utility.py 22.8 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
W
WenmuZhou 已提交
16
import os
W
WenmuZhou 已提交
17
import sys
文幕地方's avatar
文幕地方 已提交
18
import platform
L
LDOUBLEV 已提交
19 20
import cv2
import numpy as np
Z
zhoujun 已提交
21
import paddle
L
LDOUBLEV 已提交
22
from PIL import Image, ImageDraw, ImageFont
23
import math
W
WenmuZhou 已提交
24
from paddle import inference
L
LDOUBLEV 已提交
25 26
import time
from ppocr.utils.logging import get_logger
W
WenmuZhou 已提交
27

L
LDOUBLEV 已提交
28

29 30
def str2bool(v):
    return v.lower() in ("true", "t", "1")
L
LDOUBLEV 已提交
31 32


W
WenmuZhou 已提交
33
def init_args():
L
LDOUBLEV 已提交
34
    parser = argparse.ArgumentParser()
W
WenmuZhou 已提交
35
    # params for prediction engine
L
LDOUBLEV 已提交
36
    parser.add_argument("--use_gpu", type=str2bool, default=True)
X
xiaoting 已提交
37
    parser.add_argument("--use_xpu", type=str2bool, default=False)
L
LDOUBLEV 已提交
38 39
    parser.add_argument("--ir_optim", type=str2bool, default=True)
    parser.add_argument("--use_tensorrt", type=str2bool, default=False)
L
LDOUBLEV 已提交
40
    parser.add_argument("--min_subgraph_size", type=int, default=15)
littletomatodonkey's avatar
littletomatodonkey 已提交
41
    parser.add_argument("--shape_info_filename", type=str, default=None)
L
LDOUBLEV 已提交
42
    parser.add_argument("--precision", type=str, default="fp32")
L
LDOUBLEV 已提交
43
    parser.add_argument("--gpu_mem", type=int, default=500)
L
LDOUBLEV 已提交
44

W
WenmuZhou 已提交
45
    # params for text detector
L
LDOUBLEV 已提交
46 47 48
    parser.add_argument("--image_dir", type=str)
    parser.add_argument("--det_algorithm", type=str, default='DB')
    parser.add_argument("--det_model_dir", type=str)
W
WenmuZhou 已提交
49 50
    parser.add_argument("--det_limit_side_len", type=float, default=960)
    parser.add_argument("--det_limit_type", type=str, default='max')
L
LDOUBLEV 已提交
51

W
WenmuZhou 已提交
52
    # DB parmas
L
LDOUBLEV 已提交
53
    parser.add_argument("--det_db_thresh", type=float, default=0.3)
L
LDOUBLEV 已提交
54 55
    parser.add_argument("--det_db_box_thresh", type=float, default=0.6)
    parser.add_argument("--det_db_unclip_ratio", type=float, default=1.5)
L
LDOUBLEV 已提交
56
    parser.add_argument("--max_batch_size", type=int, default=10)
littletomatodonkey's avatar
littletomatodonkey 已提交
57
    parser.add_argument("--use_dilation", type=str2bool, default=False)
littletomatodonkey's avatar
littletomatodonkey 已提交
58
    parser.add_argument("--det_db_score_mode", type=str, default="fast")
W
WenmuZhou 已提交
59
    # EAST parmas
L
LDOUBLEV 已提交
60 61 62 63
    parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
    parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
    parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)

W
WenmuZhou 已提交
64
    # SAST parmas
L
licx 已提交
65 66
    parser.add_argument("--det_sast_score_thresh", type=float, default=0.5)
    parser.add_argument("--det_sast_nms_thresh", type=float, default=0.2)
littletomatodonkey's avatar
littletomatodonkey 已提交
67
    parser.add_argument("--det_sast_polygon", type=str2bool, default=False)
L
licx 已提交
68

W
WenmuZhou 已提交
69 70 71 72
    # PSE parmas
    parser.add_argument("--det_pse_thresh", type=float, default=0)
    parser.add_argument("--det_pse_box_thresh", type=float, default=0.85)
    parser.add_argument("--det_pse_min_area", type=float, default=16)
文幕地方's avatar
文幕地方 已提交
73
    parser.add_argument("--det_pse_box_type", type=str, default='quad')
W
WenmuZhou 已提交
74 75
    parser.add_argument("--det_pse_scale", type=int, default=1)

