layers.py 55.9 KB
Newer Older
C
Chang Xu 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
C
ceci3 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

C
ceci3 已提交
15 16
### NOTE: the API of this file is based on Paddle2.0, the API in layers_old.py is based on Paddle1.8

C
ceci3 已提交
17 18
import numpy as np
import logging
C
ceci3 已提交
19 20 21
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
C
ceci3 已提交
22 23 24 25
import paddle.fluid.core as core

from ...common import get_logger
from .utils.utils import compute_start_end, get_same_padding, convert_to_list
26
from .layers_base import *
C
ceci3 已提交
27 28 29

__all__ = [
    'SuperConv2D', 'SuperConv2DTranspose', 'SuperSeparableConv2D',
30
    'SuperBatchNorm2D', 'SuperLinear', 'SuperInstanceNorm2D',
C
ceci3 已提交
31
    'SuperGroupConv2D', 'SuperDepthwiseConv2D', 'SuperGroupConv2DTranspose',
C
Chang Xu 已提交
32 33
    'SuperDepthwiseConv2DTranspose', 'SuperLayerNorm', 'SuperEmbedding',
    'SuperSyncBatchNorm'
C
ceci3 已提交
34 35 36 37 38 39 40
]

_logger = get_logger(__name__, level=logging.INFO)

### TODO: if task is elastic width, need to add re_organize_middle_weight in 1x1 conv in MBBlock


C
ceci3 已提交
41
class SuperConv2D(nn.Conv2D):
C
ceci3 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
    """
    This interface is used to construct a callable object of the ``SuperConv2D``  class.

    Note: the channel in config need to less than first defined.

    The super convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
    the feature map, H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of output feature map,
    C is the number of input feature map, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more details.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
    For each input :math:`X`, the equation is:
    .. math::
C
ceci3 已提交
63 64 65

        Out = sigma (W \\ast X + b)

C
ceci3 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
    Where:
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:
        - Input:
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
        - Output:
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
        Where
        .. math::
C
ceci3 已提交
82 83 84

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1   

C
ceci3 已提交
85
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
ceci3 已提交
86

C
ceci3 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
    Parameters:
        num_channels(int): The number of channels in the input image.
        num_filters(int): The number of filter. It is as same as the output
            feature map.
        filter_size (int or tuple): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        candidate_config(dict, optional): Dictionary descripts candidate config of this layer,
            such as {'kernel_size': (3, 5, 7), 'channel': (4, 6, 8)}, means the kernel size of 
            this layer can be choose from (3, 5, 7), the key of candidate_config
            only can be 'kernel_size', 'channel' and 'expand_ratio', 'channel' and 'expand_ratio'
            CANNOT be set at the same time. Default: None.
        transform_kernel(bool, optional): Whether to use transform matrix to transform a large filter
            to a small filter. Default: False.
        stride (int or tuple, optional): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: 1.
        padding (int or tuple, optional): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: 0.
        dilation (int or tuple, optional): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: 1.
        groups (int, optional): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            Default: None.
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
    Attribute:
        **weight** (Parameter): the learnable weights of filter of this layer.
        **bias** (Parameter or None): the learnable bias of this layer.
    Returns:
        None
    
    Raises:
        ValueError: if ``use_cudnn`` is not a bool value.
    Examples:
        .. code-block:: python
C
ceci3 已提交
140 141
          import paddle 
          from paddleslim.nas.ofa.layers import SuperConv2D
C
ceci3 已提交
142 143
          import numpy as np
          data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32')
C
ceci3 已提交
144 145
          super_conv2d = SuperConv2D(3, 10, 3)
          config = {'channel': 5}
C
ceci3 已提交
146
          data = paddle.to_tensor(data)
C
ceci3 已提交
147
          conv = super_conv2d(data, config)
C
ceci3 已提交
148 149 150 151 152

    """

    ### NOTE: filter_size, num_channels and num_filters must be the max of candidate to define a largest network.
    def __init__(self,
C
ceci3 已提交
153 154 155
                 in_channels,
                 out_channels,
                 kernel_size,
C
ceci3 已提交
156 157 158 159
                 candidate_config={},
                 transform_kernel=False,
                 stride=1,
                 padding=0,
C
ceci3 已提交
160 161 162 163
                 dilation=1,
                 groups=1,
                 padding_mode='zeros',
                 weight_attr=None,
C
ceci3 已提交
164
                 bias_attr=None,
C
ceci3 已提交
165
                 data_format='NCHW'):
C
ceci3 已提交
166
        super(SuperConv2D, self).__init__(
C
ceci3 已提交
167 168 169 170 171 172 173 174 175 176 177
            in_channels,
            out_channels,
            kernel_size,
            stride=stride,
            padding=padding,
            padding_mode=padding_mode,
            dilation=dilation,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)
C
ceci3 已提交
178 179

        self.candidate_config = candidate_config
C
Chang Xu 已提交
180
        self.cur_config = None
C
ceci3 已提交
181 182 183 184 185 186 187 188 189 190 191
        if len(candidate_config.items()) != 0:
            for k, v in candidate_config.items():
                candidate_config[k] = list(set(v))

        self.ks_set = candidate_config[
            'kernel_size'] if 'kernel_size' in candidate_config else None

        self.expand_ratio = candidate_config[
            'expand_ratio'] if 'expand_ratio' in candidate_config else None
        self.channel = candidate_config[
            'channel'] if 'channel' in candidate_config else None
C
ceci3 已提交
192
        self.base_channel = self._out_channels
C
ceci3 已提交
193
        if self.expand_ratio != None:
C
ceci3 已提交
194
            self.base_channel = int(self._out_channels / max(self.expand_ratio))
C
ceci3 已提交
195 196 197 198 199 200 201 202 203 204 205 206 207

        self.transform_kernel = transform_kernel
        if self.ks_set != None:
            self.ks_set.sort()
        if self.transform_kernel != False:
            scale_param = dict()
            ### create parameter to transform kernel
            for i in range(len(self.ks_set) - 1):
                ks_small = self.ks_set[i]
                ks_large = self.ks_set[i + 1]
                param_name = '%dto%d_matrix' % (ks_large, ks_small)
                ks_t = ks_small**2
                scale_param[param_name] = self.create_parameter(
C
ceci3 已提交
208
                    attr=paddle.ParamAttr(
C
ceci3 已提交
209
                        name=self._full_name + param_name,
C
ceci3 已提交
210
                        initializer=nn.initializer.Assign(np.eye(ks_t))),
C
ceci3 已提交
211 212 213 214 215 216 217
                    shape=(ks_t, ks_t),
                    dtype=self._dtype)

