inception_block.py 19.5 KB
Newer Older
C
update  
ceci3 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from .search_space_base import SearchSpaceBase
from .base_layer import conv_bn_layer
from .search_space_registry import SEARCHSPACE

C
ceci3 已提交
26
__all__ = ["InceptionABlockSpace", "InceptionCBlockSpace"]
C
update  
ceci3 已提交
27
### TODO add asymmetric kernel of conv when paddle-lite support 
C
ceci3 已提交
28
### inceptionB is same as inceptionA if asymmetric kernel is not support
C
update  
ceci3 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46


@SEARCHSPACE.register
class InceptionABlockSpace(SearchSpaceBase):
    def __init__(self, input_size, output_size, block_num, block_mask):
        super(InceptionABlockSpace, self).__init__(input_size, output_size,
                                                   block_num, block_mask)
        if self.block_mask == None:
            # use input_size and output_size to compute self.downsample_num
            self.downsample_num = compute_downsample_num(self.input_size,
                                                         self.output_size)
        if self.block_num != None:
            assert self.downsample_num <= self.block_num, 'downsample numeber must be LESS THAN OR EQUAL TO block_num, but NOW: downsample numeber is {}, block_num is {}'.format(
                self.downsample_num, self.block_num)

        ### self.filter_num means filter nums
        self.filter_num = np.array([
            3, 4, 8, 12, 16, 24, 32, 48, 64, 80, 96, 128, 144, 160, 192, 224,
C
ceci3 已提交
47
            256, 320, 384, 448, 480, 512, 1024
C
update  
ceci3 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
        ])
        ### self.k_size means kernel_size
        self.k_size = np.array([3, 5])
        ### self.pool_type means pool type, 0 means avg, 1 means max
        self.pool_type = np.array([0, 1])
        ### self.repeat means repeat of 1x1 conv in branch of inception
        ### self.repeat = np.array([0,1])

    def init_tokens(self):
        """
        The initial token.
        """
        if self.block_mask != None:
            return [0] * (len(self.block_mask) * 9)
        else:
            return [0] * (self.block_num * 9)

    def range_table(self):
        """
        Get range table of current search space, constrains the range of tokens.
        """
        range_table_base = []
        if self.block_mask != None:
            range_table_length = len(self.block_mask)
        else:
            range_table_length = self.block_mum

        for i in range(range_table_length):
            range_table_base.append(len(self.filter_num))
            range_table_base.append(len(self.filter_num))
            range_table_base.append(len(self.filter_num))
            range_table_base.append(len(self.filter_num))
            range_table_base.append(len(self.filter_num))
            range_table_base.append(len(self.filter_num))
            range_table_base.append(len(self.filter_num))
            range_table_base.append(len(self.k_size))
            range_table_base.append(len(self.pooltype))

        return range_table_base

    def token2arch(self, tokens=None):
        """
        return net_arch function
        """
        #assert self.block_num
        if tokens is None:
            tokens = self.init_tokens()

