Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSlim
提交
b735a396
P
PaddleSlim
项目概览
PaddlePaddle
/
PaddleSlim
1 年多 前同步成功
通知
51
Star
1434
Fork
344
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
16
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSlim
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
16
合并请求
16
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
b735a396
编写于
3月 24, 2023
作者:
W
whs
提交者:
GitHub
3月 24, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fix pruning to support reshape2 for bias (#1700)
上级
2fd40962
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
66 addition
and
55 deletion
+66
-55
paddleslim/nas/ofa/layers.py
paddleslim/nas/ofa/layers.py
+39
-42
paddleslim/prune/prune_worker.py
paddleslim/prune/prune_worker.py
+5
-1
paddleslim/prune/pruner.py
paddleslim/prune/pruner.py
+13
-4
tests/dygraph/test_prune_walker.py
tests/dygraph/test_prune_walker.py
+1
-0
tests/test_dy2prog.py
tests/test_dy2prog.py
+8
-8
未找到文件。
paddleslim/nas/ofa/layers.py
浏览文件 @
b735a396
...
...
@@ -208,8 +208,7 @@ class SuperConv2D(paddle.nn.Conv2D):
filters
=
self
.
weight
else
:
filters
=
self
.
weight
[:
out_nc
,
:
in_nc
,
start
:
end
,
start
:
end
]
if
self
.
transform_kernel
!=
False
and
kernel_size
<
self
.
_kernel_size
[
0
]:
if
self
.
transform_kernel
!=
False
and
kernel_size
<
self
.
_kernel_size
[
0
]:
### if transform kernel, then use matrix to transform
start_filter
=
self
.
weight
[:
out_nc
,
:
in_nc
,
:,
:]
for
i
in
range
(
len
(
self
.
ks_set
)
-
1
,
0
,
-
1
):
...
...
@@ -223,10 +222,11 @@ class SuperConv2D(paddle.nn.Conv2D):
_input_filter
,
shape
=
[(
_input_filter
.
shape
[
0
]
*
_input_filter
.
shape
[
1
]),
-
1
])
_input_filter
=
paddle
.
matmul
(
_input_filter
,
self
.
__getattr__
(
'%dto%d_matrix'
%
(
src_ks
,
target_ks
)),
False
,
False
)
_input_filter
=
paddle
.
matmul
(
_input_filter
,
self
.
__getattr__
(
'%dto%d_matrix'
%
(
src_ks
,
target_ks
)),
False
,
False
)
_input_filter
=
paddle
.
reshape
(
_input_filter
,
shape
=
[
...
...
@@ -279,11 +279,11 @@ class SuperConv2D(paddle.nn.Conv2D):
out_nc
=
int
(
channel
)
else
:
out_nc
=
self
.
_out_channels
ks
=
int
(
self
.
_kernel_size
[
0
])
if
kernel_size
==
None
else
int
(
kernel_size
)
ks
=
int
(
self
.
_kernel_size
[
0
])
if
kernel_size
==
None
else
int
(
kernel_size
)
groups
,
weight_in_nc
,
weight_out_nc
=
self
.
get_groups_in_out_nc
(
in_nc
,
out_nc
)
groups
,
weight_in_nc
,
weight_out_nc
=
self
.
get_groups_in_out_nc
(
in_nc
,
out_nc
)
weight
=
self
.
get_active_filter
(
weight_in_nc
,
weight_out_nc
,
ks
)
...
...
@@ -293,7 +293,7 @@ class SuperConv2D(paddle.nn.Conv2D):
padding
=
self
.
_padding
if
self
.
bias
is
not
None
:
### if conv is depthwise conv, expand_ratio=0, but conv' expand
### if conv is depthwise conv, expand_ratio=0, but conv' expand
### ratio before depthwise conv is not equal to 1.0, the shape of the weight
### about this depthwise conv is changed, but out_nc is not change,
### so need to change bias shape according to the weight_out_nc.
...
