inception_block.py 14.3 KB
Newer Older
C
update  
ceci3 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from .search_space_base import SearchSpaceBase
from .base_layer import conv_bn_layer
from .search_space_registry import SEARCHSPACE

__all__ = [
    "InceptionABlockSpace", "InceptionBBlockSpace", "InceptionCBlockSpace"
]
### TODO add asymmetric kernel of conv when paddle-lite support 


@SEARCHSPACE.register
class InceptionABlockSpace(SearchSpaceBase):
    def __init__(self, input_size, output_size, block_num, block_mask):
        super(InceptionABlockSpace, self).__init__(input_size, output_size,
                                                   block_num, block_mask)
        if self.block_mask == None:
            # use input_size and output_size to compute self.downsample_num
            self.downsample_num = compute_downsample_num(self.input_size,
                                                         self.output_size)
        if self.block_num != None:
            assert self.downsample_num <= self.block_num, 'downsample numeber must be LESS THAN OR EQUAL TO block_num, but NOW: downsample numeber is {}, block_num is {}'.format(
                self.downsample_num, self.block_num)

        ### self.filter_num means filter nums
        self.filter_num = np.array([
            3, 4, 8, 12, 16, 24, 32, 48, 64, 80, 96, 128, 144, 160, 192, 224,
            256, 320, 384, 480, 512, 1024
        ])
        ### self.k_size means kernel_size
        self.k_size = np.array([3, 5])
        ### self.pool_type means pool type, 0 means avg, 1 means max
        self.pool_type = np.array([0, 1])
        ### self.repeat means repeat of 1x1 conv in branch of inception
        ### self.repeat = np.array([0,1])

    def init_tokens(self):
        """
        The initial token.
        """
        if self.block_mask != None:
            return [0] * (len(self.block_mask) * 9)
        else:
            return [0] * (self.block_num * 9)

    def range_table(self):
        """
        Get range table of current search space, constrains the range of tokens.
        """
        range_table_base = []
        if self.block_mask != None:
            range_table_length = len(self.block_mask)
        else:
            range_table_length = self.block_mum

        for i in range(range_table_length):
            range_table_base.append(len(self.filter_num))
            range_table_base.append(len(self.filter_num))
            range_table_base.append(len(self.filter_num))
            range_table_base.append(len(self.filter_num))
            range_table_base.append(len(self.filter_num))
            range_table_base.append(len(self.filter_num))
            range_table_base.append(len(self.filter_num))
            range_table_base.append(len(self.k_size))
            range_table_base.append(len(self.pooltype))

        return range_table_base

    def token2arch(self, tokens=None):
        """
        return net_arch function
        """
        #assert self.block_num
        if tokens is None:
            tokens = self.init_tokens()

        self.bottleneck_params_list = []
        if self.block_mask != None:
            for i in range(len(self.block_mask)):
                self.bottleneck_params_list.append(
                    (self.filter_num[i * 9], self.filter_num[i * 9 + 1],
                     self.filter_num[i * 9 + 2], self.filter_num[i * 9 + 3],
                     self.filter_num[i * 9 + 4], self.filter_num[i * 9 + 5],
                     self.filter_num[i * 9 + 6], self.k_size[i * 9 + 7], 2 if
                     self.block_mask == 1 else 1, self.pool_type[i * 9 + 8]))
        else:
            repeat_num = self.block_num / self.downsample_num
            num_minus = self.block_num % self.downsample_num
            ### if block_num > downsample_num, add stride=1 block at last (block_num-downsample_num) layers
            for i in range(self.downsample_num):
                self.bottleneck_params_list.append(
                    (self.filter_num[i * 9], self.filter_num[i * 9 + 1],
                     self.filter_num[i * 9 + 2], self.filter_num[i * 9 + 3],
                     self.filter_num[i * 9 + 4], self.filter_num[i * 9 + 5],
                     self.filter_num[i * 9 + 6], self.k_size[i * 9 + 7], 2,
                     self.pool_type[i * 9 + 8]))
                ### if block_num / downsample_num > 1, add (block_num / downsample_num) times stride=1 block 
                for k in range(repeat_num - 1):
                    kk = k * self.downsample_num + i
                    self.bottleneck_params_list.append(
                        (self.filter_num[kk * 9], self.filter_num[kk * 9 + 1],
                         self.filter_num[kk * 9 + 2],
                         self.filter_num[kk * 9 + 3],
                         self.filter_num[kk * 9 + 4],
                         self.filter_num[kk * 9 + 5],
                         self.filter_num[kk * 9 + 6], self.k_size[kk * 9 + 7],
                         1, self.pool_type[kk * 9 + 8]))