文幕地方's avatar
文幕地方 已提交
76 77 78 79 80 81 82
    # FCE parmas
    parser.add_argument("--scales", type=list, default=[8, 16, 32])
    parser.add_argument("--alpha", type=float, default=1.0)
    parser.add_argument("--beta", type=float, default=1.0)
    parser.add_argument("--fourier_degree", type=int, default=5)
    parser.add_argument("--det_fce_box_type", type=str, default='poly')

W
WenmuZhou 已提交
83
    # params for text recognizer
A
andyjpaddle 已提交
84
    parser.add_argument("--rec_algorithm", type=str, default='SVTR_LCNet')
L
LDOUBLEV 已提交
85
    parser.add_argument("--rec_model_dir", type=str)
T
tink2123 已提交
86
    parser.add_argument("--rec_image_shape", type=str, default="3, 48, 320")
L
LDOUBLEV 已提交
87
    parser.add_argument("--rec_batch_num", type=int, default=6)
T
fix bug  
tink2123 已提交
88
    parser.add_argument("--max_text_length", type=int, default=25)
L
LDOUBLEV 已提交
89 90 91 92
    parser.add_argument(
        "--rec_char_dict_path",
        type=str,
        default="./ppocr/utils/ppocr_keys_v1.txt")
W
WenmuZhou 已提交
93 94
    parser.add_argument("--use_space_char", type=str2bool, default=True)
    parser.add_argument(
T
tink2123 已提交
95
        "--vis_font_path", type=str, default="./doc/fonts/simfang.ttf")
W
WenmuZhou 已提交
96
    parser.add_argument("--drop_score", type=float, default=0.5)
W
WenmuZhou 已提交
97

J
Jethong 已提交
98 99 100 101 102 103 104 105 106
    # params for e2e
    parser.add_argument("--e2e_algorithm", type=str, default='PGNet')
    parser.add_argument("--e2e_model_dir", type=str)
    parser.add_argument("--e2e_limit_side_len", type=float, default=768)
    parser.add_argument("--e2e_limit_type", type=str, default='max')

    # PGNet parmas
    parser.add_argument("--e2e_pgnet_score_thresh", type=float, default=0.5)
    parser.add_argument(
J
Jethong 已提交
107
        "--e2e_char_dict_path", type=str, default="./ppocr/utils/ic15_dict.txt")
J
Jethong 已提交
108
    parser.add_argument("--e2e_pgnet_valid_set", type=str, default='totaltext')
J
Jethong 已提交
109
    parser.add_argument("--e2e_pgnet_mode", type=str, default='fast')
J
Jethong 已提交
110

W
WenmuZhou 已提交
111 112 113 114 115
    # params for text classifier
    parser.add_argument("--use_angle_cls", type=str2bool, default=False)
    parser.add_argument("--cls_model_dir", type=str)
    parser.add_argument("--cls_image_shape", type=str, default="3, 48, 192")
    parser.add_argument("--label_list", type=list, default=['0', '180'])
L
LDOUBLEV 已提交
116
    parser.add_argument("--cls_batch_num", type=int, default=6)
W
WenmuZhou 已提交
117 118 119
    parser.add_argument("--cls_thresh", type=float, default=0.9)

    parser.add_argument("--enable_mkldnn", type=str2bool, default=False)
L
LDOUBLEV 已提交
120
    parser.add_argument("--cpu_threads", type=int, default=10)
W
WenmuZhou 已提交
121
    parser.add_argument("--use_pdserving", type=str2bool, default=False)
122 123
    parser.add_argument("--warmup", type=str2bool, default=False)

X
xiaoting 已提交
124 125 126 127 128
    # SR parmas
    parser.add_argument("--sr_model_dir", type=str)
    parser.add_argument("--sr_image_shape", type=str, default="3, 32, 128")
    parser.add_argument("--sr_batch_num", type=int, default=1)

129 130 131 132 133
    #
    parser.add_argument(
        "--draw_img_save_dir", type=str, default="./inference_results")
    parser.add_argument("--save_crop_res", type=str2bool, default=False)
    parser.add_argument("--crop_res_save_dir", type=str, default="./output")
W
WenmuZhou 已提交
134