...
@@ -513,8 +513,7 @@ class SuperConv2DTranspose(paddle.nn.Conv2DTranspose):
def
get_active_filter
(
self
,
in_nc
,
out_nc
,
kernel_size
):
start
,
end
=
compute_start_end
(
self
.
_kernel_size
[
0
],
kernel_size
)
filters
=
self
.
weight
[:
in_nc
,
:
out_nc
,
start
:
end
,
start
:
end
]
if
self
.
transform_kernel
!=
False
and
kernel_size
<
self
.
_kernel_size
[
0
]:
if
self
.
transform_kernel
!=
False
and
kernel_size
<
self
.
_kernel_size
[
0
]:
start_filter
=
self
.
weight
[:
in_nc
,
:
out_nc
,
:,
:]
for
i
in
range
(
len
(
self
.
ks_set
)
-
1
,
0
,
-
1
):
src_ks
=
self
.
ks_set
[
i
]
...
...
@@ -527,10 +526,11 @@ class SuperConv2DTranspose(paddle.nn.Conv2DTranspose):
_input_filter
,
shape
=
[(
_input_filter
.
shape
[
0
]
*
_input_filter
.
shape
[
1
]),
-
1
])
_input_filter
=
paddle
.
matmul
(
_input_filter
,
self
.
__getattr__
(
'%dto%d_matrix'
%
(
src_ks
,
target_ks
)),
False
,
False
)
_input_filter
=
paddle
.
matmul
(
_input_filter
,
self
.
__getattr__
(
'%dto%d_matrix'
%
(
src_ks
,
target_ks
)),
False
,
False
)
_input_filter
=
paddle
.
reshape
(
_input_filter
,
shape
=
[
...
...
@@ -590,11 +590,11 @@ class SuperConv2DTranspose(paddle.nn.Conv2DTranspose):
else
:
out_nc
=
self
.
_out_channels
ks
=
int
(
self
.
_kernel_size
[
0
])
if
kernel_size
==
None
else
int
(
kernel_size
)
ks
=
int
(
self
.
_kernel_size
[
0
])
if
kernel_size
==
None
else
int
(
kernel_size
)
groups
,
weight_in_nc
,
weight_out_nc
=
self
.
get_groups_in_out_nc
(
in_nc
,
out_nc
)
groups
,
weight_in_nc
,
weight_out_nc
=
self
.
get_groups_in_out_nc
(
in_nc
,
out_nc
)
weight
=
self
.
get_active_filter
(
weight_in_nc
,
weight_out_nc
,
ks
)
...
...
@@ -731,8 +731,8 @@ class SuperSeparableConv2D(paddle.nn.Layer):
'expand_ratio'
]
if
'expand_ratio'
in
candidate_config
else
None
self
.
base_output_dim
=
self
.
conv
[
0
].
_out_channels
if
self
.
expand_ratio
!=
None
:
self
.
base_output_dim
=
int
(
self
.
conv
[
0
].
_out_channels
/
max
(
self
.
expand_ratio
))
self
.
base_output_dim
=
int
(
self
.
conv
[
0
].
_out_channels
/
max
(
self
.
expand_ratio
))
def
forward
(
self
,
input
,
expand_ratio
=
None
,
channel
=
None
):
"""
...
...
@@ -863,8 +863,8 @@ class SuperLinear(paddle.nn.Linear):
'expand_ratio'
]
if
'expand_ratio'
in
candidate_config
else
None
self
.
base_output_dim
=
self
.
_out_features
if
self
.
expand_ratio
!=
None
:
self
.
base_output_dim
=
int
(
self
.
_out_features
/
max
(
self
.
expand_ratio
))
self
.
base_output_dim
=
int
(
self
.
_out_features
/
max
(
self
.
expand_ratio
))
def
forward
(
self
,
input
,
expand_ratio
=
None
,
channel
=
None
):
"""
...
