inception_block.py 21.1 KB
Newer Older
C
update  
ceci3 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from .search_space_base import SearchSpaceBase
from .base_layer import conv_bn_layer
from .search_space_registry import SEARCHSPACE

C
ceci3 已提交
26
__all__ = ["InceptionABlockSpace", "InceptionCBlockSpace"]
C
update  
ceci3 已提交
27
### TODO add asymmetric kernel of conv when paddle-lite support 
C
ceci3 已提交
28
### inceptionB is same as inceptionA if asymmetric kernel is not support
C
update  
ceci3 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46


@SEARCHSPACE.register
class InceptionABlockSpace(SearchSpaceBase):
    def __init__(self, input_size, output_size, block_num, block_mask):
        super(InceptionABlockSpace, self).__init__(input_size, output_size,
                                                   block_num, block_mask)
        if self.block_mask == None:
            # use input_size and output_size to compute self.downsample_num
            self.downsample_num = compute_downsample_num(self.input_size,
                                                         self.output_size)
        if self.block_num != None:
            assert self.downsample_num <= self.block_num, 'downsample numeber must be LESS THAN OR EQUAL TO block_num, but NOW: downsample numeber is {}, block_num is {}'.format(
                self.downsample_num, self.block_num)

        ### self.filter_num means filter nums
        self.filter_num = np.array([
            3, 4, 8, 12, 16, 24, 32, 48, 64, 80, 96, 128, 144, 160, 192, 224,
C
ceci3 已提交
47
            256, 320, 384, 448, 480, 512, 1024
C
update  
ceci3 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
        ])
        ### self.k_size means kernel_size
        self.k_size = np.array([3, 5])
        ### self.pool_type means pool type, 0 means avg, 1 means max
        self.pool_type = np.array([0, 1])
        ### self.repeat means repeat of 1x1 conv in branch of inception
        ### self.repeat = np.array([0,1])

    def init_tokens(self):
        """
        The initial token.
        """
        if self.block_mask != None:
            return [0] * (len(self.block_mask) * 9)
        else:
            return [0] * (self.block_num * 9)

    def range_table(self):
        """
        Get range table of current search space, constrains the range of tokens.
        """
        range_table_base = []
        if self.block_mask != None:
            range_table_length = len(self.block_mask)
        else:
            range_table_length = self.block_mum

        for i in range(range_table_length):
            range_table_base.append(len(self.filter_num))
            range_table_base.append(len(self.filter_num))
            range_table_base.append(len(self.filter_num))
            range_table_base.append(len(self.filter_num))
            range_table_base.append(len(self.filter_num))
            range_table_base.append(len(self.filter_num))
            range_table_base.append(len(self.filter_num))
            range_table_base.append(len(self.k_size))
C
fix  
ceci3 已提交
84
            range_table_base.append(len(self.pool_type))
C
update  
ceci3 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

        return range_table_base

    def token2arch(self, tokens=None):
        """
        return net_arch function
        """
        #assert self.block_num
        if tokens is None:
            tokens = self.init_tokens()

        self.bottleneck_params_list = []
        if self.block_mask != None:
            for i in range(len(self.block_mask)):
                self.bottleneck_params_list.append(
C
fix  
ceci3 已提交
100 101 102 103 104 105 106 107 108
                    (self.filter_num[tokens[i * 9]],
                     self.filter_num[tokens[i * 9 + 1]],
                     self.filter_num[tokens[i * 9 + 2]],
                     self.filter_num[tokens[i * 9 + 3]],
                     self.filter_num[tokens[i * 9 + 4]],
                     self.filter_num[tokens[i * 9 + 5]],
                     self.filter_num[tokens[i * 9 + 6]],
                     self.k_size[tokens[i * 9 + 7]], 2 if self.block_mask == 1
                     else 1, self.pool_type[tokens[i * 9 + 8]]))
C
update  
ceci3 已提交
109 110 111 112 113 114
        else:
            repeat_num = self.block_num / self.downsample_num
            num_minus = self.block_num % self.downsample_num
            ### if block_num > downsample_num, add stride=1 block at last (block_num-downsample_num) layers
            for i in range(self.downsample_num):
                self.bottleneck_params_list.append(
C
fix  
ceci3 已提交
115 116 117 118 119 120 121 122 123
                    (self.filter_num[tokens[i * 9]],
                     self.filter_num[tokens[i * 9 + 1]],
                     self.filter_num[tokens[i * 9 + 2]],
                     self.filter_num[tokens[i * 9 + 3]],
                     self.filter_num[tokens[i * 9 + 4]],
                     self.filter_num[tokens[i * 9 + 5]],
                     self.filter_num[tokens[i * 9 + 6]],
                     self.k_size[tokens[i * 9 + 7]], 2,
                     self.pool_type[tokens[i * 9 + 8]]))
C
update  
ceci3 已提交
124 125 126 127
                ### if block_num / downsample_num > 1, add (block_num / downsample_num) times stride=1 block 
                for k in range(repeat_num - 1):
                    kk = k * self.downsample_num + i
                    self.bottleneck_params_list.append(
C
fix  
ceci3 已提交
128 129 130 131 132 133 134 135 136
                        (self.filter_num[tokens[kk * 9]],
                         self.filter_num[tokens[kk * 9 + 1]],
                         self.filter_num[tokens[kk * 9 + 2]],
                         self.filter_num[tokens[kk * 9 + 3]],
                         self.filter_num[tokens[kk * 9 + 4]],
                         self.filter_num[tokens[kk * 9 + 5]],
                         self.filter_num[tokens[kk * 9 + 6]],
                         self.k_size[tokens[kk * 9 + 7]], 1,
                         self.pool_type[tokens[kk * 9 + 8]]))
C
update  
ceci3 已提交
137 138 139

