Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSlim
提交
faa73513
P
PaddleSlim
项目概览
PaddlePaddle
/
PaddleSlim
大约 2 年 前同步成功
通知
51
Star
1434
Fork
344
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
16
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSlim
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
16
合并请求
16
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
faa73513
编写于
12月 05, 2019
作者:
C
ceci3
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update block
上级
51c23929
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
108 addition
and
58 deletion
+108
-58
paddleslim/nas/search_space/combine_search_space.py
paddleslim/nas/search_space/combine_search_space.py
+3
-3
paddleslim/nas/search_space/inception_block.py
paddleslim/nas/search_space/inception_block.py
+7
-6
paddleslim/nas/search_space/mobilenet_block.py
paddleslim/nas/search_space/mobilenet_block.py
+15
-8
paddleslim/nas/search_space/mobilenetv1.py
paddleslim/nas/search_space/mobilenetv1.py
+9
-1
paddleslim/nas/search_space/mobilenetv2.py
paddleslim/nas/search_space/mobilenetv2.py
+1
-1
paddleslim/nas/search_space/resnet_block.py
paddleslim/nas/search_space/resnet_block.py
+73
-39
未找到文件。
paddleslim/nas/search_space/combine_search_space.py
浏览文件 @
faa73513
...
@@ -87,9 +87,9 @@ class CombineSearchSpace(object):
...
@@ -87,9 +87,9 @@ class CombineSearchSpace(object):
block_num
=
config
[
'block_num'
]
if
'block_num'
in
config
else
None
block_num
=
config
[
'block_num'
]
if
'block_num'
in
config
else
None
if
'Block'
in
cls
.
__name__
:
if
'Block'
in
cls
.
__name__
:
if
block_mask
==
None
and
(
self
.
block_num
==
None
or
if
block_mask
==
None
and
(
block_num
==
None
or
self
.
input_size
==
None
or
input_size
==
None
or
self
.
output_size
==
None
):
output_size
==
None
):
raise
NotImplementedError
(
raise
NotImplementedError
(
"block_mask or (block num and input_size and output_size) can NOT be None at the same time in Block SPACE!"
"block_mask or (block num and input_size and output_size) can NOT be None at the same time in Block SPACE!"
)
)
...
...
paddleslim/nas/search_space/inception_block.py
浏览文件 @
faa73513
...
@@ -22,6 +22,7 @@ from paddle.fluid.param_attr import ParamAttr
...
@@ -22,6 +22,7 @@ from paddle.fluid.param_attr import ParamAttr
from
.search_space_base
import
SearchSpaceBase
from
.search_space_base
import
SearchSpaceBase
from
.base_layer
import
conv_bn_layer
from
.base_layer
import
conv_bn_layer
from
.search_space_registry
import
SEARCHSPACE
from
.search_space_registry
import
SEARCHSPACE
from
.utils
import
compute_downsample_num
__all__
=
[
"InceptionABlockSpace"
,
"InceptionCBlockSpace"
]
__all__
=
[
"InceptionABlockSpace"
,
"InceptionCBlockSpace"
]
### TODO add asymmetric kernel of conv when paddle-lite support
### TODO add asymmetric kernel of conv when paddle-lite support
...
@@ -70,7 +71,7 @@ class InceptionABlockSpace(SearchSpaceBase):
...
@@ -70,7 +71,7 @@ class InceptionABlockSpace(SearchSpaceBase):
if
self
.
block_mask
!=
None
:
if
self
.
block_mask
!=
None
:
range_table_length
=
len
(
self
.
block_mask
)
range_table_length
=
len
(
self
.
block_mask
)
else
:
else
:
range_table_length
=
self
.
block_
m
um
range_table_length
=
self
.
block_
n
um
for
i
in
range
(
range_table_length
):
for
i
in
range
(
range_table_length
):
range_table_base
.
append
(
len
(
self
.
filter_num
))
range_table_base
.
append
(
len
(
self
.
filter_num
))
...