...
@@ -941,9 +941,9 @@ class SuperBatchNorm2D(paddle.nn.BatchNorm2D):
data_format
=
'NCHW'
,
use_global_stats
=
None
,
name
=
None
):
super
(
SuperBatchNorm2D
,
self
).
__init__
(
num_features
,
momentum
,
epsilon
,
weight_attr
,
bias
_attr
,
data_format
,
use_global_stats
,
name
)
super
(
SuperBatchNorm2D
,
self
).
__init__
(
num_features
,
momentum
,
epsilon
,
weight
_attr
,
bias_attr
,
data_format
,
use_global_stats
,
name
)
self
.
cur_config
=
None
def
forward
(
self
,
input
):
...
...
@@ -1047,8 +1047,7 @@ class SuperBatchNorm2D(paddle.nn.BatchNorm2D):
"Variance"
:
[
variance
]
}
helper
=
paddle
.
fluid
.
dygraph
.
layer_object_helper
.
LayerObjectHelper
(
'batch_norm'
)
helper
=
paddle
.
fluid
.
layer_helper
.
LayerHelper
(
'batch_norm'
)
param_dtype
=
input
.
dtype
if
input
.
dtype
!=
'float16'
else
'float32'
saved_mean
=
helper
.
create_variable_for_type_inference
(
...
...
@@ -1150,8 +1149,7 @@ class SuperSyncBatchNorm(paddle.nn.SyncBatchNorm):
"Variance"
:
[
self
.
_variance
]
}
helper
=
paddle
.
fluid
.
dygraph
.
layer_object_helper
.
LayerObjectHelper
(
'sync_batch_norm'
)
helper
=
paddle
.
fluid
.
layer_helper
.
LayerHelper
(
'sync_batch_norm'
)
saved_mean
=
helper
.
create_variable_for_type_inference
(
dtype
=
self
.
_dtype
,
stop_gradient
=
True
)
...
...
@@ -1211,9 +1209,9 @@ class SuperInstanceNorm2D(paddle.nn.InstanceNorm2D):
bias_attr
=
None
,
data_format
=
'NCHW'
,
name
=
None
):
super
(
SuperInstanceNorm2D
,
self
).
__init__
(
num_features
,
epsilon
,
momentum
,
weight_attr
,
bias_attr
,
data_format
,
name
)
super
(
SuperInstanceNorm2D
,
self
).
__init__
(
num_features
,
epsilon
,
momentum
,
weight_attr
,
bias_attr
,
data_format
,
name
)
self
.
cur_config
=
None
def
forward
(
self
,
input
):
...
...
@@ -1319,8 +1317,7 @@ class SuperLayerNorm(paddle.nn.LayerNorm):
"begin_norm_axis"
:
begin_norm_axis
}
helper
=
paddle
.
fluid
.
dygraph
.
layer_object_helper
.
LayerObjectHelper
(
'layer_norm'
)
helper
=
paddle
.
fluid
.
layer_helper
.
LayerHelper
(
'layer_norm'
)
dtype
=
input
.
dtype
mean_out
=
helper
.
create_variable_for_type_inference
(
...
...
@@ -1399,17 +1396,17 @@ class SuperEmbedding(paddle.nn.Embedding):
sparse
=
False
,
weight_attr
=
None
,
name
=
None
):
super
(
SuperEmbedding
,
self
).
__init__
(
num_embeddings
,
embedding_dim
,
padding_idx
,
sparse
,
weight_attr
,
name
)
super
(
SuperEmbedding
,
self
).
__init__
(
num_embeddings
,
embedding_dim
,
padding_idx
,
sparse
,
weight_attr
,
name
)
self
.
candidate_config
=
candidate_config
self
.
cur_config
=
None
self
.
expand_ratio
=
candidate_config
[
'expand_ratio'
]
if
'expand_ratio'
in
candidate_config
else
None
self
.
base_output_dim
=
self
.