            for name, param in scale_param.items():
                setattr(self, name, param)

    def get_active_filter(self, in_nc, out_nc, kernel_size):
C
ceci3 已提交
218
        start, end = compute_start_end(self._kernel_size[0], kernel_size)
C
ceci3 已提交
219 220
        ### if NOT transform kernel, intercept a center filter with kernel_size from largest filter
        filters = self.weight[:out_nc, :in_nc, start:end, start:end]
C
ceci3 已提交
221
        if self.transform_kernel != False and kernel_size < self._kernel_size[
C
ceci3 已提交
222 223 224 225 226 227 228 229 230 231
                0]:
            ### if transform kernel, then use matrix to transform
            start_filter = self.weight[:out_nc, :in_nc, :, :]
            for i in range(len(self.ks_set) - 1, 0, -1):
                src_ks = self.ks_set[i]
                if src_ks <= kernel_size:
                    break
                target_ks = self.ks_set[i - 1]
                start, end = compute_start_end(src_ks, target_ks)
                _input_filter = start_filter[:, :, start:end, start:end]
C
ceci3 已提交
232
                _input_filter = paddle.reshape(
C
ceci3 已提交
233 234 235
                    _input_filter,
                    shape=[(_input_filter.shape[0] * _input_filter.shape[1]),
                           -1])
C
ceci3 已提交
236 237 238 239 240
                _input_filter = paddle.matmul(
                    _input_filter,
                    self.__getattr__('%dto%d_matrix' %
                                     (src_ks, target_ks)), False, False)
                _input_filter = paddle.reshape(
C
ceci3 已提交
241 242 243 244 245 246 247 248 249
                    _input_filter,
                    shape=[
                        filters.shape[0], filters.shape[1], target_ks, target_ks
                    ])
                start_filter = _input_filter
            filters = start_filter
        return filters

    def get_groups_in_out_nc(self, in_nc, out_nc):
C
ceci3 已提交
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
        if self._groups == 1:
            ### standard conv
            return self._groups, in_nc, out_nc
        elif self._groups == self._in_channels:
            ### depthwise convolution
            if in_nc != out_nc:
                _logger.debug(
                    "input channel and output channel in depthwise conv is different, change output channel to input channel! origin channel:(in_nc {}, out_nc {}): ".
                    format(in_nc, out_nc))
            groups = in_nc
            out_nc = in_nc
            return groups, in_nc, out_nc
        else:
            ### groups convolution
            ### conv: weight: (Cout, Cin/G, Kh, Kw)
            groups = self._groups
            in_nc = int(in_nc // groups)
            return groups, in_nc, out_nc
C
ceci3 已提交
268 269

    def forward(self, input, kernel_size=None, expand_ratio=None, channel=None):
C
ceci3 已提交
270 271 272 273 274 275 276
        """
        Parameters:
            input(Tensor): Input tensor.
            kernel_size(int, optional): the kernel size of the filter in actual calculation. Default: None.
            expand_ratio(int|float, optional): the expansion ratio of filter's channel number in actual calculation. Default: None.
            channel(int, optional): the expansion ratio of filter's channel number in actual calculation. Default: None.
        """
C
ceci3 已提交
277 278 279 280 281
        self.cur_config = {
            'kernel_size': kernel_size,
            'expand_ratio': expand_ratio,
            'channel': channel
        }
C
ceci3 已提交
282 283 284 285 286 287 288 289 290
        in_nc = int(input.shape[1])
        assert (
            expand_ratio == None or channel == None
        ), "expand_ratio and channel CANNOT be NOT None at the same time."
        if expand_ratio != None:
            out_nc = int(expand_ratio * self.base_channel)
        elif channel != None:
            out_nc = int(channel)
        else:
C
ceci3 已提交
291 292
            out_nc = self._out_channels
        ks = int(self._kernel_size[0]) if kernel_size == None else int(
C
ceci3 已提交
293 294 295 296 297 298
            kernel_size)

        groups, weight_in_nc, weight_out_nc = self.get_groups_in_out_nc(in_nc,
                                                                        out_nc)

        weight = self.get_active_filter(weight_in_nc, weight_out_nc, ks)
C
ceci3 已提交
299 300 301 302 303

        if kernel_size != None or 'kernel_size' in self.candidate_config.keys():
            padding = convert_to_list(get_same_padding(ks), 2)
        else:
            padding = self._padding
C
ceci3 已提交
304 305

        if self.bias is not None:
C
ceci3 已提交
306 307 308 309 310 311 312 313 314 315
            ### if conv is depthwise conv, expand_ratio=0, but conv' expand 
            ### ratio before depthwise conv is not equal to 1.0, the shape of the weight
            ### about this depthwise conv is changed, but out_nc is not change,
            ### so need to change bias shape according to the weight_out_nc.
            ### if in_nc > groups > 1, the actual output of conv is weight_out_nc * groups,
            ### so slice the shape of bias by weight_out_nc and groups.
            ### if in_nc = groups, slice the shape of bias by weight_out_nc.
            if groups != in_nc:
                weight_out_nc = weight_out_nc * groups
            bias = self.bias[:weight_out_nc]
C
ceci3 已提交
316
        else:
C
ceci3 已提交
317
            bias = self.bias
C
Chang Xu 已提交
318
        self.cur_config['prune_dim'] = list(weight.shape)
C
ceci3 已提交
319 320 321 322 323 324 325
        out = F.conv2d(
            input,
            weight,
            bias=bias,
            stride=self._stride,
            padding=padding,
            dilation=self._dilation,
C
ceci3 已提交
326
            groups=groups,
C
ceci3 已提交
327 328
            data_format=self._data_format)
        return out
C
ceci3 已提交
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351


class SuperGroupConv2D(SuperConv2D):
    def get_groups_in_out_nc(self, in_nc, out_nc):
        ### groups convolution
        ### conv: weight: (Cout, Cin/G, Kh, Kw)
        groups = self._groups
        in_nc = int(in_nc // groups)
        return groups, in_nc, out_nc


class SuperDepthwiseConv2D(SuperConv2D):
    ### depthwise convolution
    def get_groups_in_out_nc(self, in_nc, out_nc):
        if in_nc != out_nc:
            _logger.debug(
                "input channel and output channel in depthwise conv is different, change output channel to input channel! origin channel:(in_nc {}, out_nc {}): ".
                format(in_nc, out_nc))
        groups = in_nc
        out_nc = in_nc
        return groups, in_nc, out_nc


C
ceci3 已提交
352
class SuperConv2DTranspose(nn.Conv2DTranspose):
C
ceci3 已提交
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
    """
    This interface is used to construct a callable object of the ``SuperConv2DTranspose`` 
    class.