                if self.downsample_num - i <= num_minus:
                    j = self.downsample_num * repeat_num + i
                    self.bottleneck_params_list.append((
                        self.filter_num[j * 9], self.filter_num[j * 9 + 1],
                        self.filter_num[j * 9 + 2], self.filter_num[j * 9 + 3],
                        self.filter_num[j * 9 + 4], self.filter_num[j * 9 + 5],
                        self.filter_num[j * 9 + 6], self.k_size[j * 9 + 7], 1,
                        self.pool_type[j * 9 + 8]))

            if self.downsample_num == 0 and self.block_num != 0:
                for i in range(len(self.block_num)):
                    self.bottleneck_params_list.append((
                        self.filter_num[i * 9], self.filter_num[i * 9 + 1],
                        self.filter_num[i * 9 + 2], self.filter_num[i * 9 + 3],
                        self.filter_num[i * 9 + 4], self.filter_num[i * 9 + 5],
                        self.filter_num[i * 9 + 6], self.k_size[i * 9 + 7], 1,
                        self.pool_type[i * 9 + 8]))

        def net_arch(input, return_mid_layer=False, return_block=[]):
            assert isinstance(return_block,
                              list), 'return_block must be a list.'
            layer_count = 0
            mid_layer = dict()
            for i, layer_setting in enumerate(self.bottleneck_params_list):
                filter_nums = layer_setting[0:7]
                filter_size = layer_setting[7]
                stride = layer_setting[8]
                pool_type = 'avg' if layer_setting[9] == 0 else 'max'
                if stride == 2:
                    layer_count += 1
                if (layer_count - 1) in return_block:
                    mid_layer[layer_count - 1] = input

                input = self._inceptionA(
                    input,
                    layer_setting[0:7],
                    filter_size=filter_size,
                    stride=stride,
                    pool_type=pool_type,
                    name='inceptionA_{}'.format(i + 1))

            if return_mid_layer:
                return input, mid_layer
            else:
                return input

        return net_arch

    def _inceptionA(self,
                    data,
                    A_tokens,
                    filter_size,
                    stride,
                    pool_type,
                    name=None):
        pool1 = fluid.layers.pool2d(
            input=data,
            pool_size=filter_size,
            pool_padding='SAME',
            pool_type=pool_type,
            name=name + '_pool2d')
        conv1 = conv_bn_layer(
            input=pool1,
            filter_size=1,
            num_filters=A_tokens[0],
            stride=stride,
            act='relu',
            name=name + '_conv1')

        conv2 = conv_bn_layer(
            input=data,
            filter_size=1,
            num_filters=A_tokens[1],
            stride=stride,
            act='relu',
            name=name + '_conv2')

        conv3 = conv_bn_layer(
            input=data,
            filter_size=1,
            num_filters=A_tokens[2],
            stride=1,
            act='relu',
            name=name + '_conv3_1')
        conv3 = conv_bn_layer(
            input=conv3,
            filter_size=filter_size,
            num_filters=A_tokens[3],
            stride=stride,
            act='relu',
            name=name + '_conv3_2')

        conv4 = conv_bn_layer(
            input=data,
            filter_size=1,
            num_filters=A_tokens[4],
            stride=1,
            act='relu',
            name=name + '_conv4_1')
        conv4 = conv_bn_layer(
            input=conv4,
            filter_size=filter_size,
            num_filters=A_tokens[5],
            stride=1,
            act='relu',
            name=name + '_conv4_2')
        conv4 = conv_bn_layer(
            input=conv4,
            filter_size=filter_size,
            num_filters=A_tokens[6],
            stride=stride,
            act='relu',
            name=name + '_conv4_3')

        concat = fluid.layers.concat(
            [conv1, conv2, conv3, conv4], axis=1, name=name + '_concat')
        return concat