@@ -107,7 +108,7 @@ class InceptionABlockSpace(SearchSpaceBase):
...
@@ -107,7 +108,7 @@ class InceptionABlockSpace(SearchSpaceBase):
self
.
k_size
[
tokens
[
i
*
9
+
7
]],
2
if
self
.
block_mask
==
1
self
.
k_size
[
tokens
[
i
*
9
+
7
]],
2
if
self
.
block_mask
==
1
else
1
,
self
.
pool_type
[
tokens
[
i
*
9
+
8
]]))
else
1
,
self
.
pool_type
[
tokens
[
i
*
9
+
8
]]))
else
:
else
:
repeat_num
=
self
.
block_num
/
self
.
downsample_num
repeat_num
=
int
(
self
.
block_num
/
self
.
downsample_num
)
num_minus
=
self
.
block_num
%
self
.
downsample_num
num_minus
=
self
.
block_num
%
self
.
downsample_num
### if block_num > downsample_num, add stride=1 block at last (block_num-downsample_num) layers
### if block_num > downsample_num, add stride=1 block at last (block_num-downsample_num) layers
for
i
in
range
(
self
.
downsample_num
):
for
i
in
range
(
self
.
downsample_num
):
...
@@ -136,7 +137,7 @@ class InceptionABlockSpace(SearchSpaceBase):
...
@@ -136,7 +137,7 @@ class InceptionABlockSpace(SearchSpaceBase):
self
.
pool_type
[
tokens
[
kk
*
9
+
8
]]))
self
.
pool_type
[
tokens
[
kk
*
9
+
8
]]))
if
self
.
downsample_num
-
i
<=
num_minus
:
if
self
.
downsample_num
-
i
<=
num_minus
:
j
=
self
.
downsample_num
*
repeat_num
+
i
j
=
self
.
downsample_num
*
(
repeat_num
-
1
)
+
i
self
.
bottleneck_params_list
.
append
(
self
.
bottleneck_params_list
.
append
(
(
self
.
filter_num
[
tokens
[
j
*
9
]],
(
self
.
filter_num
[
tokens
[
j
*
9
]],
self
.
filter_num
[
tokens
[
j
*
9
+
1
]],
self
.
filter_num
[
tokens
[
j
*
9
+
1
]],
...
@@ -304,7 +305,7 @@ class InceptionCBlockSpace(SearchSpaceBase):
...
@@ -304,7 +305,7 @@ class InceptionCBlockSpace(SearchSpaceBase):
if
self
.
block_mask
!=
None
:
if
self
.
block_mask
!=
None
:
range_table_length
=
len
(
self
.
block_mask
)
range_table_length
=
len
(
self
.
block_mask
)
else
:
else
:
range_table_length
=
self
.
block_
m
um
range_table_length
=
self
.
block_
n
um
for
i
in
range
(
range_table_length
):
for
i
in
range
(
range_table_length
):
range_table_base
.
append
(
len
(
self
.
filter_num
))
range_table_base
.
append
(
len
(
self
.
filter_num
))
...
@@ -343,7 +344,7 @@ class InceptionCBlockSpace(SearchSpaceBase):
...
@@ -343,7 +344,7 @@ class InceptionCBlockSpace(SearchSpaceBase):
self
.
k_size
[
tokens
[
i
*
11
+
9
]],
2
if
self
.
block_mask
==
1
self
.
k_size
[
tokens
[
i
*
11
+
9
]],
2
if
self
.
block_mask
==
1
else
1
,
self
.
pool_type
[
tokens
[
i
*
11
+
10
]]))
else
1
,
self
.
pool_type
[
tokens
[
i
*
11
+
10
]]))
else
:
else
:
repeat_num
=
self
.
block_num
/
self
.
downsample_num
repeat_num
=
int
(
self
.
block_num
/
self
.
downsample_num
)
num_minus
=
self
.
block_num
%
self
.
downsample_num
num_minus
=
self
.
block_num
%
self
.
downsample_num
### if block_num > downsample_num, add stride=1 block at last (block_num-downsample_num) layers
### if block_num > downsample_num, add stride=1 block at last (block_num-downsample_num) layers
for
i
in
range
(
self
.
downsample_num
):
for
i
in
range
(
self
.
downsample_num
):
...
