inception_block.py 20.8 KB
Newer Older
C
update  
ceci3 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from .search_space_base import SearchSpaceBase
from .base_layer import conv_bn_layer
from .search_space_registry import SEARCHSPACE
25
from .utils import compute_downsample_num, check_points, get_random_tokens
C
update  
ceci3 已提交
26

C
ceci3 已提交
27
__all__ = ["InceptionABlockSpace", "InceptionCBlockSpace"]
C
update  
ceci3 已提交
28
### TODO add asymmetric kernel of conv when paddle-lite support 
C
ceci3 已提交
29
### inceptionB is same as inceptionA if asymmetric kernel is not support
C
update  
ceci3 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47


@SEARCHSPACE.register
class InceptionABlockSpace(SearchSpaceBase):
    def __init__(self, input_size, output_size, block_num, block_mask):
        super(InceptionABlockSpace, self).__init__(input_size, output_size,
                                                   block_num, block_mask)
        if self.block_mask == None:
            # use input_size and output_size to compute self.downsample_num
            self.downsample_num = compute_downsample_num(self.input_size,
                                                         self.output_size)
        if self.block_num != None:
            assert self.downsample_num <= self.block_num, 'downsample numeber must be LESS THAN OR EQUAL TO block_num, but NOW: downsample numeber is {}, block_num is {}'.format(
                self.downsample_num, self.block_num)

        ### self.filter_num means filter nums
        self.filter_num = np.array([
            3, 4, 8, 12, 16, 24, 32, 48, 64, 80, 96, 128, 144, 160, 192, 224,
C
ceci3 已提交
48
            256, 320, 384, 448, 480, 512, 1024
C
update  
ceci3 已提交
49 50 51 52 53 54 55 56 57 58 59 60
        ])
        ### self.k_size means kernel_size
        self.k_size = np.array([3, 5])
        ### self.pool_type means pool type, 0 means avg, 1 means max
        self.pool_type = np.array([0, 1])
        ### self.repeat means repeat of 1x1 conv in branch of inception
        ### self.repeat = np.array([0,1])

    def init_tokens(self):
        """
        The initial token.
        """
C
ceci3 已提交
61
        return get_random_tokens(self.range_table())
C
update  
ceci3 已提交
62 63 64 65 66 67 68 69 70

    def range_table(self):
        """
        Get range table of current search space, constrains the range of tokens.
        """
        range_table_base = []
        if self.block_mask != None:
            range_table_length = len(self.block_mask)
        else:
C
ceci3 已提交
71
            range_table_length = self.block_num
C
update  
ceci3 已提交
72 73 74 75 76 77 78 79 80 81

        for i in range(range_table_length):
            range_table_base.append(len(self.filter_num))
            range_table_base.append(len(self.filter_num))
            range_table_base.append(len(self.filter_num))
            range_table_base.append(len(self.filter_num))
            range_table_base.append(len(self.filter_num))
            range_table_base.append(len(self.filter_num))
            range_table_base.append(len(self.filter_num))
            range_table_base.append(len(self.k_size))
C
fix  
ceci3 已提交
82
            range_table_base.append(len(self.pool_type))
C
update  
ceci3 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97

        return range_table_base

    def token2arch(self, tokens=None):
        """
        return net_arch function
        """
        #assert self.block_num
        if tokens is None:
            tokens = self.init_tokens()