    Note: the channel in config need to less than first defined.

    The super convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input and output
    are in NCHW format. Where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of input feature map,
    C is the number of output feature map, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
    The details of convolution transpose layer, please refer to the following explanation and references
    `conv2dtranspose <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_ .
    For each input :math:`X`, the equation is:
    .. math::
        Out = \sigma (W \\ast X + b)
    Where:
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
    Example:
        - Input:
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
        - Output:
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
        Where
        .. math::
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
    Parameters:
        num_channels(int): The number of channels in the input image.
        num_filters(int): The number of the filter. It is as same as the output
            feature map.
        filter_size(int or tuple): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        candidate_config(dict, optional): Dictionary descripts candidate config of this layer,
            such as {'kernel_size': (3, 5, 7), 'channel': (4, 6, 8)}, means the kernel size of 
            this layer can be choose from (3, 5, 7), the key of candidate_config
            only can be 'kernel_size', 'channel' and 'expand_ratio', 'channel' and 'expand_ratio'
            CANNOT be set at the same time. Default: None.
        transform_kernel(bool, optional): Whether to use transform matrix to transform a large filter
            to a small filter. Default: False.
        output_size(int or tuple, optional): The output image size. If output size is a
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above. Default: None.
        padding(int or tuple, optional): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: 0.
        stride(int or tuple, optional): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: 1.
        dilation(int or tuple, optional): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: 1.
        groups(int, optional): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            Default: None.
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
        **bias** (Parameter or None): the learnable bias of this layer.
    Returns:
        None
    Examples:
       .. code-block:: python
C
ceci3 已提交
449
          import paddle
C
ceci3 已提交
450
          import numpy as np
C
ceci3 已提交
451 452 453
          from paddleslim.nas.ofa.layers import SuperConv2DTranspose
          data = np.random.random((3, 32, 32, 5)).astype('float32')
          config = {'channel': 5}
C
ceci3 已提交
454 455
          super_convtranspose = SuperConv2DTranspose(32, 10, 3)
          ret = super_convtranspose(paddle.to_tensor(data), config)
C
ceci3 已提交
456 457 458
    """

    def __init__(self,
C
ceci3 已提交
459 460 461
                 in_channels,
                 out_channels,
                 kernel_size,
C
ceci3 已提交
462 463 464 465
                 candidate_config={},
                 transform_kernel=False,
                 stride=1,
                 padding=0,
C
ceci3 已提交
466 467 468 469
                 output_padding=0,
                 dilation=1,
                 groups=1,
                 weight_attr=None,
C
ceci3 已提交
470
                 bias_attr=None,
C
ceci3 已提交
471
                 data_format="NCHW"):
C
ceci3 已提交
472
        super(SuperConv2DTranspose, self).__init__(
C
ceci3 已提交
473 474 475 476 477 478 479 480 481 482 483 484
            in_channels,
            out_channels,
            kernel_size,
            stride=stride,
            padding=padding,
            dilation=dilation,
            output_padding=output_padding,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)

C
ceci3 已提交
485
        self.candidate_config = candidate_config
C
Chang Xu 已提交
486
        self.cur_config = None
C
ceci3 已提交
487 488 489 490 491 492 493 494 495
        if len(self.candidate_config.items()) != 0:
            for k, v in candidate_config.items():
                candidate_config[k] = list(set(v))
        self.ks_set = candidate_config[
            'kernel_size'] if 'kernel_size' in candidate_config else None
        self.expand_ratio = candidate_config[
            'expand_ratio'] if 'expand_ratio' in candidate_config else None
        self.channel = candidate_config[
            'channel'] if 'channel' in candidate_config else None
C
ceci3 已提交
496
        self.base_channel = self._out_channels
C
ceci3 已提交
497
        if self.expand_ratio:
C
ceci3 已提交
498
            self.base_channel = int(self._out_channels / max(self.expand_ratio))
C
ceci3 已提交
499 500 501 502 503 504 505 506 507 508 509 510 511

        self.transform_kernel = transform_kernel
        if self.ks_set != None:
            self.ks_set.sort()
        if self.transform_kernel != False:
            scale_param = dict()
            ### create parameter to transform kernel
            for i in range(len(self.ks_set) - 1):
                ks_small = self.ks_set[i]
                ks_large = self.ks_set[i + 1]
                param_name = '%dto%d_matrix' % (ks_large, ks_small)
                ks_t = ks_small**2
                scale_param[param_name] = self.create_parameter(
C
ceci3 已提交
512
                    attr=paddle.ParamAttr(
C
ceci3 已提交
513
                        name=self._full_name + param_name,
C
ceci3 已提交
514
                        initializer=nn.initializer.Assign(np.eye(ks_t))),
C
ceci3 已提交
515 516 517 518 519 520 521
                    shape=(ks_t, ks_t),
                    dtype=self._dtype)

            for name, param in scale_param.items():
                setattr(self, name, param)

    def get_active_filter(self, in_nc, out_nc, kernel_size):
C
ceci3 已提交
522
        start, end = compute_start_end(self._kernel_size[0], kernel_size)
C
ceci3 已提交
523
        filters = self.weight[:in_nc, :out_nc, start:end, start:end]
C
ceci3 已提交
524
        if self.transform_kernel != False and kernel_size < self._kernel_size[
C
ceci3 已提交
525 526 527 528 529 530 531 532 533
                0]:
            start_filter = self.weight[:in_nc, :out_nc, :, :]
            for i in range(len(self.ks_set) - 1, 0, -1):
                src_ks = self.ks_set[i]
                if src_ks <= kernel_size:
                    break
                target_ks = self.ks_set[i - 1]
                start, end = compute_start_end(src_ks, target_ks)
                _input_filter = start_filter[:, :, start:end, start:end]
C
ceci3 已提交
534
                _input_filter = paddle.reshape(
C
ceci3 已提交
535 536 537
                    _input_filter,
                    shape=[(_input_filter.shape[0] * _input_filter.shape[1]),
                           -1])
C
ceci3 已提交
538 539 540 541 542
                _input_filter = paddle.matmul(
                    _input_filter,
                    self.__getattr__('%dto%d_matrix' %
                                     (src_ks, target_ks)), False, False)
                _input_filter = paddle.reshape(
C
ceci3 已提交
543 544 545 546 547 548 549 550 551
                    _input_filter,
                    shape=[
                        filters.shape[0], filters.shape[1], target_ks, target_ks
                    ])
                start_filter = _input_filter
            filters = start_filter
        return filters