        self.bottleneck_params_list = []
        if self.block_mask != None:
            for i in range(len(self.block_mask)):
                self.bottleneck_params_list.append(
                    (self.filter_num[i * 9], self.filter_num[i * 9 + 1],
                     self.filter_num[i * 9 + 2], self.filter_num[i * 9 + 3],
                     self.filter_num[i * 9 + 4], self.filter_num[i * 9 + 5],
                     self.filter_num[i * 9 + 6], self.k_size[i * 9 + 7], 2 if
                     self.block_mask == 1 else 1, self.pool_type[i * 9 + 8]))
        else:
            repeat_num = self.block_num / self.downsample_num
            num_minus = self.block_num % self.downsample_num
            ### if block_num > downsample_num, add stride=1 block at last (block_num-downsample_num) layers
            for i in range(self.downsample_num):
                self.bottleneck_params_list.append(
                    (self.filter_num[i * 9], self.filter_num[i * 9 + 1],
                     self.filter_num[i * 9 + 2], self.filter_num[i * 9 + 3],
                     self.filter_num[i * 9 + 4], self.filter_num[i * 9 + 5],
                     self.filter_num[i * 9 + 6], self.k_size[i * 9 + 7], 2,
                     self.pool_type[i * 9 + 8]))
                ### if block_num / downsample_num > 1, add (block_num / downsample_num) times stride=1 block 
                for k in range(repeat_num - 1):
                    kk = k * self.downsample_num + i
                    self.bottleneck_params_list.append(
                        (self.filter_num[kk * 9], self.filter_num[kk * 9 + 1],
                         self.filter_num[kk * 9 + 2],
                         self.filter_num[kk * 9 + 3],
                         self.filter_num[kk * 9 + 4],
                         self.filter_num[kk * 9 + 5],
                         self.filter_num[kk * 9 + 6], self.k_size[kk * 9 + 7],
                         1, self.pool_type[kk * 9 + 8]))

                if self.downsample_num - i <= num_minus:
                    j = self.downsample_num * repeat_num + i
                    self.bottleneck_params_list.append((
                        self.filter_num[j * 9], self.filter_num[j * 9 + 1],
                        self.filter_num[j * 9 + 2], self.filter_num[j * 9 + 3],
                        self.filter_num[j * 9 + 4], self.filter_num[j * 9 + 5],
                        self.filter_num[j * 9 + 6], self.k_size[j * 9 + 7], 1,
                        self.pool_type[j * 9 + 8]))

            if self.downsample_num == 0 and self.block_num != 0:
                for i in range(len(self.block_num)):
                    self.bottleneck_params_list.append((
                        self.filter_num[i * 9], self.filter_num[i * 9 + 1],
                        self.filter_num[i * 9 + 2], self.filter_num[i * 9 + 3],
                        self.filter_num[i * 9 + 4], self.filter_num[i * 9 + 5],
                        self.filter_num[i * 9 + 6], self.k_size[i * 9 + 7], 1,
                        self.pool_type[i * 9 + 8]))

        def net_arch(input, return_mid_layer=False, return_block=[]):
            assert isinstance(return_block,
                              list), 'return_block must be a list.'
            layer_count = 0
            mid_layer = dict()
            for i, layer_setting in enumerate(self.bottleneck_params_list):
                filter_nums = layer_setting[0:7]
                filter_size = layer_setting[7]
                stride = layer_setting[8]
                pool_type = 'avg' if layer_setting[9] == 0 else 'max'
                if stride == 2:
                    layer_count += 1
                if (layer_count - 1) in return_block:
                    mid_layer[layer_count - 1] = input

                input = self._inceptionA(
                    input,
C
ceci3 已提交
163
                    A_tokens=filter_nums,
C
update  
ceci3 已提交
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
                    filter_size=filter_size,
                    stride=stride,
                    pool_type=pool_type,
                    name='inceptionA_{}'.format(i + 1))

            if return_mid_layer:
                return input, mid_layer
            else:
                return input

        return net_arch

    def _inceptionA(self,
                    data,
                    A_tokens,
                    filter_size,
                    stride,
                    pool_type,
                    name=None):
        pool1 = fluid.layers.pool2d(
            input=data,
            pool_size=filter_size,
            pool_padding='SAME',
            pool_type=pool_type,
            name=name + '_pool2d')
        conv1 = conv_bn_layer(
            input=pool1,
            filter_size=1,
            num_filters=A_tokens[0],
            stride=stride,
            act='relu',
            name=name + '_conv1')

        conv2 = conv_bn_layer(
            input=data,
            filter_size=1,
            num_filters=A_tokens[1],
            stride=stride,
            act='relu',
            name=name + '_conv2')