        self.bottleneck_params_list = []
        if self.block_mask != None:
            for i in range(len(self.block_mask)):
                self.bottleneck_params_list.append(
C
fix  
ceci3 已提交
98 99 100 101 102 103 104 105 106
                    (self.filter_num[tokens[i * 9]],
                     self.filter_num[tokens[i * 9 + 1]],
                     self.filter_num[tokens[i * 9 + 2]],
                     self.filter_num[tokens[i * 9 + 3]],
                     self.filter_num[tokens[i * 9 + 4]],
                     self.filter_num[tokens[i * 9 + 5]],
                     self.filter_num[tokens[i * 9 + 6]],
                     self.k_size[tokens[i * 9 + 7]], 2 if self.block_mask == 1
                     else 1, self.pool_type[tokens[i * 9 + 8]]))
C
update  
ceci3 已提交
107
        else:
C
ceci3 已提交
108
            repeat_num = int(self.block_num / self.downsample_num)
C
update  
ceci3 已提交
109 110 111 112
            num_minus = self.block_num % self.downsample_num
            ### if block_num > downsample_num, add stride=1 block at last (block_num-downsample_num) layers
            for i in range(self.downsample_num):
                self.bottleneck_params_list.append(
C
fix  
ceci3 已提交
113 114 115 116 117 118 119 120 121
                    (self.filter_num[tokens[i * 9]],
                     self.filter_num[tokens[i * 9 + 1]],
                     self.filter_num[tokens[i * 9 + 2]],
                     self.filter_num[tokens[i * 9 + 3]],
                     self.filter_num[tokens[i * 9 + 4]],
                     self.filter_num[tokens[i * 9 + 5]],
                     self.filter_num[tokens[i * 9 + 6]],
                     self.k_size[tokens[i * 9 + 7]], 2,
                     self.pool_type[tokens[i * 9 + 8]]))
C
update  
ceci3 已提交
122 123 124 125
                ### if block_num / downsample_num > 1, add (block_num / downsample_num) times stride=1 block 
                for k in range(repeat_num - 1):
                    kk = k * self.downsample_num + i
                    self.bottleneck_params_list.append(
C
fix  
ceci3 已提交
126 127 128 129 130 131 132 133 134
                        (self.filter_num[tokens[kk * 9]],
                         self.filter_num[tokens[kk * 9 + 1]],
                         self.filter_num[tokens[kk * 9 + 2]],
                         self.filter_num[tokens[kk * 9 + 3]],
                         self.filter_num[tokens[kk * 9 + 4]],
                         self.filter_num[tokens[kk * 9 + 5]],
                         self.filter_num[tokens[kk * 9 + 6]],
                         self.k_size[tokens[kk * 9 + 7]], 1,
                         self.pool_type[tokens[kk * 9 + 8]]))
C
update  
ceci3 已提交
135 136

                if self.downsample_num - i <= num_minus:
C
ceci3 已提交
137
                    j = self.downsample_num * (repeat_num - 1) + i
C
fix  
ceci3 已提交
138 139 140 141 142 143 144 145 146 147
                    self.bottleneck_params_list.append(
                        (self.filter_num[tokens[j * 9]],
                         self.filter_num[tokens[j * 9 + 1]],
                         self.filter_num[tokens[j * 9 + 2]],
                         self.filter_num[tokens[j * 9 + 3]],
                         self.filter_num[tokens[j * 9 + 4]],
                         self.filter_num[tokens[j * 9 + 5]],
                         self.filter_num[tokens[j * 9 + 6]],
                         self.k_size[tokens[j * 9 + 7]], 1,
                         self.pool_type[tokens[j * 9 + 8]]))
C
update  
ceci3 已提交
148 149 150

            if self.downsample_num == 0 and self.block_num != 0:
                for i in range(len(self.block_num)):
C
fix  
ceci3 已提交
151 152 153 154 155 156 157 158 159 160
                    self.bottleneck_params_list.append(
                        (self.filter_num[tokens[i * 9]],
                         self.filter_num[tokens[i * 9 + 1]],
                         self.filter_num[tokens[i * 9 + 2]],
                         self.filter_num[tokens[i * 9 + 3]],
                         self.filter_num[tokens[i * 9 + 4]],
                         self.filter_num[tokens[i * 9 + 5]],
                         self.filter_num[tokens[i * 9 + 6]],
                         self.k_size[tokens[i * 9 + 7]], 1,
                         self.pool_type[tokens[i * 9 + 8]]))
C
update  
ceci3 已提交
161