    def get_groups_in_out_nc(self, in_nc, out_nc):
C
ceci3 已提交
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
        if self._groups == 1:
            ### standard conv
            return self._groups, in_nc, out_nc
        elif self._groups == self._in_channels:
            ### depthwise convolution
            if in_nc != out_nc:
                _logger.debug(
                    "input channel and output channel in depthwise conv is different, change output channel to input channel! origin channel:(in_nc {}, out_nc {}): ".
                    format(in_nc, out_nc))
            groups = in_nc
            out_nc = in_nc
            return groups, in_nc, out_nc
        else:
            ### groups convolution
            ### groups conv transpose: weight: (Cin, Cout/G, Kh, Kw)
            groups = self._groups
            out_nc = int(out_nc // groups)
            return groups, in_nc, out_nc

    def forward(self,
                input,
                output_size=None,
                kernel_size=None,
                expand_ratio=None,
                channel=None):
        """
        Parameters:
            input(Tensor): input tensor.
            output_size(int, optional): the size of the feature map after transpose convolution. Default: None.
            kernel_size(int, optional): the kernel size of the filter in actual calculation. Default: None.
            expand_ratio(int|float, optional): the expansion ratio of filter's channel number in actual calculation. Default: None.
            channel(int, optional): the expansion ratio of filter's channel number in actual calculation. Default: None.
        """
C
ceci3 已提交
585 586 587 588 589
        self.cur_config = {
            'kernel_size': kernel_size,
            'expand_ratio': expand_ratio,
            'channel': channel
        }
C
ceci3 已提交
590 591 592 593 594 595 596 597 598
        in_nc = int(input.shape[1])
        assert (
            expand_ratio == None or channel == None
        ), "expand_ratio and channel CANNOT be NOT None at the same time."
        if expand_ratio != None:
            out_nc = int(expand_ratio * self.base_channel)
        elif channel != None:
            out_nc = int(channel)
        else:
C
ceci3 已提交
599
            out_nc = self._out_channels
C
ceci3 已提交
600

C
ceci3 已提交
601
        ks = int(self._kernel_size[0]) if kernel_size == None else int(
C
ceci3 已提交
602 603 604 605 606 607
            kernel_size)

        groups, weight_in_nc, weight_out_nc = self.get_groups_in_out_nc(in_nc,
                                                                        out_nc)

        weight = self.get_active_filter(weight_in_nc, weight_out_nc, ks)
C
ceci3 已提交
608

C
ceci3 已提交
609 610 611 612
        if kernel_size != None or 'kernel_size' in self.candidate_config.keys():
            padding = convert_to_list(get_same_padding(ks), 2)
        else:
            padding = self._padding
C
ceci3 已提交
613

C
ceci3 已提交
614 615 616 617 618
        if output_size is None:
            output_padding = self.output_padding
        else:
            output_padding = 0

C
ceci3 已提交
619
        if self.bias is not None:
C
ceci3 已提交
620 621 622
            if groups != in_nc:
                weight_out_nc = weight_out_nc * groups
            bias = self.bias[:weight_out_nc]
C
ceci3 已提交
623
        else:
C
ceci3 已提交
624
            bias = self.bias
C
Chang Xu 已提交
625
        self.cur_config['prune_dim'] = list(weight.shape)
C
ceci3 已提交
626 627 628 629 630 631 632 633
        out = F.conv2d_transpose(
            input,
            weight,
            bias=bias,
            padding=padding,
            output_padding=output_padding,
            stride=self._stride,
            dilation=self._dilation,
C
ceci3 已提交
634
            groups=groups,
C
ceci3 已提交
635 636 637
            output_size=output_size,
            data_format=self._data_format)
        return out
C
ceci3 已提交
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660


class SuperGroupConv2DTranspose(SuperConv2DTranspose):
    def get_groups_in_out_nc(self, in_nc, out_nc):
        ### groups convolution
        ### groups conv transpose: weight: (Cin, Cout/G, Kh, Kw)
        groups = self._groups
        out_nc = int(out_nc // groups)
        return groups, in_nc, out_nc


class SuperDepthwiseConv2DTranspose(SuperConv2DTranspose):
    def get_groups_in_out_nc(self, in_nc, out_nc):
        if in_nc != out_nc:
            _logger.debug(
                "input channel and output channel in depthwise conv transpose is different, change output channel to input channel! origin channel:(in_nc {}, out_nc {}): ".
                format(in_nc, out_nc))
        groups = in_nc
        out_nc = in_nc
        return groups, in_nc, out_nc


### NOTE: only search channel, write for GAN-compression, maybe change to SuperDepthwiseConv and SuperConv after.
C
ceci3 已提交
661
class SuperSeparableConv2D(nn.Layer):
C
ceci3 已提交
662 663 664 665 666 667 668 669 670
    """
    This interface is used to construct a callable object of the ``SuperSeparableConv2D``
    class.
    The difference between ```SuperSeparableConv2D``` and ```SeparableConv2D``` is: 
    ```SuperSeparableConv2D``` need to feed a config dictionary with the format of 
    {'channel', num_of_channel} represents the channels of the first conv's outputs and
    the second conv's inputs, used to change the first dimension of weight and bias, 
    only train the first channels of the weight and bias.

C
ceci3 已提交
671 672
    The architecture of super separable convolution2D op is [Conv2D, norm layer(may be BatchNorm2D
    or InstanceNorm2D), Conv2D]. The first conv is depthwise conv, the filter number is input channel
C
ceci3 已提交
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
    multiply scale_factor, the group is equal to the number of input channel. The second conv
    is standard conv, which filter size and stride size are 1. 

