_ratio' in candidate_config else None
C
ceci3 已提交
897
        self.base_output_dim = self._out_features
C
ceci3 已提交
898
        if self.expand_ratio != None:
C
ceci3 已提交
899 900
            self.base_output_dim = int(self._out_features /
                                       max(self.expand_ratio))
C
ceci3 已提交
901 902

    def forward(self, input, expand_ratio=None, channel=None):
C
ceci3 已提交
903 904 905 906 907 908
        """
        Parameters:
            input(Tensor): input tensor.
            expand_ratio(int|float, optional): the expansion ratio of filter's channel number in actual calculation. Default: None.
            channel(int, optional): the expansion ratio of filter's channel number in actual calculation. Default: None.
        """
C
ceci3 已提交
909
        self.cur_config = {'expand_ratio': expand_ratio, 'channel': channel}
C
ceci3 已提交
910
        ### weight: (Cin, Cout)
C
ceci3 已提交
911
        in_nc = int(input.shape[-1])
C
ceci3 已提交
912 913 914 915 916 917 918 919
        assert (
            expand_ratio == None or channel == None
        ), "expand_ratio and channel CANNOT be NOT None at the same time."
        if expand_ratio != None:
            out_nc = int(expand_ratio * self.base_output_dim)
        elif channel != None:
            out_nc = int(channel)
        else:
C
ceci3 已提交
920
            out_nc = self._out_features
C
ceci3 已提交
921 922 923 924 925

        weight = self.weight[:in_nc, :out_nc]
        if self._bias_attr != False:
            bias = self.bias[:out_nc]
        else:
C
ceci3 已提交
926
            bias = self.bias
C
ceci3 已提交
927

C
ceci3 已提交
928 929
        out = F.linear(x=input, weight=weight, bias=bias, name=self.name)
        return out
C
ceci3 已提交
930 931


C
ceci3 已提交
932
class SuperBatchNorm2D(nn.BatchNorm2D):
C
ceci3 已提交
933
    """
C
ceci3 已提交
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
    This interface is used to construct a callable object of the ``SuperBatchNorm2D`` class. 

    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
            of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
            will create ParamAttr as weight_attr. If it is set to Fasle, the weight is not learnable.
            If the Initializer of the weight_attr is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of batch_norm.
            If it is set to None or one attribute of ParamAttr, batch_norm
            will create ParamAttr as bias_attr. If it is set to Fasle, the weight is not learnable.
            If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None.
        data_format(str, optional): Specify the input data format, the data format can be "NCHW" or "NHWC". Default: NCHW.
        name(str, optional): Name for the BatchNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Examples:
       .. code-block:: python
         import paddle
         import numpy as np
         from paddleslim.nas.ofa.layers import SuperBatchNorm2D
         
         np.random.seed(123)
         x_data = np.random.random(size=(2, 5, 2, 3)).astype('float32')
         x = paddle.to_tensor(x_data)
         batch_norm = SuperBatchNorm2D(5)
         batch_norm_out = batch_norm(x)
C
ceci3 已提交
962 963 964
    """

    def __init__(self,
C
ceci3 已提交
965
                 num_features,
C
ceci3 已提交
966 967
                 momentum=0.9,
                 epsilon=1e-05,
C
ceci3 已提交
968
                 weight_attr=None,
C
ceci3 已提交
969
                 bias_attr=None,
C
ceci3 已提交
970 971 972 973 974
                 data_format='NCHW',
                 name=None):
        super(SuperBatchNorm2D, self).__init__(num_features, momentum, epsilon,
                                               weight_attr, bias_attr,
                                               data_format, name)
C
ceci3 已提交
975 976

    def forward(self, input):
C
ceci3 已提交
977 978
        self._check_data_format(self._data_format)
        self._check_input_dim(input)
C
ceci3 已提交
979 980 981 982 983 984 985 986

        feature_dim = int(input.shape[1])

        weight = self.weight[:feature_dim]
        bias = self.bias[:feature_dim]
        mean = self._mean[:feature_dim]
        variance = self._variance[:feature_dim]

C
ceci3 已提交
987 988 989 990 991 992 993 994 995 996
        return F.batch_norm(
            input,
            mean,
            variance,
            weight=weight,
            bias=bias,
            training=self.training,
            momentum=self._momentum,
            epsilon=self._epsilon,
            data_format=self._data_format)
C
ceci3 已提交
997 998


C
ceci3 已提交
999
class SuperInstanceNorm2D(nn.InstanceNorm2D):
C
ceci3 已提交
1000
    """
C
ceci3 已提交
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
    This interface is used to construct a callable object of the ``SuperBatchNorm2D`` class. 