@@ -376,7 +377,7 @@ class InceptionCBlockSpace(SearchSpaceBase):
...
@@ -376,7 +377,7 @@ class InceptionCBlockSpace(SearchSpaceBase):
self
.
pool_type
[
tokens
[
kk
*
11
+
10
]]))
self
.
pool_type
[
tokens
[
kk
*
11
+
10
]]))
if
self
.
downsample_num
-
i
<=
num_minus
:
if
self
.
downsample_num
-
i
<=
num_minus
:
j
=
self
.
downsample_num
*
repeat_num
+
i
j
=
self
.
downsample_num
*
(
repeat_num
-
1
)
+
i
self
.
bottleneck_params_list
.
append
(
self
.
bottleneck_params_list
.
append
(
(
self
.
filter_num
[
tokens
[
j
*
11
]],
(
self
.
filter_num
[
tokens
[
j
*
11
]],
self
.
filter_num
[
tokens
[
j
*
11
+
1
]],
self
.
filter_num
[
tokens
[
j
*
11
+
1
]],
...
...
paddleslim/nas/search_space/mobilenet_block.py
浏览文件 @
faa73513
...
@@ -70,7 +70,7 @@ class MobileNetV2BlockSpace(SearchSpaceBase):
...
@@ -70,7 +70,7 @@ class MobileNetV2BlockSpace(SearchSpaceBase):
if
self
.
block_mask
!=
None
:
if
self
.
block_mask
!=
None
:
range_table_length
=
len
(
self
.
block_mask
)
range_table_length
=
len
(
self
.
block_mask
)
else
:
else
:
range_table_length
=
self
.
block_
m
um
range_table_length
=
self
.
block_
n
um
for
i
in
range
(
range_table_length
):
for
i
in
range
(
range_table_length
):
range_table_base
.
append
(
len
(
self
.
multiply
))
range_table_base
.
append
(
len
(
self
.
multiply
))
...
@@ -98,7 +98,7 @@ class MobileNetV2BlockSpace(SearchSpaceBase):
...
@@ -98,7 +98,7 @@ class MobileNetV2BlockSpace(SearchSpaceBase):
if
self
.
block_mask
[
i
]
==
1
else
1
,
if
self
.
block_mask
[
i
]
==
1
else
1
,
self
.
k_size
[
tokens
[
i
*
4
+
3
]]))
self
.
k_size
[
tokens
[
i
*
4
+
3
]]))
else
:
else
:
repeat_num
=
self
.
block_num
/
self
.
downsample_num
repeat_num
=
int
(
self
.
block_num
/
self
.
downsample_num
)
num_minus
=
self
.
block_num
%
self
.
downsample_num
num_minus
=
self
.
block_num
%
self
.
downsample_num
### if block_num > downsample_num, add stride=1 block at last (block_num-downsample_num) layers
### if block_num > downsample_num, add stride=1 block at last (block_num-downsample_num) layers
for
i
in
range
(
self
.
downsample_num
):
for
i
in
range
(
self
.
downsample_num
):
...
@@ -118,7 +118,7 @@ class MobileNetV2BlockSpace(SearchSpaceBase):
...