C
update  
ceci3 已提交
162
        def net_arch(input, return_mid_layer=False, return_block=None):
C
update  
ceci3 已提交
163 164 165 166 167 168 169 170 171
            layer_count = 0
            mid_layer = dict()
            for i, layer_setting in enumerate(self.bottleneck_params_list):
                filter_nums = layer_setting[0:7]
                filter_size = layer_setting[7]
                stride = layer_setting[8]
                pool_type = 'avg' if layer_setting[9] == 0 else 'max'
                if stride == 2:
                    layer_count += 1
C
update  
ceci3 已提交
172
                if check_points((layer_count - 1), return_block):
C
update  
ceci3 已提交
173 174 175 176
                    mid_layer[layer_count - 1] = input

                input = self._inceptionA(
                    input,
C
ceci3 已提交
177
                    A_tokens=filter_nums,
C
ceci3 已提交
178
                    filter_size=int(filter_size),
C
update  
ceci3 已提交
179 180 181 182 183 184 185
                    stride=stride,
                    pool_type=pool_type,
                    name='inceptionA_{}'.format(i + 1))

            if return_mid_layer:
                return input, mid_layer
            else:
C
fix  
ceci3 已提交
186
                return input,
C
update  
ceci3 已提交
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260

        return net_arch

    def _inceptionA(self,
                    data,
                    A_tokens,
                    filter_size,
                    stride,
                    pool_type,
                    name=None):
        pool1 = fluid.layers.pool2d(
            input=data,
            pool_size=filter_size,
            pool_padding='SAME',
            pool_type=pool_type,
            name=name + '_pool2d')
        conv1 = conv_bn_layer(
            input=pool1,
            filter_size=1,
            num_filters=A_tokens[0],
            stride=stride,
            act='relu',
            name=name + '_conv1')

        conv2 = conv_bn_layer(
            input=data,
            filter_size=1,
            num_filters=A_tokens[1],
            stride=stride,
            act='relu',
            name=name + '_conv2')

        conv3 = conv_bn_layer(
            input=data,
            filter_size=1,
            num_filters=A_tokens[2],
            stride=1,
            act='relu',
            name=name + '_conv3_1')
        conv3 = conv_bn_layer(
            input=conv3,
            filter_size=filter_size,
            num_filters=A_tokens[3],
            stride=stride,
            act='relu',
            name=name + '_conv3_2')

        conv4 = conv_bn_layer(
            input=data,
            filter_size=1,
            num_filters=A_tokens[4],
            stride=1,
            act='relu',
            name=name + '_conv4_1')
        conv4 = conv_bn_layer(
            input=conv4,
            filter_size=filter_size,
            num_filters=A_tokens[5],
            stride=1,
            act='relu',
            name=name + '_conv4_2')
        conv4 = conv_bn_layer(
            input=conv4,
            filter_size=filter_size,
            num_filters=A_tokens[6],
            stride=stride,
            act='relu',
            name=name + '_conv4_3')

        concat = fluid.layers.concat(
            [conv1, conv2, conv3, conv4], axis=1, name=name + '_concat')
        return concat


C
ceci3 已提交
261 262 263
@SEARCHSPACE.register
class InceptionCBlockSpace(SearchSpaceBase):
    def __init__(self, input_size, output_size, block_num, block_mask):
C
fix  
ceci3 已提交
264
        super(InceptionCBlockSpace, self).__init__(input_size, output_size,
C
ceci3 已提交
265 266 267 268 269 270 271 272
                                                   block_num, block_mask)
        if self.block_mask == None:
            # use input_size and output_size to compute self.downsample_num
            self.downsample_num = compute_downsample_num(self.input_size,
                                                         self.output_size)
        if self.block_num != None:
            assert self.downsample_num <= self.block_num, 'downsample numeber must be LESS THAN OR EQUAL TO block_num, but NOW: downsample numeber is {}, block_num is {}'.format(
                self.downsample_num, self.block_num)
C
update  
ceci3 已提交
273