L
LDOUBLEV 已提交
135
    # multi-process
littletomatodonkey's avatar
littletomatodonkey 已提交
136
    parser.add_argument("--use_mp", type=str2bool, default=False)
137 138
    parser.add_argument("--total_process_num", type=int, default=1)
    parser.add_argument("--process_id", type=int, default=0)
W
WenmuZhou 已提交
139

littletomatodonkey's avatar
littletomatodonkey 已提交
140
    parser.add_argument("--benchmark", type=str2bool, default=False)
L
LDOUBLEV 已提交
141
    parser.add_argument("--save_log_path", type=str, default="./log_output/")
D
Double_V 已提交
142

W
WenmuZhou 已提交
143
    parser.add_argument("--show_log", type=str2bool, default=True)
T
tink2123 已提交
144
    parser.add_argument("--use_onnx", type=str2bool, default=False)
W
WenmuZhou 已提交
145
    return parser
W
WenmuZhou 已提交
146

147

148
def parse_args():
W
WenmuZhou 已提交
149
    parser = init_args()
L
LDOUBLEV 已提交
150 151 152
    return parser.parse_args()


W
WenmuZhou 已提交
153 154 155 156 157
def create_predictor(args, mode, logger):
    if mode == "det":
        model_dir = args.det_model_dir
    elif mode == 'cls':
        model_dir = args.cls_model_dir
J
Jethong 已提交
158
    elif mode == 'rec':
W
WenmuZhou 已提交
159
        model_dir = args.rec_model_dir
W
WenmuZhou 已提交
160 161
    elif mode == 'table':
        model_dir = args.table_model_dir
162 163
    elif mode == 'ser':
        model_dir = args.ser_model_dir
X
xiaoting 已提交
164 165
    elif mode == "sr":
        model_dir = args.sr_model_dir
文幕地方's avatar
文幕地方 已提交
166 167
    elif mode == 'layout':
        model_dir = args.layout_model_dir
J
Jethong 已提交
168 169
    else:
        model_dir = args.e2e_model_dir
W
WenmuZhou 已提交
170 171 172 173

    if model_dir is None:
        logger.info("not find {} model file path {}".format(mode, model_dir))
        sys.exit(0)
T
tink2123 已提交
174 175 176 177 178 179 180 181
    if args.use_onnx:
        import onnxruntime as ort
        model_file_path = model_dir
        if not os.path.exists(model_file_path):
            raise ValueError("not find model file path {}".format(
                model_file_path))
        sess = ort.InferenceSession(model_file_path)
        return sess, sess.get_inputs()[0], None, None
L
LDOUBLEV 已提交
182

L
LDOUBLEV 已提交
183
    else:
Z
zhoujun 已提交
184 185 186 187 188 189 190
        file_names = ['model', 'inference']
        for file_name in file_names:
            model_file_path = '{}/{}.pdmodel'.format(model_dir, file_name)
            params_file_path = '{}/{}.pdiparams'.format(model_dir, file_name)
            if os.path.exists(model_file_path) and os.path.exists(
                    params_file_path):
                break
T
tink2123 已提交
191
        if not os.path.exists(model_file_path):
Z
zhoujun 已提交
192 193 194
            raise ValueError(
                "not find model.pdmodel or inference.pdmodel in {}".format(
                    model_dir))
T
tink2123 已提交
195
        if not os.path.exists(params_file_path):
Z
zhoujun 已提交
196 197 198
            raise ValueError(
                "not find model.pdiparams or inference.pdiparams in {}".format(
                    model_dir))
T
tink2123 已提交
199 200 201 202 203 204 205 206 207 208

        config = inference.Config(model_file_path, params_file_path)

        if hasattr(args, 'precision'):
            if args.precision == "fp16" and args.use_tensorrt:
                precision = inference.PrecisionType.Half
            elif args.precision == "int8":
                precision = inference.PrecisionType.Int8
            else:
                precision = inference.PrecisionType.Float32
L
LDOUBLEV 已提交
209
        else:
T
tink2123 已提交
210 211 212 213 214
            precision = inference.PrecisionType.Float32