    Parameters:
        num_channels(int): The number of channels in the input image.
        num_filters(int): The number of the second conv's filter. It is as same as the output
            feature map.
        filter_size(int or tuple): The first conv's filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        padding(int or tuple, optional): The first conv's padding size. If padding is a tuple, 
            it must contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: 0.
        stride(int or tuple, optional): The first conv's stride size. If stride is a tuple,
            it must contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: 1.
        dilation(int or tuple, optional): The first conv's dilation size. If dilation is a tuple, 
            it must contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: 1.
C
ceci3 已提交
692
        norm_layer(class): The normalization layer between two convolution. Default: InstanceNorm2D.
C
ceci3 已提交
693 694 695 696 697 698 699 700 701 702 703
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of convolution.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, convolution
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        scale_factor(float): The scale factor of the first conv's output channel. Default: 1.
    Returns:
        None
    """

    def __init__(self,
C
ceci3 已提交
704 705 706
                 in_channels,
                 out_channels,
                 kernel_size,
C
ceci3 已提交
707 708 709 710
                 candidate_config={},
                 stride=1,
                 padding=0,
                 dilation=1,
C
ceci3 已提交
711
                 norm_layer=nn.InstanceNorm2D,
C
ceci3 已提交
712
                 bias_attr=None,
C
ceci3 已提交
713
                 scale_factor=1):
C
ceci3 已提交
714
        super(SuperSeparableConv2D, self).__init__()
C
ceci3 已提交
715 716 717 718 719
        self.conv = nn.LayerList([
            nn.Conv2D(
                in_channels=in_channels,
                out_channels=in_channels * scale_factor,
                kernel_size=kernel_size,
C
ceci3 已提交
720 721
                stride=stride,
                padding=padding,
C
ceci3 已提交
722
                groups=in_channels,
C
ceci3 已提交
723 724 725
                bias_attr=bias_attr)
        ])

C
ceci3 已提交
726
        self.conv.extend([norm_layer(in_channels * scale_factor)])
C
ceci3 已提交
727 728

        self.conv.extend([
C
ceci3 已提交
729 730 731 732
            nn.Conv2D(
                in_channels=in_channels * scale_factor,
                out_channels=out_channels,
                kernel_size=1,
C
ceci3 已提交
733 734 735 736 737
                stride=1,
                bias_attr=bias_attr)
        ])

        self.candidate_config = candidate_config
C
Chang Xu 已提交
738
        self.cur_config = None
C
ceci3 已提交
739 740
        self.expand_ratio = candidate_config[
            'expand_ratio'] if 'expand_ratio' in candidate_config else None
C
ceci3 已提交
741
        self.base_output_dim = self.conv[0]._out_channels
C
ceci3 已提交
742
        if self.expand_ratio != None:
C
ceci3 已提交
743
            self.base_output_dim = int(self.conv[0]._out_channels /
C
ceci3 已提交
744
                                       max(self.expand_ratio))
C
ceci3 已提交
745 746

    def forward(self, input, expand_ratio=None, channel=None):
C
ceci3 已提交
747 748 749 750 751 752
        """
        Parameters:
            input(Tensor): input tensor.
            expand_ratio(int|float, optional): the expansion ratio of filter's channel number in actual calculation. Default: None.
            channel(int, optional): the expansion ratio of filter's channel number in actual calculation. Default: None.
        """
C
ceci3 已提交
753
        self.cur_config = {'expand_ratio': expand_ratio, 'channel': channel}
C
ceci3 已提交
754 755 756 757 758 759 760 761 762
        in_nc = int(input.shape[1])
        assert (
            expand_ratio == None or channel == None
        ), "expand_ratio and channel CANNOT be NOT None at the same time."
        if expand_ratio != None:
            out_nc = int(expand_ratio * self.base_output_dim)
        elif channel != None:
            out_nc = int(channel)
        else:
C
ceci3 已提交
763
            out_nc = self.conv[0]._out_channels
C
ceci3 已提交
764 765 766 767 768 769

        weight = self.conv[0].weight[:in_nc]
        ###  conv1
        if self.conv[0].bias is not None:
            bias = self.conv[0].bias[:in_nc]
        else:
C
ceci3 已提交
770 771 772 773 774 775 776 777 778 779 780
            bias = self.conv[0].bias

        conv0_out = F.conv2d(
            input,
            weight,
            bias,
            stride=self.conv[0]._stride,
            padding=self.conv[0]._padding,
            dilation=self.conv[0]._dilation,
            groups=in_nc,
            data_format=self.conv[0]._data_format)
C
ceci3 已提交
781 782 783 784 785 786 787 788

        norm_out = self.conv[1](conv0_out)

        weight = self.conv[2].weight[:out_nc, :in_nc, :, :]

        if self.conv[2].bias is not None:
            bias = self.conv[2].bias[:out_nc]
        else:
C
ceci3 已提交
789
            bias = self.conv[2].bias
C
Chang Xu 已提交
790
        self.cur_config['prune_dim'] = list(weight.shape)
C
ceci3 已提交
791 792 793 794 795 796 797 798 799
        conv1_out = F.conv2d(
            norm_out,
            weight,
            bias,
            stride=self.conv[2]._stride,
            padding=self.conv[2]._padding,
            dilation=self.conv[2]._dilation,
            groups=self.conv[2]._groups,
            data_format=self.conv[2]._data_format)
C
ceci3 已提交
800 801 802
        return conv1_out


C
ceci3 已提交
803
class SuperLinear(nn.Linear):
C
ceci3 已提交
804
    """
C
ceci3 已提交
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
    Super Fully-connected linear transformation layer. 
    