                if self.downsample_num - i <= num_minus:
                    j = self.downsample_num * repeat_num + i
C
fix  
ceci3 已提交
140 141 142 143 144 145 146 147 148 149
                    self.bottleneck_params_list.append(
                        (self.filter_num[tokens[j * 9]],
                         self.filter_num[tokens[j * 9 + 1]],
                         self.filter_num[tokens[j * 9 + 2]],
                         self.filter_num[tokens[j * 9 + 3]],
                         self.filter_num[tokens[j * 9 + 4]],
                         self.filter_num[tokens[j * 9 + 5]],
                         self.filter_num[tokens[j * 9 + 6]],
                         self.k_size[tokens[j * 9 + 7]], 1,
                         self.pool_type[tokens[j * 9 + 8]]))
C
update  
ceci3 已提交
150 151 152

            if self.downsample_num == 0 and self.block_num != 0:
                for i in range(len(self.block_num)):
C
fix  
ceci3 已提交
153 154 155 156 157 158 159 160 161 162
                    self.bottleneck_params_list.append(
                        (self.filter_num[tokens[i * 9]],
                         self.filter_num[tokens[i * 9 + 1]],
                         self.filter_num[tokens[i * 9 + 2]],
                         self.filter_num[tokens[i * 9 + 3]],
                         self.filter_num[tokens[i * 9 + 4]],
                         self.filter_num[tokens[i * 9 + 5]],
                         self.filter_num[tokens[i * 9 + 6]],
                         self.k_size[tokens[i * 9 + 7]], 1,
                         self.pool_type[tokens[i * 9 + 8]]))
C
update  
ceci3 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180

        def net_arch(input, return_mid_layer=False, return_block=[]):
            assert isinstance(return_block,
                              list), 'return_block must be a list.'
            layer_count = 0
            mid_layer = dict()
            for i, layer_setting in enumerate(self.bottleneck_params_list):
                filter_nums = layer_setting[0:7]
                filter_size = layer_setting[7]
                stride = layer_setting[8]
                pool_type = 'avg' if layer_setting[9] == 0 else 'max'
                if stride == 2:
                    layer_count += 1
                if (layer_count - 1) in return_block:
                    mid_layer[layer_count - 1] = input

                input = self._inceptionA(
                    input,
C
ceci3 已提交
181
                    A_tokens=filter_nums,
C
update  
ceci3 已提交
182 183 184 185 186 187 188 189
                    filter_size=filter_size,
                    stride=stride,
                    pool_type=pool_type,
                    name='inceptionA_{}'.format(i + 1))

            if return_mid_layer:
                return input, mid_layer
            else:
C
fix  
ceci3 已提交
190
                return input,
C
update  
ceci3 已提交
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264

        return net_arch

    def _inceptionA(self,
                    data,
                    A_tokens,
                    filter_size,
                    stride,
                    pool_type,
                    name=None):
        pool1 = fluid.layers.pool2d(
            input=data,
            pool_size=filter_size,
            pool_padding='SAME',
            pool_type=pool_type,
            name=name + '_pool2d')
        conv1 = conv_bn_layer(
            input=pool1,
            filter_size=1,
            num_filters=A_tokens[0],
            stride=stride,
            act='relu',
            name=name + '_conv1')

        conv2 = conv_bn_layer(
            input=data,
            filter_size=1,
            num_filters=A_tokens[1],
            stride=stride,
            act='relu',
            name=name + '_conv2')