_embedding_dim
if
self
.
expand_ratio
!=
None
:
self
.
base_output_dim
=
int
(
self
.
_embedding_dim
/
max
(
self
.
expand_ratio
))
self
.
base_output_dim
=
int
(
self
.
_embedding_dim
/
max
(
self
.
expand_ratio
))
def
forward
(
self
,
input
,
expand_ratio
=
None
,
channel
=
None
):
"""
...
...
paddleslim/prune/prune_worker.py
浏览文件 @
b735a396
...
...
@@ -233,7 +233,7 @@ class reshape2(PruneWorker):
assert
self
.
_valid_reshape2
(
shape
),
"we don't support the shape {} in pruning"
.
format
(
shape
)
# assert self._valid_pruned_axis(shape, pruned_axis), "we don't support pruned axis is {} when shape is changing from {} to {}".format(pruned_axis, in_shape, out_shape)
self
.
append_pruned_vars
(
xshape_var
,
pruned_axis
+
1
,
transforms
)
#
self.append_pruned_vars(xshape_var, pruned_axis + 1, transforms)
if
var
in
self
.
op
.
inputs
(
"X"
):
if
(
len
(
out_shape
)
>
len
(
in_shape
)):
#self.op.set_attr('shape',
...
...
@@ -254,6 +254,10 @@ class reshape2(PruneWorker):
#self.op.set_attr('shape',
# [0, 0, int(shape[2] * 0.875), shape[3]])
transform
=
{
"repeat"
:
out_shape
[
pruned_axis
+
1
]}
elif
len
(
in_shape
)
==
1
and
len
(
out_shape
)
==
4
and
out_shape
[
pruned_axis
]
==
in_shape
[
0
]:
transform
=
{}
self
.
append_pruned_vars
(
in_var
,
0
,
transforms
)
else
:
transform
=
{}
self
.
_visit_and_search
(
in_var
,
pruned_axis
,
...
...
paddleslim/prune/pruner.py
浏览文件 @
b735a396
...
...
@@ -50,6 +50,14 @@ class Pruner():
self
.
pruned_weights
=
False
def
_update_reshape_op
(
self
,
param
:
VarWrapper
,
op
:
OpWrapper
,
new_shape
):
if
op
.
type
()
==
'reshape2'
:
_param_shape
=
param
.
shape
()
_shape_attr
=
op
.
attr
(
'shape'
)
if
len
(
_param_shape
)
==
1
and
_param_shape
[
0
]
==
_shape_attr
[
1
]:
_shape_attr
[
1
]
=
new_shape
[
0
]
op
.
set_attr
(
"shape"
,
_shape_attr
)
def
prune
(
self
,
program
,
scope
,
...
...
@@ -111,8 +119,8 @@ class Pruner():
merge_pruned_params
[
param
][
pruned_axis
].
append
(
pruned_idx
)
for
param_name
in
merge_pruned_params
:
for
pruned_axis
in
merge_pruned_params
[
param_name
]:
pruned_idx
=
np
.
concatenate
(
merge_pruned_params
[
param_name
][
pruned_axis
])
pruned_idx
=
np
.
concatenate
(
merge_pruned_params
[
param_name
][
pruned_axis
])
param
=
graph
.
var
(
param_name
)
_groups
=
1
if
not
lazy
:
...
...
@@ -138,6 +146,7 @@ class Pruner():
param_shape_backup
[
param
.
name
()]
=
origin_shape
new_shape
=
list
(
param
.
shape
())
new_shape
[
pruned_axis
]
-=
len
(
pruned_idx
)
self
.
_update_reshape_op
(
param
,
op
,
new_shape
)
param
.
set_shape
(
new_shape
)
if
not
only_graph
and
(
_groups
==
1
or
pruned_axis
!=
1
):
...
...