C
ceci3 已提交
274 275 276 277 278 279 280 281 282 283 284
        ### self.filter_num means filter nums
        self.filter_num = np.array([
            3, 4, 8, 12, 16, 24, 32, 48, 64, 80, 96, 128, 144, 160, 192, 224,
            256, 320, 384, 448, 480, 512, 1024
        ])
        ### self.k_size means kernel_size
        self.k_size = np.array([3, 5])
        ### self.pool_type means pool type, 0 means avg, 1 means max
        self.pool_type = np.array([0, 1])
        ### self.repeat means repeat of 1x1 conv in branch of inception
        ### self.repeat = np.array([0,1])
C
update  
ceci3 已提交
285

C
ceci3 已提交
286 287 288 289
    def init_tokens(self):
        """
        The initial token.
        """
C
ceci3 已提交
290
        return get_random_tokens(self.range_table())
C
ceci3 已提交
291 292 293 294 295 296 297 298 299

    def range_table(self):
        """
        Get range table of current search space, constrains the range of tokens.
        """
        range_table_base = []
        if self.block_mask != None:
            range_table_length = len(self.block_mask)
        else:
C
ceci3 已提交
300
            range_table_length = self.block_num
C
ceci3 已提交
301 302 303 304 305 306 307 308 309 310

        for i in range(range_table_length):
            range_table_base.append(len(self.filter_num))
            range_table_base.append(len(self.filter_num))
            range_table_base.append(len(self.filter_num))
            range_table_base.append(len(self.filter_num))
            range_table_base.append(len(self.filter_num))
            range_table_base.append(len(self.filter_num))
            range_table_base.append(len(self.filter_num))
            range_table_base.append(len(self.k_size))
C
fix  
ceci3 已提交
311
            range_table_base.append(len(self.pool_type))
C
ceci3 已提交
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326

        return range_table_base

    def token2arch(self, tokens=None):
        """
        return net_arch function
        """
        #assert self.block_num
        if tokens is None:
            tokens = self.init_tokens()

        self.bottleneck_params_list = []
        if self.block_mask != None:
            for i in range(len(self.block_mask)):
                self.bottleneck_params_list.append(
C
fix  
ceci3 已提交
327 328 329 330 331 332 333 334 335 336 337
                    (self.filter_num[tokens[i * 11]],
                     self.filter_num[tokens[i * 11 + 1]],
                     self.filter_num[tokens[i * 11 + 2]],
                     self.filter_num[tokens[i * 11 + 3]],
                     self.filter_num[tokens[i * 11 + 4]],
                     self.filter_num[tokens[i * 11 + 5]],
                     self.filter_num[tokens[i * 11 + 6]],
                     self.filter_num[tokens[i * 11 + 7]],
                     self.filter_num[tokens[i * 11 + 8]],
                     self.k_size[tokens[i * 11 + 9]], 2 if self.block_mask == 1
                     else 1, self.pool_type[tokens[i * 11 + 10]]))
C
ceci3 已提交
338
        else:
C
ceci3 已提交
339
            repeat_num = int(self.block_num / self.downsample_num)
C
ceci3 已提交
340 341 342 343
            num_minus = self.block_num % self.downsample_num
            ### if block_num > downsample_num, add stride=1 block at last (block_num-downsample_num) layers
            for i in range(self.downsample_num):
                self.bottleneck_params_list.append(
C
fix  
ceci3 已提交
344 345 346 347 348 349 350 351 352 353 354
                    (self.filter_num[tokens[i * 11]],
                     self.filter_num[tokens[i * 11 + 1]],
                     self.filter_num[tokens[i * 11 + 2]],
                     self.filter_num[tokens[i * 11 + 3]],
                     self.filter_num[tokens[i * 11 + 4]],
                     self.filter_num[tokens[i * 11 + 5]],
                     self.filter_num[tokens[i * 11 + 6]],
                     self.filter_num[tokens[i * 11 + 7]],
                     self.filter_num[tokens[i * 11 + 8]],
                     self.k_size[tokens[i * 11 + 9]], 2,
                     self.pool_type[tokens[i * 11 + 10]]))
C
ceci3 已提交
355 356 357
                ### if block_num / downsample_num > 1, add (block_num / downsample_num) times stride=1 block 
                for k in range(repeat_num - 1):
                    kk = k * self.downsample_num + i
C
fix  
ceci3 已提交
358 359 360 361 362 363 364 365 366 367 368 369
                    self.bottleneck_params_list.append(
                        (self.filter_num[tokens[kk * 11]],
                         self.filter_num[tokens[kk * 11 + 1]],
                         self.filter_num[tokens[kk * 11 + 2]],
                         self.filter_num[tokens[kk * 11 + 3]],
                         self.filter_num[tokens[kk * 11 + 4]],
                         self.filter_num[tokens[kk * 11 + 5]],
                         self.filter_num[tokens[kk * 11 + 6]],
                         self.filter_num[tokens[kk * 11 + 7]],
                         self.filter_num[tokens[kk * 11 + 8]],
                         self.k_size[tokens[kk * 11 + 9]], 1,
                         self.pool_type[tokens[kk * 11 + 10]]))
C
ceci3 已提交
370 371