    For each input :math:`X` , the equation is:
    .. math::
        Out = XW + b
    where :math:`W` is the weight and :math:`b` is the bias.
    Linear layer takes only one multi-dimensional tensor as input with the
    shape :math:`[batch\_size, *, in\_features]` , where :math:`*` means any
    number of additional dimensions. It multiplies input tensor with the weight
    (a 2-D tensor of shape :math:`[in\_features, out\_features]` ) and produces
    an output tensor of shape :math:`[batch\_size, *, out\_features]` .
    If :math:`bias\_attr` is not False, the bias (a 1-D tensor of
    shape :math:`[out\_features]` ) will be created and added to the output.
    Parameters:
        in_features (int): The number of input units.
        out_features (int): The number of output units.
        candidate_config(dict, optional): Dictionary descripts candidate config of this layer,
            such as {'channel': (4, 6, 8)}, the key of candidate_config
            only can be 'channel' and 'expand_ratio', 'channel' and 'expand_ratio'
            CANNOT be set at the same time. Default: None.
        weight_attr (ParamAttr, optional): The attribute for the learnable
            weight of this layer. The default value is None and the weight will be
            initialized to zero. For detailed information, please refer to
            paddle.ParamAttr.
        bias_attr (ParamAttr|bool, optional): The attribute for the learnable bias
            of this layer. If it is set to False, no bias will be added to the output.
            If it is set to None or one kind of ParamAttr, a bias parameter will
            be created according to ParamAttr. For detailed information, please refer
            to paddle.ParamAttr. The default value is None and the bias will be
            initialized to zero.
        name (str, optional): Normally there is no need for user to set this parameter.
            For detailed information, please refer to :ref:`api_guide_Name` .
    Attribute:
        **weight** (Parameter): the learnable weight of this layer.
        **bias** (Parameter): the learnable bias of this layer.
    Shape:
        - input: Multi-dimentional tensor with shape :math:`[batch\_size, *, in\_features]` .
        - output: Multi-dimentional tensor with shape :math:`[batch\_size, *, out\_features]` .
    Examples:
        .. code-block:: python
          import numpy as np
          import paddle
          from paddleslim.nas.ofa.layers import SuperLinear
          
C
ceci3 已提交
849
          data = np.random.uniform(-1, 1, [32, 64]).astype('float32')
C
ceci3 已提交
850
          config = {'channel': 16}
C
ceci3 已提交
851 852
          linear = SuperLinear(64, 64)
          data = paddle.to_tensor(data)
C
ceci3 已提交
853
          res = linear(data, **config)
C
ceci3 已提交
854 855 856
    """

    def __init__(self,
C
ceci3 已提交
857 858
                 in_features,
                 out_features,
C
ceci3 已提交
859
                 candidate_config={},
C
ceci3 已提交
860
                 weight_attr=None,
C
ceci3 已提交
861
                 bias_attr=None,
C
ceci3 已提交
862 863 864 865
                 name=None):
        super(SuperLinear, self).__init__(in_features, out_features,
                                          weight_attr, bias_attr, name)
        self._weight_attr = weight_attr
C
ceci3 已提交
866
        self._bias_attr = bias_attr
C
ceci3 已提交
867 868
        self._in_features = in_features
        self._out_features = out_features
C
ceci3 已提交
869
        self.candidate_config = candidate_config
C
Chang Xu 已提交
870
        self.cur_config = None
C
ceci3 已提交
871 872
        self.expand_ratio = candidate_config[
            'expand_ratio'] if 'expand_ratio' in candidate_config else None
C
ceci3 已提交
873
        self.base_output_dim = self._out_features
C
ceci3 已提交
874
        if self.expand_ratio != None:
C
ceci3 已提交
875 876
            self.base_output_dim = int(self._out_features /
                                       max(self.expand_ratio))
C
ceci3 已提交
877 878

    def forward(self, input, expand_ratio=None, channel=None):
C
ceci3 已提交
879 880 881 882 883 884
        """
        Parameters:
            input(Tensor): input tensor.
            expand_ratio(int|float, optional): the expansion ratio of filter's channel number in actual calculation. Default: None.
            channel(int, optional): the expansion ratio of filter's channel number in actual calculation. Default: None.
        """
C
ceci3 已提交
885
        self.cur_config = {'expand_ratio': expand_ratio, 'channel': channel}
C
ceci3 已提交
886
        ### weight: (Cin, Cout)
C
ceci3 已提交
887
        in_nc = int(input.shape[-1])
C
ceci3 已提交
888 889 890 891 892 893 894 895
        assert (
            expand_ratio == None or channel == None
        ), "expand_ratio and channel CANNOT be NOT None at the same time."
        if expand_ratio != None:
            out_nc = int(expand_ratio * self.base_output_dim)
        elif channel != None:
            out_nc = int(channel)
        else:
C
ceci3 已提交
896
            out_nc = self._out_features
C
ceci3 已提交
897 898 899 900 901

        weight = self.weight[:in_nc, :out_nc]
        if self._bias_attr != False:
            bias = self.bias[:out_nc]
        else:
C
ceci3 已提交
902
            bias = self.bias
C
Chang Xu 已提交
903
        self.cur_config['prune_dim'] = list(weight.shape)
C
ceci3 已提交
904 905
        out = F.linear(x=input, weight=weight, bias=bias, name=self.name)
        return out
C
ceci3 已提交
906 907


C
ceci3 已提交
908
class SuperBatchNorm2D(nn.BatchNorm2D):
C
ceci3 已提交
909
    """
C
ceci3 已提交
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
    This interface is used to construct a callable object of the ``SuperBatchNorm2D`` class. 

    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
            of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
            will create ParamAttr as weight_attr. If it is set to Fasle, the weight is not learnable.
            If the Initializer of the weight_attr is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of batch_norm.
            If it is set to None or one attribute of ParamAttr, batch_norm
            will create ParamAttr as bias_attr. If it is set to Fasle, the weight is not learnable.
            If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None.
        data_format(str, optional): Specify the input data format, the data format can be "NCHW" or "NHWC". Default: NCHW.
        name(str, optional): Name for the BatchNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Examples:
       .. code-block:: python
         import paddle
         import numpy as np
         from paddleslim.nas.ofa.layers import SuperBatchNorm2D
         
         np.random.seed(123)
         x_data = np.random.random(size=(2, 5, 2, 3)).astype('float32')
         x = paddle.to_tensor(x_data)
         batch_norm = SuperBatchNorm2D(5)
         batch_norm_out = batch_norm(x)
C
ceci3 已提交
938 939 940
    """

    def __init__(self,
C
ceci3 已提交
941
                 num_features,
C
ceci3 已提交
942 943
                 momentum=0.9,
                 epsilon=1e-05,
C
ceci3 已提交
944
                 weight_attr=None,
C
ceci3 已提交
945
                 bias_attr=None,
C
ceci3 已提交
946
                 data_format='NCHW',
C
ceci3 已提交
947
                 use_global_stats=None,
C
ceci3 已提交
948
                 name=None):
C
ceci3 已提交
949 950 951
        super(SuperBatchNorm2D, self).__init__(
            num_features, momentum, epsilon, weight_attr, bias_attr,
            data_format, use_global_stats, name)
C
Chang Xu 已提交
952
        self.cur_config = None
C
ceci3 已提交
953 954

    def forward(self, input):
C
ceci3 已提交
955 956
        self._check_data_format(self._data_format)
        self._check_input_dim(input)
C
ceci3 已提交
957 958 959 960 961 962 963

        feature_dim = int(input.shape[1])

        weight = self.weight[:feature_dim]
        bias = self.bias[:feature_dim]
        mean = self._mean[:feature_dim]
        variance = self._variance[:feature_dim]
C
Chang Xu 已提交
964
        self.cur_config = {'prune_dim': feature_dim}
C
ceci3 已提交
965 966 967 968 969 970 971 972 973
        return F.batch_norm(
            input,
            mean,
            variance,
            weight=weight,
            bias=bias,
            training=self.training,
            momentum=self._momentum,
            epsilon=self._epsilon,
C
ceci3 已提交
974 975
            data_format=self._data_format,
            use_global_stats=self._use_global_stats)
C
ceci3 已提交
976 977