@@ -159,8 +168,8 @@ class Pruner():
except
IndexError
as
e
:
_logger
.
error
(
"Pruning {} with shape {} on axis {}, but get [{}]; "
.
format
(
param
.
name
(),
param_t
.
shape
(),
pruned_axis
,
e
))
format
(
param
.
name
(),
param_t
.
shape
(),
pruned_axis
,
e
))
graph
.
infer_shape
()
self
.
pruned_weights
=
(
not
only_graph
)
...
...
tests/dygraph/test_prune_walker.py
浏览文件 @
b735a396
...
...
@@ -25,6 +25,7 @@ class TestWalker(unittest.TestCase):
x
=
np
.
random
.
uniform
(
-
1
,
1
,
x_shape
).
astype
(
'float32'
)
pruner
=
L1NormFilterPruner
(
net
,
[
paddle
.
to_tensor
(
x
)])
pruner
.
prune_vars
({
"conv2d_0.w_0"
:
0.2
},
0
)
net
(
paddle
.
to_tensor
(
x
))
self
.
assertTrue
(
net
.
linear
.
weight
.
shape
==
[
5400
,
5
])
...
...
tests/test_dy2prog.py
浏览文件 @
b735a396
...
...
@@ -32,8 +32,8 @@ class TestEagerDygraph2Program(unittest.TestCase):
def
prepare_inputs
(
self
):
self
.
inputs
=
[
3
,
28
,
28
]
self
.
ops
=
[
'assign_value'
,
'reshape2'
,
'conv2d'
,
'
elementwise_add'
,
'pool2
d'
,
'reshape2'
,
'matmul_v2'
,
'elementwise_add'
'assign_value'
,
'reshape2'
,
'conv2d'
,
'
reshape2'
,
'elementwise_ad
d'
,
'
pool2d'
,
'
reshape2'
,
'matmul_v2'
,
'elementwise_add'
]
def
prepare_layer
(
self
):
...
...
@@ -51,8 +51,8 @@ class TestEagerDygraph2Program2(TestEagerDygraph2Program):
def
prepare_inputs
(
self
):
self
.
inputs
=
[[
3
,
28
,
28
]]
self
.
ops
=
[
'assign_value'
,
'reshape2'
,
'conv2d'
,
'
elementwise_add'
,
'pool2
d'
,
'reshape2'
,
'matmul_v2'
,
'elementwise_add'
'assign_value'
,
'reshape2'
,
'conv2d'
,
'
reshape2'
,
'elementwise_ad
d'
,
'
pool2d'
,
'
reshape2'
,
'matmul_v2'
,
'elementwise_add'
]
...
...
@@ -60,8 +60,8 @@ class TestEagerDygraph2Program3(TestEagerDygraph2Program):
def
prepare_inputs
(
self
):
self
.
inputs
=
paddle
.
randn
([
3
,
28
,
28
])
self
.
ops
=
[
'reshape2'
,
'conv2d'
,
'
elementwise_add'
,
'pool2d'
,
'reshape2
'
,
'matmul_v2'
,
'elementwise_add'
'reshape2'
,
'conv2d'
,
'
reshape2'
,
'elementwise_add'
,
'pool2d
'
,
'
reshape2'
,
'
matmul_v2'
,
'elementwise_add'
]
...
...
@@ -69,8 +69,8 @@ class TestEagerDygraph2Program4(TestEagerDygraph2Program):
def
prepare_inputs
(
self
):
self
.
inputs
=
[
paddle
.
randn
([
3
,
28
,
28
])]
self
.
ops
=
[
'reshape2'
,
'conv2d'
,
'
elementwise_add'
,
'pool2d'
,
'reshape2
'
,
'matmul_v2'
,
'elementwise_add'
'reshape2'
,
'conv2d'
,
'
reshape2'
,
'elementwise_add'
,
'pool2d
'
,
'
reshape2'
,
'
matmul_v2'
,
'elementwise_add'
]
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录