@@ -118,7 +118,7 @@ class MobileNetV2BlockSpace(SearchSpaceBase):
self
.
k_size
[
tokens
[
kk
*
4
+
3
]]))
self
.
k_size
[
tokens
[
kk
*
4
+
3
]]))
if
self
.
downsample_num
-
i
<=
num_minus
:
if
self
.
downsample_num
-
i
<=
num_minus
:
j
=
self
.
downsample_num
*
repeat_num
+
i
j
=
self
.
downsample_num
*
(
repeat_num
-
1
)
+
i
self
.
bottleneck_params_list
.
append
(
self
.
bottleneck_params_list
.
append
(
(
self
.
multiply
[
tokens
[
j
*
4
]],
(
self
.
multiply
[
tokens
[
j
*
4
]],
self
.
filter_num
[
tokens
[
j
*
4
+
1
]],
self
.
filter_num
[
tokens
[
j
*
4
+
1
]],
...
@@ -343,9 +343,9 @@ class MobileNetV1BlockSpace(SearchSpaceBase):
...
@@ -343,9 +343,9 @@ class MobileNetV1BlockSpace(SearchSpaceBase):
if
self
.
block_mask
[
i
]
==
1
else
1
,
if
self
.
block_mask
[
i
]
==
1
else
1
,
self
.
k_size
[
tokens
[
i
*
3
+
2
]]))
self
.
k_size
[
tokens
[
i
*
3
+
2
]]))
else
:
else
:
repeat_num
=
self
.
block_num
/
self
.
downsample_num
repeat_num
=
int
(
self
.
block_num
/
self
.
downsample_num
)
num_minus
=
self
.
block_num
%
self
.
downsample_num
num_minus
=
self
.
block_num
%
self
.
downsample_num
for
i
in
range
(
self
.
block
_num
):
for
i
in
range
(
self
.
downsample
_num
):
### if block_num > downsample_num, add stride=1 block at last (block_num-downsample_num) layers
### if block_num > downsample_num, add stride=1 block at last (block_num-downsample_num) layers
self
.
bottleneck_params_list
.
append
(
self
.
bottleneck_params_list
.
append
(
(
self
.
filter_num
[
tokens
[
i
*
3
]],
(
self
.
filter_num
[
tokens
[
i
*
3
]],
...
@@ -361,7 +361,7 @@ class MobileNetV1BlockSpace(SearchSpaceBase):
...
@@ -361,7 +361,7 @@ class MobileNetV1BlockSpace(SearchSpaceBase):
self
.
k_size
[
tokens
[
kk
*
3
+
2
]]))
self
.
k_size
[
tokens
[
kk
*
3
+
2
]]))
if
self
.
downsample_num
-
i
<=
num_minus
:
if
self
.
downsample_num
-
i
<=
num_minus
:
j
=
self
.
downsample_num
*
repeat_num
+
i
j
=
self
.
downsample_num
*
(
repeat_num
-
1
)
+
i
self
.
bottleneck_params_list
.
append
(
self
.
bottleneck_params_list
.
append
(
(
self
.
filter_num
[
tokens
[
j
*
3
]],
(
self
.
filter_num
[
tokens
[
j
*
3
]],
self
.
filter_num
[
tokens
[
j
*
3
+
1
]],
1
,
self
.
filter_num
[
tokens
[
j
*
3
+
1
]],
1
,
...
@@ -399,7 +399,7 @@ class MobileNetV1BlockSpace(SearchSpaceBase):
...
@@ -399,7 +399,7 @@ class MobileNetV1BlockSpace(SearchSpaceBase):
if
return_mid_layer
:
if
return_mid_layer
:
return
input
,
mid_layer
return
input
,
mid_layer
else
:
else
:
return
input
return
input
,
return
net_arch
return
net_arch
...
@@ -412,10 +412,17 @@ class MobileNetV1BlockSpace(SearchSpaceBase):
...