        if args.use_gpu:
            gpu_id = get_infer_gpuid()
            if gpu_id is None:
L
LDOUBLEV 已提交
215
                logger.warning(
216
                    "GPU is not found in current device by nvidia-smi. Please check your device or ignore it if run on jetson."
T
tink2123 已提交
217 218 219 220
                )
            config.enable_use_gpu(args.gpu_mem, 0)
            if args.use_tensorrt:
                config.enable_tensorrt_engine(
L
LDOUBLEV 已提交
221
                    workspace_size=1 << 30,
T
tink2123 已提交
222 223
                    precision_mode=precision,
                    max_batch_size=args.max_batch_size,
224 225
                    min_subgraph_size=args.
                    min_subgraph_size,  # skip the minmum trt subgraph
226
                    use_calib_mode=False)
227

littletomatodonkey's avatar
littletomatodonkey 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241
                # collect shape
                if args.shape_info_filename is not None:
                    if not os.path.exists(args.shape_info_filename):
                        config.collect_shape_range_info(
                            args.shape_info_filename)
                        logger.info(
                            f"collect dynamic shape info into : {args.shape_info_filename}"
                        )
                    else:
                        logger.info(
                            f"dynamic shape info file( {args.shape_info_filename} ) already exists, not need to generate again."
                        )
                    config.enable_tuned_tensorrt_dynamic_shape(
                        args.shape_info_filename, True)
littletomatodonkey's avatar
littletomatodonkey 已提交
242
                else:
243
                    logger.info(
littletomatodonkey's avatar
littletomatodonkey 已提交
244
                        f"when using tensorrt, dynamic shape is a suggested option, you can use '--shape_info_filename=shape.txt' for offline dygnamic shape tuning"
245
                    )
L
LDOUBLEV 已提交
246

X
xiaoting 已提交
247 248
        elif args.use_xpu:
            config.enable_xpu(10 * 1024 * 1024)
L
LDOUBLEV 已提交
249
        else:
T
tink2123 已提交
250 251 252 253 254 255 256
            config.disable_gpu()
            if args.enable_mkldnn:
                # cache 10 different shapes for mkldnn to avoid memory leak
                config.set_mkldnn_cache_capacity(10)
                config.enable_mkldnn()
                if args.precision == "fp16":
                    config.enable_mkldnn_bfloat16()
A
andyjpaddle 已提交
257 258 259 260 261
                if hasattr(args, "cpu_threads"):
                    config.set_cpu_math_library_num_threads(args.cpu_threads)
                else:
                    # default cpu threads as 10
                    config.set_cpu_math_library_num_threads(10)
T
tink2123 已提交
262 263
        # enable memory optim
        config.enable_memory_optim()
littletomatodonkey's avatar
fix  
littletomatodonkey 已提交
264
        config.disable_glog_info()
T
tink2123 已提交
265
        config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
T
tink2123 已提交
266
        config.delete_pass("matmul_transpose_reshape_fuse_pass")
T
tink2123 已提交
267 268 269 270 271 272 273 274
        if mode == 'table':
            config.delete_pass("fc_fuse_pass")  # not supported for table
        config.switch_use_feed_fetch_ops(False)
        config.switch_ir_optim(True)

        # create predictor
        predictor = inference.create_predictor(config)
        input_names = predictor.get_input_names()
文幕地方's avatar
文幕地方 已提交
275
        if mode in ['ser', 're']:
276 277 278 279 280 281
            input_tensor = []
            for name in input_names:
                input_tensor.append(predictor.get_input_handle(name))
        else:
            for name in input_names:
                input_tensor = predictor.get_input_handle(name)
L
LDOUBLEV 已提交
282 283 284 285 286 287 288
        output_tensors = get_output_tensors(args, mode, predictor)
        return predictor, input_tensor, output_tensors, config


def get_output_tensors(args, mode, predictor):
    output_names = predictor.get_output_names()
    output_tensors = []
A
andyjpaddle 已提交
289
    if mode == "rec" and args.rec_algorithm in ["CRNN", "SVTR_LCNet"]:
L
LDOUBLEV 已提交
290 291 292
        output_name = 'softmax_0.tmp_0'
        if output_name in output_names:
            return [predictor.get_output_handle(output_name)]
L
LDOUBLEV 已提交
293 294 295 296
        else:
            for output_name in output_names:
                output_tensor = predictor.get_output_handle(output_name)
                output_tensors.append(output_tensor)
L
LDOUBLEV 已提交
297
    else:
T
tink2123 已提交
298 299 300
        for output_name in output_names:
            output_tensor = predictor.get_output_handle(output_name)
            output_tensors.append(output_tensor)
L
LDOUBLEV 已提交
301
    return output_tensors
W
WenmuZhou 已提交
302 303