C
Chang Xu 已提交
978 979 980 981 982 983 984 985 986 987 988 989
class SuperSyncBatchNorm(nn.SyncBatchNorm):
    def __init__(self,
                 num_features,
                 momentum=0.9,
                 epsilon=1e-05,
                 weight_attr=None,
                 bias_attr=None,
                 data_format='NCHW',
                 name=None):
        super(SuperSyncBatchNorm,
              self).__init__(num_features, momentum, epsilon, weight_attr,
                             bias_attr, data_format, name)
C
Chang Xu 已提交
990
        self.cur_config = None
C
Chang Xu 已提交
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003

    def forward(self, input):

        feature_dim = int(input.shape[1])

        weight = self.weight[:feature_dim]
        bias = self.bias[:feature_dim]
        mean = self._mean[:feature_dim]
        variance = self._variance[:feature_dim]

        mean_out = mean
        # variance and variance out share the same memory
        variance_out = variance
C
Chang Xu 已提交
1004
        self.cur_config = {'prune_dim': feature_dim}
C
Chang Xu 已提交
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015

        attrs = ("momentum", self._momentum, "epsilon", self._epsilon,
                 "is_test", not self.training, "data_layout", self._data_format,
                 "use_mkldnn", False, "fuse_with_relu", False,
                 "use_global_stats", False, 'trainable_statistics', False)
        sync_batch_norm_out, _, _, _, _, _ = core.ops.sync_batch_norm(
            input, weight, bias, mean, variance, mean_out, variance_out, *attrs)

        return sync_batch_norm_out


C
ceci3 已提交
1016
class SuperInstanceNorm2D(nn.InstanceNorm2D):
C
ceci3 已提交
1017
    """
C
ceci3 已提交
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
    This interface is used to construct a callable object of the ``SuperBatchNorm2D`` class. 

    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
            of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
            will create ParamAttr as weight_attr. If it is set to Fasle, the weight is not learnable.
            If the Initializer of the weight_attr is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of batch_norm.
            If it is set to None or one attribute of ParamAttr, batch_norm
            will create ParamAttr as bias_attr. If it is set to Fasle, the weight is not learnable.
            If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None.
        data_format(str, optional): Specify the input data format, the data format can be "NCHW" or "NHWC". Default: NCHW.
        name(str, optional): Name for the BatchNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Examples:
       .. code-block:: python
         import paddle
         import numpy as np
         from paddleslim.nas.ofa.layers import SuperInstanceNorm2D
         
         np.random.seed(123)
         x_data = np.random.random(size=(2, 5, 2, 3)).astype('float32')
         x = paddle.to_tensor(x_data)
         instance_norm = SuperInstanceNorm2D(5)
         out = instance_norm(x)
C
ceci3 已提交
1046 1047 1048
    """

    def __init__(self,
C
ceci3 已提交
1049
                 num_features,
C
ceci3 已提交
1050
                 epsilon=1e-05,
C
ceci3 已提交
1051 1052
                 momentum=0.9,
                 weight_attr=None,
C
ceci3 已提交
1053
                 bias_attr=None,
C
ceci3 已提交
1054 1055 1056 1057 1058
                 data_format='NCHW',
                 name=None):
        super(SuperInstanceNorm2D, self).__init__(num_features, epsilon,
                                                  momentum, weight_attr,
                                                  bias_attr, data_format, name)
C
Chang Xu 已提交
1059
        self.cur_config = None
C
ceci3 已提交
1060 1061

    def forward(self, input):
C
ceci3 已提交
1062
        self._check_input_dim(input)
C
ceci3 已提交
1063 1064

        feature_dim = int(input.shape[1])
C
ceci3 已提交
1065
        if self._weight_attr == False and self._bias_attr == False:
C
ceci3 已提交
1066 1067 1068 1069 1070
            scale = None
            bias = None
        else:
            scale = self.scale[:feature_dim]
            bias = self.bias[:feature_dim]
C
Chang Xu 已提交
1071
        self.cur_config = {'prune_dim': feature_dim}
C
ceci3 已提交
1072 1073 1074 1075 1076 1077
        return F.instance_norm(input, scale, bias, eps=self._epsilon)


class SuperLayerNorm(nn.LayerNorm):
    """
    This interface is used to construct a callable object of the ``SuperLayerNorm`` class.
C
ceci3 已提交
1078

C
ceci3 已提交
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
    The difference between ```SuperLayerNorm``` and ```LayerNorm``` is: 
    the trained weight and bias in ```SuperLayerNorm``` can be changed according to the shape of input,
    only train the first channels of the weight and bias.

    Parameters:
        normalized_shape(int|list|tuple): Input shape from an expected input of
            size :math:`[*, normalized_shape[0], normalized_shape[1], ..., normalized_shape[-1]]`.
            If it is a single integer, this module will normalize over the last dimension
            which is expected to be of that specific size.
        epsilon(float, optional): The small value added to the variance to prevent
            division by zero. Default: 1e-05.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for the learnable
            gain :math:`g`. If False, weight is None. If is None, a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the learnable
            bias :math:`b`. If is False, bias is None. If is None, a default :code:`ParamAttr` would be added as bias. The
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
        name(str, optional): Name for the LayerNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..
    Shape:
        - x: 2-D, 3-D, 4-D or 5-D tensor.
        - output: same shape as input x.
    Returns:
        None
    Examples:
        .. code-block:: python
          import paddle
          import numpy as np
          from paddleslim.nas.ofa.layers import SuperLayerNorm
          