@@ -412,10 +412,17 @@ class MobileNetV1BlockSpace(SearchSpaceBase):
kernel_size
,
kernel_size
,
name
=
None
):
name
=
None
):
num_groups
=
input
.
shape
[
1
]
num_groups
=
input
.
shape
[
1
]
s_oc
=
int
(
num_filters1
*
scale
)
if
s_oc
>
num_groups
:
output_channel
=
s_oc
-
(
s_oc
%
num_groups
)
else
:
output_channel
=
num_groups
depthwise_conv
=
conv_bn_layer
(
depthwise_conv
=
conv_bn_layer
(
input
=
input
,
input
=
input
,
filter_size
=
kernel_size
,
filter_size
=
kernel_size
,
num_filters
=
int
(
num_filters1
*
scale
)
,
num_filters
=
output_channel
,
stride
=
stride
,
stride
=
stride
,
num_groups
=
num_groups
,
num_groups
=
num_groups
,
use_cudnn
=
False
,
use_cudnn
=
False
,
...
...
paddleslim/nas/search_space/mobilenetv1.py
浏览文件 @
faa73513
...
@@ -182,7 +182,7 @@ class MobileNetV1Space(SearchSpaceBase):
...
@@ -182,7 +182,7 @@ class MobileNetV1Space(SearchSpaceBase):
name
=
'mobilenetv1_conv1'
)
name
=
'mobilenetv1_conv1'
)
layer_count
=
1
layer_count
=
1
for
i
,
layer_setting
in
enumerate
(
bottleneck_param_list
):
for
i
,
layer_setting
in
enumerate
(
self
.
bottleneck_param_list
):
filter_num1
,
filter_num2
,
stride
,
kernel_size
=
layer_setting
filter_num1
,
filter_num2
,
stride
,
kernel_size
=
layer_setting
if
stride
==
2
:
if
stride
==
2
:
layer_count
+=
1
layer_count
+=
1
...
@@ -225,6 +225,14 @@ class MobileNetV1Space(SearchSpaceBase):
...
@@ -225,6 +225,14 @@ class MobileNetV1Space(SearchSpaceBase):
scale
,
scale
,
kernel_size
,
kernel_size
,
name
=
None
):
name
=
None
):
num_groups
=
input
.
shape
[
1
]
s_oc
=
int
(
num_filters1
*
scale
)
if
s_oc
>
num_groups
:
output_channel
=
s_oc
-
(
s_oc
%
num_groups
)
else
:
output_channel
=
num_groups
depthwise_conv
=
conv_bn_layer
(
depthwise_conv
=
conv_bn_layer
(
input
=
input
,
input
=
input
,
filter_size
=
kernel_size
,
filter_size
=
kernel_size
,
...
...
paddleslim/nas/search_space/mobilenetv2.py
浏览文件 @
faa73513
...
@@ -168,7 +168,7 @@ class MobileNetV2Space(SearchSpaceBase):
...
@@ -168,7 +168,7 @@ class MobileNetV2Space(SearchSpaceBase):
depthwise_output
=
None
depthwise_output
=
None
# bottleneck sequences
# bottleneck sequences
in_c
=
int
(
32
*
self
.
scale
)
in_c
=
int
(
32
*
self
.
scale
)
for
layer_setting
in
self
.
bottleneck_params_list
:
for
i
,
layer_setting
in
enumerate
(
self
.
bottleneck_params_list
)
:
t
,
c
,
n
,
s
,
k
=
layer_setting
t
,
c
,
n
,
s
,
k
=
layer_setting
if
s
==
2
:
if
s
==
2
:
layer_count
+=
1
layer_count
+=
1
...
...
paddleslim/nas/search_space/resnet_block.py
浏览文件 @
faa73513
...
@@ -40,26 +40,29 @@ class ResNetBlockSpace(SearchSpaceBase):
...