    def _inceptionB(self,
                    data,
                    B_tokens=[0] * 7,
                    filter_size,
                    stride,
                    repeat,
                    name=None):
        pool1 = fluid.layers.pool2d(
            input=data,
            pool_size=filter_size,
            pool_padding='SAME',
            pool_type='avg',
            name=name + '_inceptionB_pool2d')
        conv1 = conv_bn_layer(
            input=pool1,
            filter_size=1,
            num_filters=B_tokens[0],
            stride=stride,
            act='relu',
            name=name + '_inceptionB_conv1')

        conv2 = conv_bn_layer(
            input=data,
            filter_size=1,
            num_filters=B_tokens[1],
            stride=stride,
            act='relu',
            name=name + '_inceptionB_conv2')

        conv3 = conv_bn_layer(
            input=data,
            filter_size=1,
            num_filters=B_tokens[2],
            stride=1,
            act='relu',
            name=name + '_inceptionB_conv3_1')
        conv3 = conv_bn_layer(
            input=conv3,
            filter_size=filter_size,
            num_filters=B_tokens[3],
            stride=stride,
            act='relu',
            name=name + '_inceptionB_conv3_2')

        conv4 = conv_bn_layer(
            input=data,
            filter_size=1,
            num_filters=B_tokens[4],
            stride=1,
            act='relu',
            name=name + '_inceptionB_conv4_1')
        conv4 = conv_bn_layer(
            input=conv4,
            filter_size=filter_size,
            num_filters=B_tokens[5],
            stride=1,
            act='relu',
            name=name + '_inceptionB_conv4_2')
        conv4 = conv_bn_layer(
            input=conv4,
            filter_size=filter_size,
            num_filters=B_tokens[6],
            stride=stride,
            act='relu',
            name=name + '_inceptionB_conv4_3')
        concat = fluid.layers.concat(
            [conv1, conv2, conv3, conv4],
            axis=1,
            name=name + '_inceptionB_concat')
        return concat

    def _inceptionC(self,
                    data,
                    C_tokens=[0] * 9,
                    filter_size,
                    stride,
                    repeat,
                    name=None):
        pool1 = fluid.layers.pool2d(
            input=data,
            pool_size=filter_size,
            pool_padding='SAME',
            pool_type='avg',
            name=name + '_inceptionC_pool2d')
        conv1 = conv_bn_layer(
            input=pool1,
            filter_size=1,
            num_filters=C_tokens[0],
            stride=stride,
            act='relu',
            name=name + '_inceptionC_conv1')

        conv2 = conv_bn_layer(
            input=data,
            filter_size=1,
            num_filters=C_tokens[1],
            stride=stride,
            act='relu',
            name=name + '_inceptionC_conv2')

        conv3 = conv_bn_layer(
            input=data,
            filter_size=1,
            num_filters=C_tokens[2],
            stride=1,
            act='relu',
            name=name + '_inceptionC_conv3_1')
        conv3_1 = conv_bn_layer(
            input=conv3,
            filter_size=filter_size,
            num_filters=C_tokens[3],
            stride=stride,
            act='relu',
            name=name + '_inceptionC_conv3_2_1')
        conv3_2 = conv_bn_layer(
            input=conv3,
            filter_size=filter_size,
            num_filters=C_tokens[4],
            stride=stride,
            act='relu',
            name=name + '_inceptionC_conv3_2_2')

        conv4 = conv_bn_layer(
            input=data,
            filter_size=1,
            num_filters=C_tokens[5],
            stride=1,
            act='relu',
            name=name + '_inceptionC_conv4_1')
        conv4 = conv_bn_layer(
            input=conv4,
            filter_size=filter_size,
            num_filters=C_tokens[6],
            stride=1,
            act='relu',
            name=name + '_inceptionC_conv4_2')
        conv4_1 = conv_bn_layer(
            input=conv4,
            filter_size=filter_size,
            num_filters=C_tokens[7],
            stride=stride,
            act='relu',
            name=name + '_inceptionC_conv4_3_1')
        conv4_2 = conv_bn_layer(
            input=conv4,
            filter_size=filter_size,
            num_filters=C_tokens[8],
            stride=stride,
            act='relu',
            name=name + '_inceptionC_conv4_3_2')

        concat = fluid.layers.concat(
            [conv1, conv2, conv3_1, conv3_2, conv4_1, conv4_2],
            axis=1,
            name=name + '_inceptionC_concat')
        return concat