utility.py 23.4 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
W
WenmuZhou 已提交
16
import os
W
WenmuZhou 已提交
17
import sys
L
LDOUBLEV 已提交
18 19
import cv2
import numpy as np
L
LDOUBLEV 已提交
20 21
import json
from PIL import Image, ImageDraw, ImageFont
22
import math
W
WenmuZhou 已提交
23
from paddle import inference
L
LDOUBLEV 已提交
24 25
import time
from ppocr.utils.logging import get_logger
W
WenmuZhou 已提交
26

L
LDOUBLEV 已提交
27
logger = get_logger()
L
LDOUBLEV 已提交
28 29


30 31
def str2bool(v):
    return v.lower() in ("true", "t", "1")
L
LDOUBLEV 已提交
32 33


W
WenmuZhou 已提交
34
def init_args():
L
LDOUBLEV 已提交
35
    parser = argparse.ArgumentParser()
W
WenmuZhou 已提交
36
    # params for prediction engine
L
LDOUBLEV 已提交
37 38 39
    parser.add_argument("--use_gpu", type=str2bool, default=True)
    parser.add_argument("--ir_optim", type=str2bool, default=True)
    parser.add_argument("--use_tensorrt", type=str2bool, default=False)
L
LDOUBLEV 已提交
40
    parser.add_argument("--precision", type=str, default="fp32")
L
LDOUBLEV 已提交
41
    parser.add_argument("--gpu_mem", type=int, default=500)
L
LDOUBLEV 已提交
42

W
WenmuZhou 已提交
43
    # params for text detector
L
LDOUBLEV 已提交
44 45 46
    parser.add_argument("--image_dir", type=str)
    parser.add_argument("--det_algorithm", type=str, default='DB')
    parser.add_argument("--det_model_dir", type=str)
W
WenmuZhou 已提交
47 48
    parser.add_argument("--det_limit_side_len", type=float, default=960)
    parser.add_argument("--det_limit_type", type=str, default='max')
L
LDOUBLEV 已提交
49

W
WenmuZhou 已提交
50
    # DB parmas
L
LDOUBLEV 已提交
51 52
    parser.add_argument("--det_db_thresh", type=float, default=0.3)
    parser.add_argument("--det_db_box_thresh", type=float, default=0.5)
W
WenmuZhou 已提交
53
    parser.add_argument("--det_db_unclip_ratio", type=float, default=1.6)
L
LDOUBLEV 已提交
54
    parser.add_argument("--max_batch_size", type=int, default=10)
L
LDOUBLEV 已提交
55
    parser.add_argument("--use_dilation", type=bool, default=False)
littletomatodonkey's avatar
littletomatodonkey 已提交
56
    parser.add_argument("--det_db_score_mode", type=str, default="fast")
W
WenmuZhou 已提交
57
    # EAST parmas
L
LDOUBLEV 已提交
58 59 60 61
    parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
    parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
    parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)

W
WenmuZhou 已提交
62
    # SAST parmas
L
licx 已提交
63 64
    parser.add_argument("--det_sast_score_thresh", type=float, default=0.5)
    parser.add_argument("--det_sast_nms_thresh", type=float, default=0.2)
65
    parser.add_argument("--det_sast_polygon", type=bool, default=False)
L
licx 已提交
66

W
WenmuZhou 已提交
67
    # params for text recognizer
L
LDOUBLEV 已提交
68 69
    parser.add_argument("--rec_algorithm", type=str, default='CRNN')
    parser.add_argument("--rec_model_dir", type=str)
T
fix bug  
tink2123 已提交
70 71
    parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320")
    parser.add_argument("--rec_char_type", type=str, default='ch')
L
LDOUBLEV 已提交
72
    parser.add_argument("--rec_batch_num", type=int, default=6)
T
fix bug  
tink2123 已提交
73
    parser.add_argument("--max_text_length", type=int, default=25)
L
LDOUBLEV 已提交
74 75 76 77
    parser.add_argument(
        "--rec_char_dict_path",
        type=str,
        default="./ppocr/utils/ppocr_keys_v1.txt")
W
WenmuZhou 已提交
78 79
    parser.add_argument("--use_space_char", type=str2bool, default=True)
    parser.add_argument(
T
tink2123 已提交
80
        "--vis_font_path", type=str, default="./doc/fonts/simfang.ttf")
W
WenmuZhou 已提交
81
    parser.add_argument("--drop_score", type=float, default=0.5)
W
WenmuZhou 已提交
82

J
Jethong 已提交
83 84 85 86 87 88 89 90 91
    # params for e2e
    parser.add_argument("--e2e_algorithm", type=str, default='PGNet')
    parser.add_argument("--e2e_model_dir", type=str)
    parser.add_argument("--e2e_limit_side_len", type=float, default=768)
    parser.add_argument("--e2e_limit_type", type=str, default='max')

    # PGNet parmas
    parser.add_argument("--e2e_pgnet_score_thresh", type=float, default=0.5)
    parser.add_argument(
J
Jethong 已提交
92
        "--e2e_char_dict_path", type=str, default="./ppocr/utils/ic15_dict.txt")
J
Jethong 已提交
93
    parser.add_argument("--e2e_pgnet_valid_set", type=str, default='totaltext')
J
Jethong 已提交
94
    parser.add_argument("--e2e_pgnet_polygon", type=bool, default=True)
J
Jethong 已提交
95
    parser.add_argument("--e2e_pgnet_mode", type=str, default='fast')
J
Jethong 已提交
96