@@ -40,26 +40,29 @@ class ResNetBlockSpace(SearchSpaceBase):
self
.
downsample_num
,
self
.
block_num
)
self
.
downsample_num
,
self
.
block_num
)
self
.
filter_num
=
np
.
array
(
self
.
filter_num
=
np
.
array
(
[
48
,
64
,
96
,
128
,
160
,
192
,
224
,
256
,
320
,
384
,
512
,
640
])
[
48
,
64
,
96
,
128
,
160
,
192
,
224
,
256
,
320
,
384
,
512
,
640
])
### TODO: use repeat to compute normal cell
self
.
repeat
=
np
.
array
([
0
,
1
,
2
])
#self.repeat = [2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 24]
self
.
k_size
=
np
.
array
([
3
,
5
])
self
.
k_size
=
np
.
array
([
3
,
5
])
def
init_tokens
(
self
):
def
init_tokens
(
self
):
if
self
.
block_mask
!=
None
:
if
self
.
block_mask
!=
None
:
return
[
0
]
*
(
len
(
self
.
block_mask
)
*
2
)
return
[
0
]
*
(
len
(
self
.
block_mask
)
*
6
)
else
:
else
:
return
[
0
]
*
(
self
.
block_num
*
2
)
return
[
0
]
*
(
self
.
block_num
*
6
)
def
range_table
(
self
):
def
range_table
(
self
):
range_table_base
=
[]
range_table_base
=
[]
if
self
.
block_mask
!=
None
:
if
self
.
block_mask
!=
None
:
range_table_length
=
len
(
self
.
block_mask
)
range_table_length
=
len
(
self
.
block_mask
)
else
:
else
:
range_table_length
=
self
.
block_
m
um
range_table_length
=
self
.
block_
n
um
for
i
in
range
(
range_table_length
):
for
i
in
range
(
range_table_length
):
range_table_base
.
append
(
len
(
self
.
filter_num
))
range_table_base
.
append
(
len
(
self
.
filter_num
))
range_table_base
.
append
(
len
(
self
.
filter_num
))
range_table_base
.
append
(
len
(
self
.
filter_num
))
range_table_base
.
append
(
len
(
self
.
k_size
))
range_table_base
.
append
(
len
(
self
.
k_size
))
range_table_base
.
append
(
len
(
self
.
repeat
))
range_table_base
.
append
(
len
(
self
.
repeat
))
return
range_table_base
return
range_table_base
...
@@ -71,32 +74,52 @@ class ResNetBlockSpace(SearchSpaceBase):
...
@@ -71,32 +74,52 @@ class ResNetBlockSpace(SearchSpaceBase):
if
self
.
block_mask
!=
None
:
if
self
.
block_mask
!=
None
:
for
i
in
range
(
len
(
self
.
block_mask
)):
for
i
in
range
(
len
(
self
.
block_mask
)):
self
.
bottleneck_params_list
.
append
(
self
.
bottleneck_params_list
.
append
(
(
self
.
filter_num
[
tokens
[
i
*
2
]],
(
self
.
filter_num
[
tokens
[
i
*
6
]],
self
.
k_size
[
tokens
[
i
*
2
+
1
]],
2
self
.
filter_num
[
tokens
[
i
*
6
+
1
]],
self
.
filter_num
[
tokens
[
i
*
6
+
2
]],
self
.
k_size
[
tokens
[
i
*
6
+
3
]],
self
.
repeat
[
tokens
[
i
*
6
+
4
]],
self
.
repeat
[
tokens
[
i
*
6
+
5
]],
2
if
self
.
block_mask
[
i
]
==
1
else
1
))
if
self
.
block_mask
[
i
]
==
1
else
1
))
else
:
else
:
repeat_num
=
self
.
block_num
/
self
.
downsample_num
repeat_num
=
int
(
self
.
block_num
/
self
.
downsample_num
)
num_minus
=
self
.
block_num
%
self
.
downsample_num
num_minus
=
self
.
block_num
%
self
.
downsample_num
for
i
in
range
(
self
.
downsample_num
):
for
i
in
range
(
self
.
downsample_num
):
self
.
bottleneck_params_list
.
append
(
self
.
bottleneck_params_list
.
append
(
self
.
filter_num
[
tokens
[
i
*
2
]],
(
self
.
filter_num
[
tokens
[
i
*
6
]],
self
.
k_size
[
tokens
[
i
*
2
+
1
]],
2
)
self
.
filter_num
[
tokens
[
i
*
6
+
1
]],
self
.