          np.random.seed(123)
C
ceci3 已提交
1109
          x_data = np.random.random(size=(2, 3)).astype('float32')
C
ceci3 已提交
1110
          x = paddle.to_tensor(x_data)
C
ceci3 已提交
1111
          layer_norm = SuperLayerNorm(x_data.shape[1])
C
ceci3 已提交
1112 1113
          layer_norm_out = layer_norm(x)
    """
C
ceci3 已提交
1114 1115 1116 1117

    def __init__(self,
                 normalized_shape,
                 epsilon=1e-05,
C
ceci3 已提交
1118
                 weight_attr=None,
C
ceci3 已提交
1119
                 bias_attr=None,
C
ceci3 已提交
1120 1121 1122
                 name=None):
        super(SuperLayerNorm, self).__init__(normalized_shape, epsilon,
                                             weight_attr, bias_attr, name)
C
Chang Xu 已提交
1123
        self.cur_config = None
C
ceci3 已提交
1124 1125 1126

    def forward(self, input):
        ### TODO(ceci3): fix if normalized_shape is not a single number
C
ceci3 已提交
1127 1128 1129
        input_ndim = len(list(input.shape))
        normalized_ndim = len(self._normalized_shape)
        begin_norm_axis = input_ndim - normalized_ndim
C
ceci3 已提交
1130
        feature_dim = int(input.shape[-1])
C
ceci3 已提交
1131 1132 1133 1134 1135 1136 1137 1138
        if self._weight_attr != False:
            weight = self.weight[:feature_dim]
        else:
            weight = None
        if self._bias_attr != False:
            bias = self.bias[:feature_dim]
        else:
            bias = None
C
Chang Xu 已提交
1139 1140
        self.cur_config = {'prune_dim': feature_dim}

C
ceci3 已提交
1141 1142 1143 1144
        out, _, _ = core.ops.layer_norm(input, weight, bias, 'epsilon',
                                        self._epsilon, 'begin_norm_axis',
                                        begin_norm_axis)
        return out
C
ceci3 已提交
1145 1146


C
ceci3 已提交
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
class SuperEmbedding(nn.Embedding):
    """
    This interface is used to construct a callable object of the ``SuperEmbedding`` class.

    Parameters:
        num_embeddings (int): Just one element which indicate the size
            of the dictionary of embeddings.
        embedding_dim:  Just one element which indicate the size of each embedding vector respectively.
        padding_idx(int|long|None): padding_idx needs to be in the interval [-num_embeddings, num_embeddings).
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        sparse(bool): The flag indicating whether to use sparse update. This parameter only
            affects the performance of the backwards gradient update. It is recommended to set
            True because sparse update is faster. But some optimizer does not support sparse update,
            such as :ref:`api_optimizer_AdadeltaOptimizer` , :ref:`api_optimizer_AdamaxOptimizer` ,
            :ref:`api_optimizer_DecayedAdagradOptimizer` , :ref:`api_optimizer_FtrlOptimizer` ,
            :ref:`api_optimizer_LambOptimizer` and :ref:`api_optimizer_LarsMomentumOptimizer` .
            In these case, sparse must be False. Default: False.
        weight_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_ParamAttr` . In addition,
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter.
            The local word vector needs to be transformed into numpy format, and the shape of local word
            vector should be consistent with :attr:`num_embeddings` . Then :ref:`api_initializer_NumpyArrayInitializer`
            is used to load custom or pre-trained word vectors. See code example for details.
        name(str|None): For detailed information, please refer
               to :ref:`api_guide_Name`. Usually name is no need to set and
               None by default.
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
    Returns:
        None
    Examples:
        .. code-block:: python
          import numpy as np
          import paddle
          from paddleslim.nas.ofa.layers import SuperEmbedding
          
C
ceci3 已提交
1186
          data = np.random.uniform(-1, 1, [32, 64]).astype('int64')
C
ceci3 已提交
1187
          config = {'channel': 16}
C
ceci3 已提交
1188 1189
          emb = SuperEmbedding(64, 64)
          data = paddle.to_tensor(data)
C
ceci3 已提交
1190 1191 1192
          res = emb(data, **config)
    """

C
ceci3 已提交
1193
    def __init__(self,
C
ceci3 已提交
1194 1195
                 num_embeddings,
                 embedding_dim,
C
ceci3 已提交
1196 1197
                 candidate_config={},
                 padding_idx=None,
C
ceci3 已提交
1198 1199 1200 1201 1202 1203
                 sparse=False,
                 weight_attr=None,
                 name=None):
        super(SuperEmbedding, self).__init__(num_embeddings, embedding_dim,
                                             padding_idx, sparse, weight_attr,
                                             name)
C
ceci3 已提交
1204
        self.candidate_config = candidate_config
C
Chang Xu 已提交
1205
        self.cur_config = None
C
ceci3 已提交
1206 1207
        self.expand_ratio = candidate_config[
            'expand_ratio'] if 'expand_ratio' in candidate_config else None
C
ceci3 已提交
1208
        self.base_output_dim = self._embedding_dim
C
ceci3 已提交
1209
        if self.expand_ratio != None:
C
ceci3 已提交
1210 1211
            self.base_output_dim = int(self._embedding_dim /
                                       max(self.expand_ratio))
C
ceci3 已提交
1212 1213

    def forward(self, input, expand_ratio=None, channel=None):
C
ceci3 已提交
1214 1215 1216 1217 1218 1219
        """
        Parameters:
            input(Tensor): input tensor.
            expand_ratio(int|float, optional): the expansion ratio of filter's channel number in actual calculation. Default: None.
            channel(int, optional): the expansion ratio of filter's channel number in actual calculation. Default: None.
        """
C
ceci3 已提交
1220 1221 1222 1223 1224 1225 1226 1227
        assert (
            expand_ratio == None or channel == None
        ), "expand_ratio and channel CANNOT be NOT None at the same time."
        if expand_ratio != None:
            out_nc = int(expand_ratio * self.base_output_dim)
        elif channel != None:
            out_nc = int(channel)
        else:
C
ceci3 已提交
1228
            out_nc = self._embedding_dim
C
ceci3 已提交
1229 1230

        weight = self.weight[:, :out_nc]
C
Chang Xu 已提交
1231
        self.cur_config = {'prune_dim': list(weight.shape)}
C
ceci3 已提交
1232 1233 1234 1235 1236 1237
        return F.embedding(
            input,
            weight=weight,
            padding_idx=self._padding_idx,
            sparse=self._sparse,
            name=self._name)