        conv3 = conv_bn_layer(
            input=data,
            filter_size=1,
            num_filters=A_tokens[2],
            stride=1,
            act='relu',
            name=name + '_conv3_1')
        conv3 = conv_bn_layer(
            input=conv3,
            filter_size=filter_size,
            num_filters=A_tokens[3],
            stride=stride,
            act='relu',
            name=name + '_conv3_2')

        conv4 = conv_bn_layer(
            input=data,
            filter_size=1,
            num_filters=A_tokens[4],
            stride=1,
            act='relu',
            name=name + '_conv4_1')
        conv4 = conv_bn_layer(
            input=conv4,
            filter_size=filter_size,
            num_filters=A_tokens[5],
            stride=1,
            act='relu',
            name=name + '_conv4_2')
        conv4 = conv_bn_layer(
            input=conv4,
            filter_size=filter_size,
            num_filters=A_tokens[6],
            stride=stride,
            act='relu',
            name=name + '_conv4_3')

        concat = fluid.layers.concat(
            [conv1, conv2, conv3, conv4], axis=1, name=name + '_concat')
        return concat


C
ceci3 已提交
247 248 249 250 251 252 253 254 255 256 257 258
@SEARCHSPACE.register
class InceptionCBlockSpace(SearchSpaceBase):
    def __init__(self, input_size, output_size, block_num, block_mask):
        super(InceptionABlockSpace, self).__init__(input_size, output_size,
                                                   block_num, block_mask)
        if self.block_mask == None:
            # use input_size and output_size to compute self.downsample_num
            self.downsample_num = compute_downsample_num(self.input_size,
                                                         self.output_size)
        if self.block_num != None:
            assert self.downsample_num <= self.block_num, 'downsample numeber must be LESS THAN OR EQUAL TO block_num, but NOW: downsample numeber is {}, block_num is {}'.format(
                self.downsample_num, self.block_num)
C
update  
ceci3 已提交
259

C
ceci3 已提交
260 261 262 263 264 265 266 267 268 269 270
        ### self.filter_num means filter nums
        self.filter_num = np.array([
            3, 4, 8, 12, 16, 24, 32, 48, 64, 80, 96, 128, 144, 160, 192, 224,
            256, 320, 384, 448, 480, 512, 1024
        ])
        ### self.k_size means kernel_size
        self.k_size = np.array([3, 5])
        ### self.pool_type means pool type, 0 means avg, 1 means max
        self.pool_type = np.array([0, 1])
        ### self.repeat means repeat of 1x1 conv in branch of inception
        ### self.repeat = np.array([0,1])
C
update  
ceci3 已提交
271

C
ceci3 已提交
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
    def init_tokens(self):
        """
        The initial token.
        """
        if self.block_mask != None:
            return [0] * (len(self.block_mask) * 9)
        else:
            return [0] * (self.block_num * 9)

    def range_table(self):
        """
        Get range table of current search space, constrains the range of tokens.
        """
        range_table_base = []
        if self.block_mask != None:
            range_table_length = len(self.block_mask)
        else:
            range_table_length = self.block_mum

        for i in range(range_table_length):
            range_table_base.append(len(self.filter_num))
            range_table_base.append(len(self.filter_num))
            range_table_base.append(len(self.filter_num))
            range_table_base.append(len(self.filter_num))
            range_table_base.append(len(self.filter_num))
            range_table_base.append(len(self.filter_num))
            range_table_base.append(len(self.filter_num))
            range_table_base.append(len(self.k_size))
            range_table_base.append(len(self.pooltype))

        return range_table_base

    def token2arch(self, tokens=None):
        """
        return net_arch function
        """
        #assert self.block_num
        if tokens is None:
            tokens = self.init_tokens()