filter_num
[
tokens
[
i
*
6
+
2
]],
self
.
k_size
[
tokens
[
i
*
6
+
3
]],
self
.
repeat
[
tokens
[
i
*
6
+
4
]],
self
.
repeat
[
tokens
[
i
*
6
+
5
]],
2
))
for
k
in
range
(
repeat_num
-
1
):
for
k
in
range
(
repeat_num
-
1
):
kk
=
k
*
self
.
downsample_num
+
i
kk
=
k
*
self
.
downsample_num
+
i
self
.
bottleneck_params_list
.
append
(
self
.
bottleneck_params_list
.
append
(
self
.
filter_num
[
tokens
[
kk
*
2
]],
(
self
.
filter_num
[
tokens
[
kk
*
6
]],
self
.
k_size
[
tokens
[
kk
*
2
+
1
]],
1
)
self
.
filter_num
[
tokens
[
kk
*
6
+
1
]],
self
.
filter_num
[
tokens
[
kk
*
6
+
2
]],
self
.
k_size
[
tokens
[
kk
*
6
+
3
]],
self
.
repeat
[
tokens
[
kk
*
6
+
4
]],
self
.
repeat
[
tokens
[
kk
*
6
+
5
]],
1
))
if
self
.
downsample_num
-
i
<=
num_minus
:
if
self
.
downsample_num
-
i
<=
num_minus
:
j
=
self
.
downsample_num
*
repeat_num
+
i
j
=
self
.
downsample_num
*
(
repeat_num
-
1
)
+
i
self
.
bottleneck_params_list
.
append
(
self
.
bottleneck_params_list
.
append
(
self
.
filter_num
[
tokens
[
j
*
2
]],
(
self
.
filter_num
[
tokens
[
j
*
6
]],
self
.
k_size
[
tokens
[
j
*
2
+
1
]],
1
)
self
.
filter_num
[
tokens
[
j
*
6
+
1
]],
self
.
filter_num
[
tokens
[
j
*
6
+
2
]],
self
.
k_size
[
tokens
[
j
*
6
+
3
]],
self
.
repeat
[
tokens
[
j
*
6
+
4
]],
self
.
repeat
[
tokens
[
j
*
6
+
5
]],
1
))
if
self
.
downsample_num
==
0
and
self
.
block_num
!=
0
:
if
self
.
downsample_num
==
0
and
self
.
block_num
!=
0
:
for
i
in
range
(
len
(
self
.
block_num
)):
for
i
in
range
(
len
(
self
.
block_num
)):
self
.
bottleneck_params_list
.
append
(
self
.
bottleneck_params_list
.
append
(
self
.
filter_num
[
tokens
[
i
*
2
]],
(
self
.
filter_num
[
tokens
[
i
*
6
]],
self
.
k_size
[
tokens
[
i
*
2
+
1
]],
1
)
self
.
filter_num
[
tokens
[
i
*
6
+
1
]],
self
.
filter_num
[
tokens
[
i
*
6
+
2
]],
self
.
k_size
[
tokens
[
i
*
6
+
3
]],
self
.
repeat
[
tokens
[
i
*
6
+
4
]],
self
.
repeat
[
tokens
[
i
*
6
+
5
]],
1
))
def
net_arch
(
input
,
return_mid_layer
=
False
,
return_block
=
[]):
def
net_arch
(
input
,
return_mid_layer
=
False
,
return_block
=
[]):
assert
isinstance
(
return_block
,
assert
isinstance
(
return_block
,
...
@@ -104,7 +127,7 @@ class ResNetBlockSpace(SearchSpaceBase):
...