L
LDOUBLEV 已提交
304
def get_infer_gpuid():
文幕地方's avatar
文幕地方 已提交
305 306 307 308
    sysstr = platform.system()
    if sysstr == "Windows":
        return 0

R
ronny1996 已提交
309 310 311 312
    if not paddle.fluid.core.is_compiled_with_rocm():
        cmd = "env | grep CUDA_VISIBLE_DEVICES"
    else:
        cmd = "env | grep HIP_VISIBLE_DEVICES"
L
LDOUBLEV 已提交
313 314 315 316 317 318 319 320
    env_cuda = os.popen(cmd).readlines()
    if len(env_cuda) == 0:
        return 0
    else:
        gpu_id = env_cuda[0].strip().split("=")[1]
        return int(gpu_id[0])


J
Jethong 已提交
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
def draw_e2e_res(dt_boxes, strs, img_path):
    src_im = cv2.imread(img_path)
    for box, str in zip(dt_boxes, strs):
        box = box.astype(np.int32).reshape((-1, 1, 2))
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
        cv2.putText(
            src_im,
            str,
            org=(int(box[0, 0, 0]), int(box[0, 0, 1])),
            fontFace=cv2.FONT_HERSHEY_COMPLEX,
            fontScale=0.7,
            color=(0, 255, 0),
            thickness=1)
    return src_im


L
LDOUBLEV 已提交
337
def draw_text_det_res(dt_boxes, img_path):
L
LDOUBLEV 已提交
338 339 340 341
    src_im = cv2.imread(img_path)
    for box in dt_boxes:
        box = np.array(box).astype(np.int32).reshape(-1, 2)
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
L
LDOUBLEV 已提交
342
    return src_im
L
LDOUBLEV 已提交
343 344


L
LDOUBLEV 已提交
345 346
def resize_img(img, input_size=600):
    """
L
LDOUBLEV 已提交
347
    resize img and limit the longest side of the image to input_size
L
LDOUBLEV 已提交
348 349 350 351 352
    """
    img = np.array(img)
    im_shape = img.shape
    im_size_max = np.max(im_shape[0:2])
    im_scale = float(input_size) / float(im_size_max)
W
WenmuZhou 已提交
353 354
    img = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
    return img
L
LDOUBLEV 已提交
355 356


W
WenmuZhou 已提交
357 358 359 360 361
def draw_ocr(image,
             boxes,
             txts=None,
             scores=None,
             drop_score=0.5,
L
LDOUBLEV 已提交
362
             font_path="./doc/fonts/simfang.ttf"):
363 364 365
    """
    Visualize the results of OCR detection and recognition
    args:
L
LDOUBLEV 已提交
366
        image(Image|array): RGB image
367 368 369 370
        boxes(list): boxes with shape(N, 4, 2)
        txts(list): the texts
        scores(list): txxs corresponding scores
        drop_score(float): only scores greater than drop_threshold will be visualized
W
WenmuZhou 已提交
371
        font_path: the path of font which is used to draw text
372 373 374
    return(array):
        the visualized img
    """
L
LDOUBLEV 已提交
375 376
    if scores is None:
        scores = [1] * len(boxes)
W
WenmuZhou 已提交
377 378 379 380
    box_num = len(boxes)
    for i in range(box_num):
        if scores is not None and (scores[i] < drop_score or
                                   math.isnan(scores[i])):
L
LDOUBLEV 已提交
381
            continue
W
WenmuZhou 已提交
382
        box = np.reshape(np.array(boxes[i]), [-1, 1, 2]).astype(np.int64)
L
LDOUBLEV 已提交
383
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
W
WenmuZhou 已提交
384
    if txts is not None:
L
LDOUBLEV 已提交
385
        img = np.array(resize_img(image, input_size=600))
386
        txt_img = text_visual(
W
WenmuZhou 已提交
387 388 389 390 391 392
            txts,
            scores,
            img_h=img.shape[0],
            img_w=600,
            threshold=drop_score,
            font_path=font_path)
393
        img = np.concatenate([np.array(img), np.array(txt_img)], axis=1)
L
LDOUBLEV 已提交
394 395
        return img
    return image
396 397