                if self.downsample_num - i <= num_minus:
C
ceci3 已提交
372
                    j = self.downsample_num * (repeat_num - 1) + i
C
ceci3 已提交
373
                    self.bottleneck_params_list.append(
C
fix  
ceci3 已提交
374 375 376 377 378 379 380 381 382 383 384
                        (self.filter_num[tokens[j * 11]],
                         self.filter_num[tokens[j * 11 + 1]],
                         self.filter_num[tokens[j * 11 + 2]],
                         self.filter_num[tokens[j * 11 + 3]],
                         self.filter_num[tokens[j * 11 + 4]],
                         self.filter_num[tokens[j * 11 + 5]],
                         self.filter_num[tokens[j * 11 + 6]],
                         self.filter_num[tokens[j * 11 + 7]],
                         self.filter_num[tokens[j * 11 + 8]],
                         self.k_size[tokens[j * 11 + 9]], 1,
                         self.pool_type[tokens[j * 11 + 10]]))
C
ceci3 已提交
385 386 387 388

            if self.downsample_num == 0 and self.block_num != 0:
                for i in range(len(self.block_num)):
                    self.bottleneck_params_list.append(
C
fix  
ceci3 已提交
389 390 391 392 393 394 395 396 397 398 399
                        (self.filter_num[tokens[i * 11]],
                         self.filter_num[tokens[i * 11 + 1]],
                         self.filter_num[tokens[i * 11 + 2]],
                         self.filter_num[tokens[i * 11 + 3]],
                         self.filter_num[tokens[i * 11 + 4]],
                         self.filter_num[tokens[i * 11 + 5]],
                         self.filter_num[tokens[i * 11 + 6]],
                         self.filter_num[tokens[i * 11 + 7]],
                         self.filter_num[tokens[i * 11 + 8]],
                         self.k_size[tokens[i * 11 + 9]], 1,
                         self.pool_type[tokens[i * 11 + 10]]))
C
ceci3 已提交
400

C
update  
ceci3 已提交
401
        def net_arch(input, return_mid_layer=False, return_block=None):
C
ceci3 已提交
402 403 404 405 406 407 408 409 410
            layer_count = 0
            mid_layer = dict()
            for i, layer_setting in enumerate(self.bottleneck_params_list):
                filter_nums = layer_setting[0:9]
                filter_size = layer_setting[9]
                stride = layer_setting[10]
                pool_type = 'avg' if layer_setting[11] == 0 else 'max'
                if stride == 2:
                    layer_count += 1
C
ceci3 已提交
411
                if check_points((layer_count - 1), return_block):
C
ceci3 已提交
412 413 414 415 416
                    mid_layer[layer_count - 1] = input