    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
            of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
            will create ParamAttr as weight_attr. If it is set to Fasle, the weight is not learnable.
            If the Initializer of the weight_attr is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of batch_norm.
            If it is set to None or one attribute of ParamAttr, batch_norm
            will create ParamAttr as bias_attr. If it is set to Fasle, the weight is not learnable.
            If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None.
        data_format(str, optional): Specify the input data format, the data format can be "NCHW" or "NHWC". Default: NCHW.
        name(str, optional): Name for the BatchNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Examples:
       .. code-block:: python
         import paddle
         import numpy as np
         from paddleslim.nas.ofa.layers import SuperInstanceNorm2D
         
         np.random.seed(123)
         x_data = np.random.random(size=(2, 5, 2, 3)).astype('float32')
         x = paddle.to_tensor(x_data)
         instance_norm = SuperInstanceNorm2D(5)
         out = instance_norm(x)
C
ceci3 已提交
1029 1030 1031
    """

    def __init__(self,
C
ceci3 已提交
1032
                 num_features,
C
ceci3 已提交
1033
                 epsilon=1e-05,
C
ceci3 已提交
1034 1035
                 momentum=0.9,
                 weight_attr=None,
C
ceci3 已提交
1036
                 bias_attr=None,
C
ceci3 已提交
1037 1038 1039 1040 1041
                 data_format='NCHW',
                 name=None):
        super(SuperInstanceNorm2D, self).__init__(num_features, epsilon,
                                                  momentum, weight_attr,
                                                  bias_attr, data_format, name)
C
ceci3 已提交
1042 1043

    def forward(self, input):
C
ceci3 已提交
1044
        self._check_input_dim(input)
C
ceci3 已提交
1045 1046

        feature_dim = int(input.shape[1])
C
ceci3 已提交
1047
        if self._weight_attr == False and self._bias_attr == False:
C
ceci3 已提交
1048 1049 1050 1051 1052 1053
            scale = None
            bias = None
        else:
            scale = self.scale[:feature_dim]
            bias = self.bias[:feature_dim]

C
ceci3 已提交
1054 1055 1056 1057 1058 1059
        return F.instance_norm(input, scale, bias, eps=self._epsilon)


class SuperLayerNorm(nn.LayerNorm):
    """
    This interface is used to construct a callable object of the ``SuperLayerNorm`` class.
C
ceci3 已提交
1060

C
ceci3 已提交
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
    The difference between ```SuperLayerNorm``` and ```LayerNorm``` is: 
    the trained weight and bias in ```SuperLayerNorm``` can be changed according to the shape of input,
    only train the first channels of the weight and bias.

    Parameters:
        normalized_shape(int|list|tuple): Input shape from an expected input of
            size :math:`[*, normalized_shape[0], normalized_shape[1], ..., normalized_shape[-1]]`.
            If it is a single integer, this module will normalize over the last dimension
            which is expected to be of that specific size.
        epsilon(float, optional): The small value added to the variance to prevent
            division by zero. Default: 1e-05.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for the learnable
            gain :math:`g`. If False, weight is None. If is None, a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the learnable
            bias :math:`b`. If is False, bias is None. If is None, a default :code:`ParamAttr` would be added as bias. The
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
        name(str, optional): Name for the LayerNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..
    Shape:
        - x: 2-D, 3-D, 4-D or 5-D tensor.
        - output: same shape as input x.
    Returns:
        None
    Examples:
        .. code-block:: python
          import paddle
          import numpy as np
          from paddleslim.nas.ofa.layers import SuperLayerNorm
          
          np.random.seed(123)
          x_data = np.random.random(size=(2, 2, 2, 3)).astype('float32')
          x = paddle.to_tensor(x_data)
          layer_norm = SuperLayerNorm(x_data.shape[1:])
          layer_norm_out = layer_norm(x)
    """
C
ceci3 已提交
1096 1097 1098 1099

    def __init__(self,
                 normalized_shape,
                 epsilon=1e-05,
C
ceci3 已提交
1100
                 weight_attr=None,
C
ceci3 已提交
1101
                 bias_attr=None,
C
ceci3 已提交
1102 1103 1104
                 name=None):
        super(SuperLayerNorm, self).__init__(normalized_shape, epsilon,
                                             weight_attr, bias_attr, name)
C
ceci3 已提交
1105 1106 1107

    def forward(self, input):
        ### TODO(ceci3): fix if normalized_shape is not a single number
C
ceci3 已提交
1108 1109 1110
        input_ndim = len(list(input.shape))
        normalized_ndim = len(self._normalized_shape)
        begin_norm_axis = input_ndim - normalized_ndim
C
ceci3 已提交
1111
        feature_dim = int(input.shape[-1])
C
ceci3 已提交
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
        if self._weight_attr != False:
            weight = self.weight[:feature_dim]
        else:
            weight = None
        if self._bias_attr != False:
            bias = self.bias[:feature_dim]
        else:
            bias = None
        out, _, _ = core.ops.layer_norm(input, weight, bias, 'epsilon',
                                        self._epsilon, 'begin_norm_axis',
                                        begin_norm_axis)
        return out
C
ceci3 已提交
1124 1125


C
ceci3 已提交
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
class SuperEmbedding(nn.Embedding):
    """
    This interface is used to construct a callable object of the ``SuperEmbedding`` class.