W
WenmuZhou 已提交
398 399 400 401 402 403
def draw_ocr_box_txt(image,
                     boxes,
                     txts,
                     scores=None,
                     drop_score=0.5,
                     font_path="./doc/simfang.ttf"):
404 405 406
    h, w = image.height, image.width
    img_left = image.copy()
    img_right = Image.new('RGB', (w, h), (255, 255, 255))
407 408

    import random
L
LDOUBLEV 已提交
409

410 411 412
    random.seed(0)
    draw_left = ImageDraw.Draw(img_left)
    draw_right = ImageDraw.Draw(img_right)
W
WenmuZhou 已提交
413 414 415
    for idx, (box, txt) in enumerate(zip(boxes, txts)):
        if scores is not None and scores[idx] < drop_score:
            continue
T
tink2123 已提交
416 417
        color = (random.randint(0, 255), random.randint(0, 255),
                 random.randint(0, 255))
418
        draw_left.polygon(box, fill=color)
T
tink2123 已提交
419 420 421 422 423 424 425 426 427 428
        draw_right.polygon(
            [
                box[0][0], box[0][1], box[1][0], box[1][1], box[2][0],
                box[2][1], box[3][0], box[3][1]
            ],
            outline=color)
        box_height = math.sqrt((box[0][0] - box[3][0])**2 + (box[0][1] - box[3][
            1])**2)
        box_width = math.sqrt((box[0][0] - box[1][0])**2 + (box[0][1] - box[1][
            1])**2)
429 430
        if box_height > 2 * box_width:
            font_size = max(int(box_width * 0.9), 10)
W
WenmuZhou 已提交
431
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
432 433 434
            cur_y = box[0][1]
            for c in txt:
                char_size = font.getsize(c)
T
tink2123 已提交
435 436
                draw_right.text(
                    (box[0][0] + 3, cur_y), c, fill=(0, 0, 0), font=font)
437 438 439
                cur_y += char_size[1]
        else:
            font_size = max(int(box_height * 0.8), 10)
W
WenmuZhou 已提交
440
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
T
tink2123 已提交
441 442
            draw_right.text(
                [box[0][0], box[0][1]], txt, fill=(0, 0, 0), font=font)
443 444 445 446
    img_left = Image.blend(image, img_left, 0.5)
    img_show = Image.new('RGB', (w * 2, h), (255, 255, 255))
    img_show.paste(img_left, (0, 0, w, h))
    img_show.paste(img_right, (w, 0, w * 2, h))
447 448 449
    return np.array(img_show)


450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
def str_count(s):
    """
    Count the number of Chinese characters,
    a single English character and a single number
    equal to half the length of Chinese characters.
    args:
        s(string): the input of string
    return(int):
        the number of Chinese characters
    """
    import string
    count_zh = count_pu = 0
    s_len = len(s)
    en_dg_count = 0
    for c in s:
        if c in string.ascii_letters or c.isdigit() or c.isspace():
            en_dg_count += 1
        elif c.isalpha():
            count_zh += 1
        else:
            count_pu += 1
    return s_len - math.ceil(en_dg_count / 2)


W
WenmuZhou 已提交
474 475 476 477 478 479
def text_visual(texts,
                scores,
                img_h=400,
                img_w=600,
                threshold=0.,
                font_path="./doc/simfang.ttf"):
480 481 482 483 484 485 486
    """
    create new blank img and draw txt on it
    args:
        texts(list): the text will be draw
        scores(list|None): corresponding score of each txt
        img_h(int): the height of blank img
        img_w(int): the width of blank img
W
WenmuZhou 已提交
487
        font_path: the path of font which is used to draw text
488 489 490 491 492 493 494 495 496
    return(array):
    """
    if scores is not None:
        assert len(texts) == len(
            scores), "The number of txts and corresponding scores must match"

    def create_blank_img():
        blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255
        blank_img[:, img_w - 1:] = 0
L
LDOUBLEV 已提交
497 498
        blank_img = Image.fromarray(blank_img).convert("RGB")
        draw_txt = ImageDraw.Draw(blank_img)
499
        return blank_img, draw_txt
L
LDOUBLEV 已提交
500

