提交 a09bcf5c 编写于 作者: L LDOUBLEV

fix get gpu id

上级 03bb378f
......@@ -159,93 +159,7 @@ def create_predictor(args, mode, logger):
sess = ort.InferenceSession(model_file_path)
return sess, sess.get_inputs()[0], None, None
if args.use_gpu:
gpu_id = get_infer_gpuid()
if gpu_id is None:
raise ValueError(
"Not found GPU in current device. Please check your device or set args.use_gpu as False"
)
config.enable_use_gpu(args.gpu_mem, 0)
if args.use_tensorrt:
config.enable_tensorrt_engine(
workspace_size=1 << 30,
precision_mode=precision,
max_batch_size=args.max_batch_size,
min_subgraph_size=args.min_subgraph_size)
# skip the minmum trt subgraph
if mode == "det":
min_input_shape = {
"x": [1, 3, 50, 50],
"conv2d_92.tmp_0": [1, 120, 20, 20],
"conv2d_91.tmp_0": [1, 24, 10, 10],
"conv2d_59.tmp_0": [1, 96, 20, 20],
"nearest_interp_v2_1.tmp_0": [1, 256, 10, 10],
"nearest_interp_v2_2.tmp_0": [1, 256, 20, 20],
"conv2d_124.tmp_0": [1, 256, 20, 20],
"nearest_interp_v2_3.tmp_0": [1, 64, 20, 20],
"nearest_interp_v2_4.tmp_0": [1, 64, 20, 20],
"nearest_interp_v2_5.tmp_0": [1, 64, 20, 20],
"elementwise_add_7": [1, 56, 2, 2],
"nearest_interp_v2_0.tmp_0": [1, 256, 2, 2]
}
max_input_shape = {
"x": [1, 3, 2000, 2000],
"conv2d_92.tmp_0": [1, 120, 400, 400],
"conv2d_91.tmp_0": [1, 24, 200, 200],
"conv2d_59.tmp_0": [1, 96, 400, 400],
"nearest_interp_v2_1.tmp_0": [1, 256, 200, 200],
"conv2d_124.tmp_0": [1, 256, 400, 400],
"nearest_interp_v2_2.tmp_0": [1, 256, 400, 400],
"nearest_interp_v2_3.tmp_0": [1, 64, 400, 400],
"nearest_interp_v2_4.tmp_0": [1, 64, 400, 400],
"nearest_interp_v2_5.tmp_0": [1, 64, 400, 400],
"elementwise_add_7": [1, 56, 400, 400],
"nearest_interp_v2_0.tmp_0": [1, 256, 400, 400]
}
opt_input_shape = {
"x": [1, 3, 640, 640],
"conv2d_92.tmp_0": [1, 120, 160, 160],
"conv2d_91.tmp_0": [1, 24, 80, 80],
"conv2d_59.tmp_0": [1, 96, 160, 160],
"nearest_interp_v2_1.tmp_0": [1, 256, 80, 80],
"nearest_interp_v2_2.tmp_0": [1, 256, 160, 160],
"conv2d_124.tmp_0": [1, 256, 160, 160],
"nearest_interp_v2_3.tmp_0": [1, 64, 160, 160],
"nearest_interp_v2_4.tmp_0": [1, 64, 160, 160],
"nearest_interp_v2_5.tmp_0": [1, 64, 160, 160],
"elementwise_add_7": [1, 56, 40, 40],
"nearest_interp_v2_0.tmp_0": [1, 256, 40, 40]
}
min_pact_shape = {
"nearest_interp_v2_26.tmp_0": [1, 256, 20, 20],
"nearest_interp_v2_27.tmp_0": [1, 64, 20, 20],
"nearest_interp_v2_28.tmp_0": [1, 64, 20, 20],
"nearest_interp_v2_29.tmp_0": [1, 64, 20, 20]
}
max_pact_shape = {
"nearest_interp_v2_26.tmp_0": [1, 256, 400, 400],
"nearest_interp_v2_27.tmp_0": [1, 64, 400, 400],
"nearest_interp_v2_28.tmp_0": [1, 64, 400, 400],
"nearest_interp_v2_29.tmp_0": [1, 64, 400, 400]
}
opt_pact_shape = {
"nearest_interp_v2_26.tmp_0": [1, 256, 160, 160],
"nearest_interp_v2_27.tmp_0": [1, 64, 160, 160],
"nearest_interp_v2_28.tmp_0": [1, 64, 160, 160],
"nearest_interp_v2_29.tmp_0": [1, 64, 160, 160]
}
min_input_shape.update(min_pact_shape)
max_input_shape.update(max_pact_shape)
opt_input_shape.update(opt_pact_shape)
elif mode == "rec":
min_input_shape = {"x": [1, 3, 32, 10]}
max_input_shape = {"x": [args.rec_batch_num, 3, 32, 2000]}
opt_input_shape = {"x": [args.rec_batch_num, 3, 32, 320]}
elif mode == "cls":
min_input_shape = {"x": [1, 3, 48, 10]}
max_input_shape = {"x": [args.rec_batch_num, 3, 48, 2000]}
opt_input_shape = {"x": [args.rec_batch_num, 3, 48, 320]}
else:
model_file_path = model_dir + "/inference.pdmodel"
params_file_path = model_dir + "/inference.pdiparams"
if not os.path.exists(model_file_path):
......@@ -276,6 +190,7 @@ def create_predictor(args, mode, logger):
config.enable_use_gpu(args.gpu_mem, 0)
if args.use_tensorrt:
config.enable_tensorrt_engine(
workspace_size=1 << 30,
precision_mode=precision,
max_batch_size=args.max_batch_size,
min_subgraph_size=args.min_subgraph_size)
......@@ -396,13 +311,10 @@ def create_predictor(args, mode, logger):
def get_infer_gpuid():
cmd = "nvidia-smi"
try:
res = os.popen(cmd).readlines()
except:
res = None
if len(res) == 0:
return None
#cmd = "nvidia-smi"
#res = os.popen(cmd).readlines()
#if len(res) == 0:
# return None
cmd = "env | grep CUDA_VISIBLE_DEVICES"
env_cuda = os.popen(cmd).readlines()
if len(env_cuda) == 0:
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册