        conv3 = conv_bn_layer(
            input=data,
            filter_size=1,
            num_filters=A_tokens[2],
            stride=1,
            act='relu',
            name=name + '_conv3_1')
        conv3 = conv_bn_layer(
            input=conv3,
            filter_size=filter_size,
            num_filters=A_tokens[3],
            stride=stride,
            act='relu',
            name=name + '_conv3_2')

        conv4 = conv_bn_layer(
            input=data,
            filter_size=1,
            num_filters=A_tokens[4],
            stride=1,
            act='relu',
            name=name + '_conv4_1')
        conv4 = conv_bn_layer(
            input=conv4,
            filter_size=filter_size,
            num_filters=A_tokens[5],
            stride=1,
            act='relu',
            name=name + '_conv4_2')
        conv4 = conv_bn_layer(
            input=conv4,
            filter_size=filter_size,
            num_filters=A_tokens[6],
            stride=stride,
            act='relu',
            name=name + '_conv4_3')

        concat = fluid.layers.concat(
            [conv1, conv2, conv3, conv4], axis=1, name=name + '_concat')
        return concat


C
ceci3 已提交
265 266 267
@SEARCHSPACE.register
class InceptionCBlockSpace(SearchSpaceBase):
    def __init__(self, input_size, output_size, block_num, block_mask):
C
fix  
ceci3 已提交
268
        super(InceptionCBlockSpace, self).__init__(input_size, output_size,
C
ceci3 已提交
269 270 271 272 273 274 275 276
                                                   block_num, block_mask)
        if self.block_mask == None:
            # use input_size and output_size to compute self.downsample_num
            self.downsample_num = compute_downsample_num(self.input_size,
                                                         self.output_size)
        if self.block_num != None:
            assert self.downsample_num <= self.block_num, 'downsample numeber must be LESS THAN OR EQUAL TO block_num, but NOW: downsample numeber is {}, block_num is {}'.format(
                self.downsample_num, self.block_num)
C
update  
ceci3 已提交
277

C
ceci3 已提交
278 279 280 281 282 283 284 285 286 287 288
        ### self.filter_num means filter nums
        self.filter_num = np.array([
            3, 4, 8, 12, 16, 24, 32, 48, 64, 80, 96, 128, 144, 160, 192, 224,
            256, 320, 384, 448, 480, 512, 1024
        ])
        ### self.k_size means kernel_size
        self.k_size = np.array([3, 5])
        ### self.pool_type means pool type, 0 means avg, 1 means max
        self.pool_type = np.array([0, 1])
        ### self.repeat means repeat of 1x1 conv in branch of inception
        ### self.repeat = np.array([0,1])
C
update  
ceci3 已提交
289

C
ceci3 已提交
290 291 292 293 294
    def init_tokens(self):
        """
        The initial token.
        """
        if self.block_mask != None:
C
fix  
ceci3 已提交
295
            return [0] * (len(self.block_mask) * 11)
C
ceci3 已提交
296
        else:
C
fix  
ceci3 已提交
297
            return [0] * (self.block_num * 11)
C
ceci3 已提交
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317

    def range_table(self):
        """
        Get range table of current search space, constrains the range of tokens.
        """
        range_table_base = []
        if self.block_mask != None:
            range_table_length = len(self.block_mask)
        else:
            range_table_length = self.block_mum

        for i in range(range_table_length):
            range_table_base.append(len(self.filter_num))
            range_table_base.append(len(self.filter_num))
            range_table_base.append(len(self.filter_num))
            range_table_base.append(len(self.filter_num))
            range_table_base.append(len(self.filter_num))
            range_table_base.append(len(self.filter_num))
            range_table_base.append(len(self.filter_num))
            range_table_base.append(len(self.k_size))
C
fix  
ceci3 已提交
318
            range_table_base.append(len(self.pool_type))
C
ceci3 已提交
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333

        return range_table_base

    def token2arch(self, tokens=None):
        """
        return net_arch function
        """
        #assert self.block_num
        if tokens is None:
            tokens = self.init_tokens()