    Parameters:
        num_embeddings (int): Just one element which indicate the size
            of the dictionary of embeddings.
        embedding_dim:  Just one element which indicate the size of each embedding vector respectively.
        padding_idx(int|long|None): padding_idx needs to be in the interval [-num_embeddings, num_embeddings).
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        sparse(bool): The flag indicating whether to use sparse update. This parameter only
            affects the performance of the backwards gradient update. It is recommended to set
            True because sparse update is faster. But some optimizer does not support sparse update,
            such as :ref:`api_optimizer_AdadeltaOptimizer` , :ref:`api_optimizer_AdamaxOptimizer` ,
            :ref:`api_optimizer_DecayedAdagradOptimizer` , :ref:`api_optimizer_FtrlOptimizer` ,
            :ref:`api_optimizer_LambOptimizer` and :ref:`api_optimizer_LarsMomentumOptimizer` .
            In these case, sparse must be False. Default: False.
        weight_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_ParamAttr` . In addition,
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter.
            The local word vector needs to be transformed into numpy format, and the shape of local word
            vector should be consistent with :attr:`num_embeddings` . Then :ref:`api_initializer_NumpyArrayInitializer`
            is used to load custom or pre-trained word vectors. See code example for details.
        name(str|None): For detailed information, please refer
               to :ref:`api_guide_Name`. Usually name is no need to set and
               None by default.
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
    Returns:
        None
    Examples:
        .. code-block:: python
          import numpy as np
          import paddle
          from paddleslim.nas.ofa.layers import SuperEmbedding
          
          data = np.random.uniform(-1, 1, [32, 64]).astype('float32')
          config = {'channel': 16}
          emb = SuperEmbedding(32, 64)
          data = paddle.to_variable(data)
          res = emb(data, **config)
    """

C
ceci3 已提交
1172
    def __init__(self,
C
ceci3 已提交
1173 1174
                 num_embeddings,
                 embedding_dim,
C
ceci3 已提交
1175 1176
                 candidate_config={},
                 padding_idx=None,
C
ceci3 已提交
1177 1178 1179 1180 1181 1182
                 sparse=False,
                 weight_attr=None,
                 name=None):
        super(SuperEmbedding, self).__init__(num_embeddings, embedding_dim,
                                             padding_idx, sparse, weight_attr,
                                             name)
C
ceci3 已提交
1183 1184 1185
        self.candidate_config = candidate_config
        self.expand_ratio = candidate_config[
            'expand_ratio'] if 'expand_ratio' in candidate_config else None
C
ceci3 已提交
1186
        self.base_output_dim = self._embedding_dim
C
ceci3 已提交
1187
        if self.expand_ratio != None:
C
ceci3 已提交
1188 1189
            self.base_output_dim = int(self._embedding_dim /
                                       max(self.expand_ratio))
C
ceci3 已提交
1190 1191

    def forward(self, input, expand_ratio=None, channel=None):
C
ceci3 已提交
1192 1193 1194 1195 1196 1197
        """
        Parameters:
            input(Tensor): input tensor.
            expand_ratio(int|float, optional): the expansion ratio of filter's channel number in actual calculation. Default: None.
            channel(int, optional): the expansion ratio of filter's channel number in actual calculation. Default: None.
        """
C
ceci3 已提交
1198 1199 1200 1201 1202 1203 1204 1205
        assert (
            expand_ratio == None or channel == None
        ), "expand_ratio and channel CANNOT be NOT None at the same time."
        if expand_ratio != None:
            out_nc = int(expand_ratio * self.base_output_dim)
        elif channel != None:
            out_nc = int(channel)
        else:
C
ceci3 已提交
1206
            out_nc = self._embedding_dim
C
ceci3 已提交
1207 1208

        weight = self.weight[:, :out_nc]
C
ceci3 已提交
1209 1210 1211 1212 1213 1214
        return F.embedding(
            input,
            weight=weight,
            padding_idx=self._padding_idx,
            sparse=self._sparse,
            name=self._name)