                input = self._inceptionC(
                    input,
                    C_tokens=filter_nums,
C
ceci3 已提交
417
                    filter_size=int(filter_size),
C
ceci3 已提交
418 419 420 421 422 423 424
                    stride=stride,
                    pool_type=pool_type,
                    name='inceptionC_{}'.format(i + 1))

            if return_mid_layer:
                return input, mid_layer
            else:
C
fix  
ceci3 已提交
425
                return input,
C
ceci3 已提交
426 427

        return net_arch
C
update  
ceci3 已提交
428 429 430

    def _inceptionC(self,
                    data,
C
ceci3 已提交
431
                    C_tokens,
C
update  
ceci3 已提交
432 433
                    filter_size,
                    stride,
C
ceci3 已提交
434
                    pool_type,
C
update  
ceci3 已提交
435 436 437 438 439
                    name=None):
        pool1 = fluid.layers.pool2d(
            input=data,
            pool_size=filter_size,
            pool_padding='SAME',
C
ceci3 已提交
440 441
            pool_type=pool_type,
            name=name + '_pool2d')
C
update  
ceci3 已提交
442 443 444 445 446 447
        conv1 = conv_bn_layer(
            input=pool1,
            filter_size=1,
            num_filters=C_tokens[0],
            stride=stride,
            act='relu',
C
ceci3 已提交
448
            name=name + '_conv1')
C
update  
ceci3 已提交
449 450 451 452 453 454 455

        conv2 = conv_bn_layer(
            input=data,
            filter_size=1,
            num_filters=C_tokens[1],
            stride=stride,
            act='relu',
C
ceci3 已提交
456
            name=name + '_conv2')
C
update  
ceci3 已提交
457 458 459 460 461 462 463

        conv3 = conv_bn_layer(
            input=data,
            filter_size=1,
            num_filters=C_tokens[2],
            stride=1,
            act='relu',
C
ceci3 已提交
464
            name=name + '_conv3_1')
C
update  
ceci3 已提交
465 466 467 468 469 470
        conv3_1 = conv_bn_layer(
            input=conv3,
            filter_size=filter_size,
            num_filters=C_tokens[3],
            stride=stride,
            act='relu',
C
ceci3 已提交
471
            name=name + '_conv3_2_1')
C
update  
ceci3 已提交
472 473 474 475 476 477
        conv3_2 = conv_bn_layer(
            input=conv3,
            filter_size=filter_size,
            num_filters=C_tokens[4],
            stride=stride,
            act='relu',
C
ceci3 已提交
478
            name=name + '_conv3_2_2')
C
update  
ceci3 已提交
479 480 481 482 483 484 485

        conv4 = conv_bn_layer(
            input=data,
            filter_size=1,
            num_filters=C_tokens[5],
            stride=1,
            act='relu',
C
ceci3 已提交
486
            name=name + '_conv4_1')
C
update  
ceci3 已提交
487 488 489 490 491 492
        conv4 = conv_bn_layer(
            input=conv4,
            filter_size=filter_size,
            num_filters=C_tokens[6],
            stride=1,
            act='relu',
C
ceci3 已提交
493
            name=name + '_conv4_2')
C
update  
ceci3 已提交
494 495 496 497 498 499
        conv4_1 = conv_bn_layer(
            input=conv4,
            filter_size=filter_size,
            num_filters=C_tokens[7],
            stride=stride,
            act='relu',
C
ceci3 已提交
500
            name=name + '_conv4_3_1')
C
update  
ceci3 已提交
501 502 503 504 505 506
        conv4_2 = conv_bn_layer(
            input=conv4,
            filter_size=filter_size,
            num_filters=C_tokens[8],
            stride=stride,
            act='relu',
C
ceci3 已提交
507
            name=name + '_conv4_3_2')
C
update  
ceci3 已提交
508 509 510 511

        concat = fluid.layers.concat(
            [conv1, conv2, conv3_1, conv3_2, conv4_1, conv4_2],
            axis=1,
C
ceci3 已提交
512
            name=name + '_concat')
C
update  
ceci3 已提交
513
        return concat