        self.bottleneck_params_list = []
        if self.block_mask != None:
            for i in range(len(self.block_mask)):
                self.bottleneck_params_list.append(
C
fix  
ceci3 已提交
334 335 336 337 338 339 340 341 342 343 344
                    (self.filter_num[tokens[i * 11]],
                     self.filter_num[tokens[i * 11 + 1]],
                     self.filter_num[tokens[i * 11 + 2]],
                     self.filter_num[tokens[i * 11 + 3]],
                     self.filter_num[tokens[i * 11 + 4]],
                     self.filter_num[tokens[i * 11 + 5]],
                     self.filter_num[tokens[i * 11 + 6]],
                     self.filter_num[tokens[i * 11 + 7]],
                     self.filter_num[tokens[i * 11 + 8]],
                     self.k_size[tokens[i * 11 + 9]], 2 if self.block_mask == 1
                     else 1, self.pool_type[tokens[i * 11 + 10]]))
C
ceci3 已提交
345 346 347 348 349 350
        else:
            repeat_num = self.block_num / self.downsample_num
            num_minus = self.block_num % self.downsample_num
            ### if block_num > downsample_num, add stride=1 block at last (block_num-downsample_num) layers
            for i in range(self.downsample_num):
                self.bottleneck_params_list.append(
C
fix  
ceci3 已提交
351 352 353 354 355 356 357 358 359 360 361
                    (self.filter_num[tokens[i * 11]],
                     self.filter_num[tokens[i * 11 + 1]],
                     self.filter_num[tokens[i * 11 + 2]],
                     self.filter_num[tokens[i * 11 + 3]],
                     self.filter_num[tokens[i * 11 + 4]],
                     self.filter_num[tokens[i * 11 + 5]],
                     self.filter_num[tokens[i * 11 + 6]],
                     self.filter_num[tokens[i * 11 + 7]],
                     self.filter_num[tokens[i * 11 + 8]],
                     self.k_size[tokens[i * 11 + 9]], 2,
                     self.pool_type[tokens[i * 11 + 10]]))
C
ceci3 已提交
362 363 364
                ### if block_num / downsample_num > 1, add (block_num / downsample_num) times stride=1 block 
                for k in range(repeat_num - 1):
                    kk = k * self.downsample_num + i
C
fix  
ceci3 已提交
365 366 367 368 369 370 371 372 373 374 375 376
                    self.bottleneck_params_list.append(
                        (self.filter_num[tokens[kk * 11]],
                         self.filter_num[tokens[kk * 11 + 1]],
                         self.filter_num[tokens[kk * 11 + 2]],
                         self.filter_num[tokens[kk * 11 + 3]],
                         self.filter_num[tokens[kk * 11 + 4]],
                         self.filter_num[tokens[kk * 11 + 5]],
                         self.filter_num[tokens[kk * 11 + 6]],
                         self.filter_num[tokens[kk * 11 + 7]],
                         self.filter_num[tokens[kk * 11 + 8]],
                         self.k_size[tokens[kk * 11 + 9]], 1,
                         self.pool_type[tokens[kk * 11 + 10]]))
C
ceci3 已提交
377 378 379 380

                if self.downsample_num - i <= num_minus:
                    j = self.downsample_num * repeat_num + i
                    self.bottleneck_params_list.append(
C
fix  
ceci3 已提交
381 382 383 384 385 386 387 388 389 390 391
                        (self.filter_num[tokens[j * 11]],
                         self.filter_num[tokens[j * 11 + 1]],
                         self.filter_num[tokens[j * 11 + 2]],
                         self.filter_num[tokens[j * 11 + 3]],
                         self.filter_num[tokens[j * 11 + 4]],
                         self.filter_num[tokens[j * 11 + 5]],
                         self.filter_num[tokens[j * 11 + 6]],
                         self.filter_num[tokens[j * 11 + 7]],
                         self.filter_num[tokens[j * 11 + 8]],
                         self.k_size[tokens[j * 11 + 9]], 1,
                         self.pool_type[tokens[j * 11 + 10]]))
C
ceci3 已提交
392 393 394 395

            if self.downsample_num == 0 and self.block_num != 0:
                for i in range(len(self.block_num)):
                    self.bottleneck_params_list.append(
C
fix  
ceci3 已提交
396 397 398 399 400 401 402 403 404 405 406
                        (self.filter_num[tokens[i * 11]],
                         self.filter_num[tokens[i * 11 + 1]],
                         self.filter_num[tokens[i * 11 + 2]],
                         self.filter_num[tokens[i * 11 + 3]],
                         self.filter_num[tokens[i * 11 + 4]],
                         self.filter_num[tokens[i * 11 + 5]],
                         self.filter_num[tokens[i * 11 + 6]],
                         self.filter_num[tokens[i * 11 + 7]],
                         self.filter_num[tokens[i * 11 + 8]],
                         self.k_size[tokens[i * 11 + 9]], 1,
                         self.pool_type[tokens[i * 11 + 10]]))
C
ceci3 已提交
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433