        self.bottleneck_params_list = []
        if self.block_mask != None:
            for i in range(len(self.block_mask)):
                self.bottleneck_params_list.append(
                    (self.filter_num[i * 11], self.filter_num[i * 11 + 1],
                     self.filter_num[i * 11 + 2], self.filter_num[i * 11 + 3],
                     self.filter_num[i * 11 + 4], self.filter_num[i * 11 + 5],
                     self.filter_num[i * 11 + 6], self.filter_num[i * 11 + 7],
                     self.filter_num[i * 11 + 8], self.k_size[i * 11 + 9], 2 if
                     self.block_mask == 1 else 1, self.pool_type[i * 11 + 10]))
        else:
            repeat_num = self.block_num / self.downsample_num
            num_minus = self.block_num % self.downsample_num
            ### if block_num > downsample_num, add stride=1 block at last (block_num-downsample_num) layers
            for i in range(self.downsample_num):
                self.bottleneck_params_list.append(
                    (self.filter_num[i * 11], self.filter_num[i * 11 + 1],
                     self.filter_num[i * 11 + 2], self.filter_num[i * 11 + 3],
                     self.filter_num[i * 11 + 4], self.filter_num[i * 11 + 5],
                     self.filter_num[i * 11 + 6], self.filter_num[i * 11 + 7],
                     self.filter_num[i * 11 + 8], self.k_size[i * 11 + 9], 2,
                     self.pool_type[i * 11 + 10]))
                ### if block_num / downsample_num > 1, add (block_num / downsample_num) times stride=1 block 
                for k in range(repeat_num - 1):
                    kk = k * self.downsample_num + i
                    self.bottleneck_params_list.append((
                        self.filter_num[kk * 11], self.filter_num[kk * 11 + 1],
                        self.filter_num[kk * 11 + 2],
                        self.filter_num[kk * 11 + 3],
                        self.filter_num[kk * 11 + 4],
                        self.filter_num[kk * 11 + 5],
                        self.filter_num[kk * 11 + 6],
                        self.filter_num[kk * 11 + 7],
                        self.filter_num[kk * 11 + 8], self.k_size[kk * 11 + 9],
                        1, self.pool_type[kk * 11 + 10]))

                if self.downsample_num - i <= num_minus:
                    j = self.downsample_num * repeat_num + i
                    self.bottleneck_params_list.append(
                        (self.filter_num[j * 11], self.filter_num[j * 11 + 1],
                         self.filter_num[j * 11 + 2],
                         self.filter_num[j * 11 + 3],
                         self.filter_num[j * 11 + 4],
                         self.filter_num[j * 11 + 5],
                         self.filter_num[j * 11 + 6],
                         self.filter_num[j * 11 + 7],
                         self.filter_num[j * 11 + 8], self.k_size[j * 11 + 9],
                         1, self.pool_type[j * 11 + 10]))

            if self.downsample_num == 0 and self.block_num != 0:
                for i in range(len(self.block_num)):
                    self.bottleneck_params_list.append(
                        (self.filter_num[i * 11], self.filter_num[i * 11 + 1],
                         self.filter_num[i * 11 + 2],
                         self.filter_num[i * 11 + 3],
                         self.filter_num[i * 11 + 4],
                         self.filter_num[i * 11 + 5],
                         self.filter_num[i * 11 + 6],
                         self.filter_num[i * 11 + 7],
                         self.filter_num[i * 11 + 8], self.k_size[i * 11 + 9],
                         1, self.pool_type[i * 11 + 10]))

        def net_arch(input, return_mid_layer=False, return_block=[]):
            assert isinstance(return_block,
                              list), 'return_block must be a list.'
            layer_count = 0
            mid_layer = dict()
            for i, layer_setting in enumerate(self.bottleneck_params_list):
                filter_nums = layer_setting[0:9]
                filter_size = layer_setting[9]
                stride = layer_setting[10]
                pool_type = 'avg' if layer_setting[11] == 0 else 'max'
                if stride == 2:
                    layer_count += 1
                if (layer_count - 1) in return_block:
                    mid_layer[layer_count - 1] = input