@@ -104,7 +127,7 @@ class ResNetBlockSpace(SearchSpaceBase):
layer_count
=
0
layer_count
=
0
mid_layer
=
dict
()
mid_layer
=
dict
()
for
i
,
layer_setting
in
enumerate
(
self
.
bottleneck_params_list
):
for
i
,
layer_setting
in
enumerate
(
self
.
bottleneck_params_list
):
filter_num
,
k_size
,
stride
=
layer_setting
filter_num
1
,
filter_num2
,
filter_num3
,
k_size
,
repeat1
,
repeat2
,
stride
=
layer_setting
if
stride
==
2
:
if
stride
==
2
:
layer_count
+=
1
layer_count
+=
1
if
(
layer_count
-
1
)
in
return_block
:
if
(
layer_count
-
1
)
in
return_block
:
...
@@ -112,8 +135,12 @@ class ResNetBlockSpace(SearchSpaceBase):
...
@@ -112,8 +135,12 @@ class ResNetBlockSpace(SearchSpaceBase):
input
=
self
.
_bottleneck_block
(
input
=
self
.
_bottleneck_block
(
input
=
input
,
input
=
input
,
num_filters
=
filter_num
,
num_filters1
=
filter_num1
,
num_filters2
=
filter_num3
,
num_filters3
=
filter_num3
,
kernel_size
=
k_size
,
kernel_size
=
k_size
,
repeat1
=
repeat1
,
repeat2
=
repeat2
,
stride
=
stride
,
stride
=
stride
,
name
=
'resnet'
+
str
(
i
+
1
))
name
=
'resnet'
+
str
(
i
+
1
))
...
@@ -138,33 +165,40 @@ class ResNetBlockSpace(SearchSpaceBase):
...
@@ -138,33 +165,40 @@ class ResNetBlockSpace(SearchSpaceBase):
def
_bottleneck_block
(
self
,
def
_bottleneck_block
(
self
,
input
,
input
,
num_filters
,
num_filters1
,
num_filters2
,
num_filters3
,
kernel_size
,
kernel_size
,
repeat1
,
repeat2
,
stride
,
stride
,
name
=
None
):
name
=
None
):
conv0
=
conv_bn_layer
(
short
=
self
.
_shortcut
(
input
,
num_filters3
,
stride
,
name
=
name
)
for
i
in
range
(
repeat1
):
input
=
conv_bn_layer
(
input
=
input
,
num_filters
=
num_filters1
,
filter_size
=
1
,
stride
=
1
,
act
=
'relu'
,
name
=
name
+
'_bottleneck_conv0_{}'
.
format
(
str
(
i
)))
input
=
conv_bn_layer
(
input
=
input
,
input
=
input
,
num_filters
=
num_filters
,
num_filters
=
num_filters2
,
filter_size
=
1
,
stride
=
1
,
act
=
'relu'
,
name
=
name
+
'_bottleneck_conv0'
)
conv1
=
conv_bn_layer
(
input
=
conv0
,
num_filters
=
num_filters
,
filter_size
=
kernel_size
,
filter_size
=
kernel_size
,
stride
=
stride
,
stride
=
stride
,
act
=
'relu'
,
act
=
'relu'
,
name
=
name
+
'_bottleneck_conv1'
)
name
=
name
+
'_bottleneck_conv1'
)
conv2
=
conv_bn_layer
(
for
i
in
range
(
repeat2
):
input
=
conv1
,
input
=
conv_bn_layer
(
num_filters
=
num_filters
*
4
,
input
=
input
,
filter_size
=
1
,
num_filters
=
num_filters3
,
stride
=
1
,
filter_size
=
1
,
act
=
None
,
stride
=
1
,
name
=
name
+
'_bottleneck_conv2'
)
act
=
None
,
name
=
name
+
'_bottleneck_conv2_{}'
.
format
(
str
(
i
)))
short
=
self
.
_shortcut
(
input
,
num_filters
*
4
,
stride
,
name
=
name
)
return
fluid
.
layers
.
elementwise_add
(
return
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv2
,
act
=
'relu'
,
name
=
name
+
'_bottleneck_add'
)
x
=
short
,
y
=
input
,
act
=
'relu'
,
name
=
name
+
'_bottleneck_add'
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录