        def net_arch(input, return_mid_layer=False, return_block=[]):
            assert isinstance(return_block,
                              list), 'return_block must be a list.'
            layer_count = 0
            mid_layer = dict()
            for i, layer_setting in enumerate(self.bottleneck_params_list):
                filter_nums = layer_setting[0:9]
                filter_size = layer_setting[9]
                stride = layer_setting[10]
                pool_type = 'avg' if layer_setting[11] == 0 else 'max'
                if stride == 2:
                    layer_count += 1
                if (layer_count - 1) in return_block:
                    mid_layer[layer_count - 1] = input

                input = self._inceptionC(
                    input,
                    C_tokens=filter_nums,
                    filter_size=filter_size,
                    stride=stride,
                    pool_type=pool_type,
                    name='inceptionC_{}'.format(i + 1))

            if return_mid_layer:
                return input, mid_layer
            else:
C
fix  
ceci3 已提交
434
                return input,
C
ceci3 已提交
435 436

        return net_arch
C
update  
ceci3 已提交
437 438 439

    def _inceptionC(self,
                    data,
C
ceci3 已提交
440
                    C_tokens,
C
update  
ceci3 已提交
441 442
                    filter_size,
                    stride,
C
ceci3 已提交
443
                    pool_type,
C
update  
ceci3 已提交
444 445 446 447 448
                    name=None):
        pool1 = fluid.layers.pool2d(
            input=data,
            pool_size=filter_size,
            pool_padding='SAME',
C
ceci3 已提交
449 450
            pool_type=pool_type,
            name=name + '_pool2d')
C
update  
ceci3 已提交
451 452 453 454 455 456
        conv1 = conv_bn_layer(
            input=pool1,
            filter_size=1,
            num_filters=C_tokens[0],
            stride=stride,
            act='relu',
C
ceci3 已提交
457
            name=name + '_conv1')
C
update  
ceci3 已提交
458 459 460 461 462 463 464

        conv2 = conv_bn_layer(
            input=data,
            filter_size=1,
            num_filters=C_tokens[1],
            stride=stride,
            act='relu',
C
ceci3 已提交
465
            name=name + '_conv2')
C
update  
ceci3 已提交
466 467 468 469 470 471 472

        conv3 = conv_bn_layer(
            input=data,
            filter_size=1,
            num_filters=C_tokens[2],
            stride=1,
            act='relu',
C
ceci3 已提交
473
            name=name + '_conv3_1')
C
update  
ceci3 已提交
474 475 476 477 478 479
        conv3_1 = conv_bn_layer(
            input=conv3,
            filter_size=filter_size,
            num_filters=C_tokens[3],
            stride=stride,
            act='relu',
C
ceci3 已提交
480
            name=name + '_conv3_2_1')
C
update  
ceci3 已提交
481 482 483 484 485 486
        conv3_2 = conv_bn_layer(
            input=conv3,
            filter_size=filter_size,
            num_filters=C_tokens[4],
            stride=stride,
            act='relu',
C
ceci3 已提交
487
            name=name + '_conv3_2_2')
C
update  
ceci3 已提交
488 489 490 491 492 493 494

        conv4 = conv_bn_layer(
            input=data,
            filter_size=1,
            num_filters=C_tokens[5],
            stride=1,
            act='relu',
C
ceci3 已提交
495
            name=name + '_conv4_1')
C
update  
ceci3 已提交
496 497 498 499 500 501
        conv4 = conv_bn_layer(
            input=conv4,
            filter_size=filter_size,
            num_filters=C_tokens[6],
            stride=1,
            act='relu',
C
ceci3 已提交
502
            name=name + '_conv4_2')
C
update  
ceci3 已提交
503 504 505 506 507 508
        conv4_1 = conv_bn_layer(
            input=conv4,
            filter_size=filter_size,
            num_filters=C_tokens[7],
            stride=stride,
            act='relu',
C
ceci3 已提交
509
            name=name + '_conv4_3_1')
C
update  
ceci3 已提交
510 511 512 513 514 515
        conv4_2 = conv_bn_layer(
            input=conv4,
            filter_size=filter_size,
            num_filters=C_tokens[8],
            stride=stride,
            act='relu',
C
ceci3 已提交
516
            name=name + '_conv4_3_2')
C
update  
ceci3 已提交
517 518 519 520

        concat = fluid.layers.concat(
            [conv1, conv2, conv3_1, conv3_2, conv4_1, conv4_2],
            axis=1,
C
ceci3 已提交
521
            name=name + '_concat')
C
update  
ceci3 已提交
522
        return concat