                input = self._inceptionC(
                    input,
                    C_tokens=filter_nums,
                    filter_size=filter_size,
                    stride=stride,
                    pool_type=pool_type,
                    name='inceptionC_{}'.format(i + 1))

            if return_mid_layer:
                return input, mid_layer
            else:
                return input

        return net_arch
C
update  
ceci3 已提交
403 404 405

    def _inceptionC(self,
                    data,
C
ceci3 已提交
406
                    C_tokens,
C
update  
ceci3 已提交
407 408
                    filter_size,
                    stride,
C
ceci3 已提交
409
                    pool_type,
C
update  
ceci3 已提交
410 411 412 413 414
                    name=None):
        pool1 = fluid.layers.pool2d(
            input=data,
            pool_size=filter_size,
            pool_padding='SAME',
C
ceci3 已提交
415 416
            pool_type=pool_type,
            name=name + '_pool2d')
C
update  
ceci3 已提交
417 418 419 420 421 422
        conv1 = conv_bn_layer(
            input=pool1,
            filter_size=1,
            num_filters=C_tokens[0],
            stride=stride,
            act='relu',
C
ceci3 已提交
423
            name=name + '_conv1')
C
update  
ceci3 已提交
424 425 426 427 428 429 430

        conv2 = conv_bn_layer(
            input=data,
            filter_size=1,
            num_filters=C_tokens[1],
            stride=stride,
            act='relu',
C
ceci3 已提交
431
            name=name + '_conv2')
C
update  
ceci3 已提交
432 433 434 435 436 437 438

        conv3 = conv_bn_layer(
            input=data,
            filter_size=1,
            num_filters=C_tokens[2],
            stride=1,
            act='relu',
C
ceci3 已提交
439
            name=name + '_conv3_1')
C
update  
ceci3 已提交
440 441 442 443 444 445
        conv3_1 = conv_bn_layer(
            input=conv3,
            filter_size=filter_size,
            num_filters=C_tokens[3],
            stride=stride,
            act='relu',
C
ceci3 已提交
446
            name=name + '_conv3_2_1')
C
update  
ceci3 已提交
447 448 449 450 451 452
        conv3_2 = conv_bn_layer(
            input=conv3,
            filter_size=filter_size,
            num_filters=C_tokens[4],
            stride=stride,
            act='relu',
C
ceci3 已提交
453
            name=name + '_conv3_2_2')
C
update  
ceci3 已提交
454 455 456 457 458 459 460

        conv4 = conv_bn_layer(
            input=data,
            filter_size=1,
            num_filters=C_tokens[5],
            stride=1,
            act='relu',
C
ceci3 已提交
461
            name=name + '_conv4_1')
C
update  
ceci3 已提交
462 463 464 465 466 467
        conv4 = conv_bn_layer(
            input=conv4,
            filter_size=filter_size,
            num_filters=C_tokens[6],
            stride=1,
            act='relu',
C
ceci3 已提交
468
            name=name + '_conv4_2')
C
update  
ceci3 已提交
469 470 471 472 473 474
        conv4_1 = conv_bn_layer(
            input=conv4,
            filter_size=filter_size,
            num_filters=C_tokens[7],
            stride=stride,
            act='relu',
C
ceci3 已提交
475
            name=name + '_conv4_3_1')
C
update  
ceci3 已提交
476 477 478 479 480 481
        conv4_2 = conv_bn_layer(
            input=conv4,
            filter_size=filter_size,
            num_filters=C_tokens[8],
            stride=stride,
            act='relu',
C
ceci3 已提交
482
            name=name + '_conv4_3_2')
C
update  
ceci3 已提交
483 484 485 486

        concat = fluid.layers.concat(
            [conv1, conv2, conv3_1, conv3_2, conv4_1, conv4_2],
            axis=1,
C
ceci3 已提交
487
            name=name + '_concat')
C
update  
ceci3 已提交
488
        return concat