501 502 503 504
    blank_img, draw_txt = create_blank_img()

    font_size = 20
    txt_color = (0, 0, 0)
W
WenmuZhou 已提交
505
    font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
506 507 508

    gap = font_size + 5
    txt_img_list = []
L
LDOUBLEV 已提交
509
    count, index = 1, 0
510 511
    for idx, txt in enumerate(texts):
        index += 1
L
LDOUBLEV 已提交
512
        if scores[idx] < threshold or math.isnan(scores[idx]):
513 514 515 516 517 518 519 520 521 522 523
            index -= 1
            continue
        first_line = True
        while str_count(txt) >= img_w // font_size - 4:
            tmp = txt
            txt = tmp[:img_w // font_size - 4]
            if first_line:
                new_txt = str(index) + ': ' + txt
                first_line = False
            else:
                new_txt = '    ' + txt
L
LDOUBLEV 已提交
524
            draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
525 526 527 528 529
            txt = tmp[img_w // font_size - 4:]
            if count >= img_h // gap - 1:
                txt_img_list.append(np.array(blank_img))
                blank_img, draw_txt = create_blank_img()
                count = 0
L
LDOUBLEV 已提交
530
            count += 1
531 532 533
        if first_line:
            new_txt = str(index) + ': ' + txt + '   ' + '%.3f' % (scores[idx])
        else:
L
LDOUBLEV 已提交
534
            new_txt = "  " + txt + "  " + '%.3f' % (scores[idx])
L
LDOUBLEV 已提交
535
        draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
536
        # whether add new blank img or not
L
LDOUBLEV 已提交
537
        if count >= img_h // gap - 1 and idx + 1 < len(texts):
538 539 540
            txt_img_list.append(np.array(blank_img))
            blank_img, draw_txt = create_blank_img()
            count = 0
L
LDOUBLEV 已提交
541
        count += 1
542 543 544 545 546 547
    txt_img_list.append(np.array(blank_img))
    if len(txt_img_list) == 1:
        blank_img = np.array(txt_img_list[0])
    else:
        blank_img = np.concatenate(txt_img_list, axis=1)
    return np.array(blank_img)
L
LDOUBLEV 已提交
548 549


D
dyning 已提交
550 551 552
def base64_to_cv2(b64str):
    import base64
    data = base64.b64decode(b64str.encode('utf8'))
553
    data = np.frombuffer(data, np.uint8)
D
dyning 已提交
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
    data = cv2.imdecode(data, cv2.IMREAD_COLOR)
    return data


def draw_boxes(image, boxes, scores=None, drop_score=0.5):
    if scores is None:
        scores = [1] * len(boxes)
    for (box, score) in zip(boxes, scores):
        if score < drop_score:
            continue
        box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
    return image


W
WenmuZhou 已提交
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
def get_rotate_crop_image(img, points):
    '''
    img_height, img_width = img.shape[0:2]
    left = int(np.min(points[:, 0]))
    right = int(np.max(points[:, 0]))
    top = int(np.min(points[:, 1]))
    bottom = int(np.max(points[:, 1]))
    img_crop = img[top:bottom, left:right, :].copy()
    points[:, 0] = points[:, 0] - left
    points[:, 1] = points[:, 1] - top
    '''
    assert len(points) == 4, "shape of points must be 4*2"
    img_crop_width = int(
        max(
            np.linalg.norm(points[0] - points[1]),
            np.linalg.norm(points[2] - points[3])))
    img_crop_height = int(
        max(
            np.linalg.norm(points[0] - points[3]),
            np.linalg.norm(points[1] - points[2])))
    pts_std = np.float32([[0, 0], [img_crop_width, 0],
                          [img_crop_width, img_crop_height],
                          [0, img_crop_height]])
    M = cv2.getPerspectiveTransform(points, pts_std)
    dst_img = cv2.warpPerspective(
        img,
        M, (img_crop_width, img_crop_height),
        borderMode=cv2.BORDER_REPLICATE,
        flags=cv2.INTER_CUBIC)
    dst_img_height, dst_img_width = dst_img.shape[0:2]
    if dst_img_height * 1.0 / dst_img_width >= 1.5:
        dst_img = np.rot90(dst_img)
    return dst_img


Z
zhoujun 已提交
604 605 606 607 608 609
def check_gpu(use_gpu):
    if use_gpu and not paddle.is_compiled_with_cuda():
        use_gpu = False
    return use_gpu


L
LDOUBLEV 已提交
610
if __name__ == '__main__':
L
LDOUBLEV 已提交
611
    pass