W
WenmuZhou 已提交
97 98 99 100 101
    # params for text classifier
    parser.add_argument("--use_angle_cls", type=str2bool, default=False)
    parser.add_argument("--cls_model_dir", type=str)
    parser.add_argument("--cls_image_shape", type=str, default="3, 48, 192")
    parser.add_argument("--label_list", type=list, default=['0', '180'])
L
LDOUBLEV 已提交
102
    parser.add_argument("--cls_batch_num", type=int, default=6)
W
WenmuZhou 已提交
103 104 105
    parser.add_argument("--cls_thresh", type=float, default=0.9)

    parser.add_argument("--enable_mkldnn", type=str2bool, default=False)
L
LDOUBLEV 已提交
106
    parser.add_argument("--cpu_threads", type=int, default=10)
W
WenmuZhou 已提交
107 108
    parser.add_argument("--use_pdserving", type=str2bool, default=False)

littletomatodonkey's avatar
littletomatodonkey 已提交
109
    parser.add_argument("--use_mp", type=str2bool, default=False)
110 111
    parser.add_argument("--total_process_num", type=int, default=1)
    parser.add_argument("--process_id", type=int, default=0)
W
WenmuZhou 已提交
112

L
LDOUBLEV 已提交
113 114
    parser.add_argument("--benchmark", type=bool, default=False)
    parser.add_argument("--save_log_path", type=str, default="./log_output/")
D
Double_V 已提交
115

D
Double_V 已提交
116

W
WenmuZhou 已提交
117
    parser.add_argument("--show_log", type=str2bool, default=True)
W
WenmuZhou 已提交
118
    return parser
W
WenmuZhou 已提交
119

120

121
def parse_args():
W
WenmuZhou 已提交
122
    parser = init_args()
L
LDOUBLEV 已提交
123 124 125
    return parser.parse_args()


L
LDOUBLEV 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
class Times(object):
    def __init__(self):
        self.time = 0.
        self.st = 0.
        self.et = 0.

    def start(self):
        self.st = time.time()

    def end(self, accumulative=True):
        self.et = time.time()
        if accumulative:
            self.time += self.et - self.st
        else:
            self.time = self.et - self.st

    def reset(self):
        self.time = 0.
        self.st = 0.
        self.et = 0.

    def value(self):
        return round(self.time, 4)


class Timer(Times):
    def __init__(self):
        super(Timer, self).__init__()
        self.total_time = Times()
        self.preprocess_time = Times()
        self.inference_time = Times()
        self.postprocess_time = Times()
        self.img_num = 0

    def info(self, average=False):
        logger.info("----------------------- Perf info -----------------------")
        logger.info("total_time: {}, img_num: {}".format(self.total_time.value(
        ), self.img_num))
        preprocess_time = round(self.preprocess_time.value() / self.img_num,
                                4) if average else self.preprocess_time.value()
        postprocess_time = round(
            self.postprocess_time.value() / self.img_num,
            4) if average else self.postprocess_time.value()
        inference_time = round(self.inference_time.value() / self.img_num,
                               4) if average else self.inference_time.value()

        average_latency = self.total_time.value() / self.img_num
        logger.info("average_latency(ms): {:.2f}, QPS: {:2f}".format(
            average_latency * 1000, 1 / average_latency))
        logger.info(
            "preprocess_latency(ms): {:.2f}, inference_latency(ms): {:.2f}, postprocess_latency(ms): {:.2f}".
            format(preprocess_time * 1000, inference_time * 1000,
                   postprocess_time * 1000))

    def report(self, average=False):
        dic = {}
        dic['preprocess_time'] = round(
            self.preprocess_time.value() / self.img_num,
            4) if average else self.preprocess_time.value()
        dic['postprocess_time'] = round(
            self.postprocess_time.value() / self.img_num,
            4) if average else self.postprocess_time.value()
        dic['inference_time'] = round(
            self.inference_time.value() / self.img_num,
            4) if average else self.inference_time.value()
        dic['img_num'] = self.img_num
        dic['total_time'] = round(self.total_time.value(), 4)
        return dic


W
WenmuZhou 已提交
196 197 198 199 200
def create_predictor(args, mode, logger):
    if mode == "det":
        model_dir = args.det_model_dir
    elif mode == 'cls':
        model_dir = args.cls_model_dir
J
Jethong 已提交
201
    elif mode == 'rec':
W
WenmuZhou 已提交
202
        model_dir = args.rec_model_dir
W
WenmuZhou 已提交
203 204
    elif mode == 'structure':
        model_dir = args.structure_model_dir
J
Jethong 已提交
205 206
    else:
        model_dir = args.e2e_model_dir
W
WenmuZhou 已提交
207 208 209 210

    if model_dir is None:
        logger.info("not find {} model file path {}".format(mode, model_dir))
        sys.exit(0)
文幕地方's avatar
文幕地方 已提交
211 212
    model_file_path = model_dir + "/inference.pdmodel"
    params_file_path = model_dir + "/inference.pdiparams"
W
WenmuZhou 已提交
213 214 215 216 217 218 219
    if not os.path.exists(model_file_path):
        logger.info("not find model file path {}".format(model_file_path))
        sys.exit(0)
    if not os.path.exists(params_file_path):
        logger.info("not find params file path {}".format(params_file_path))
        sys.exit(0)

W
WenmuZhou 已提交
220
    config = inference.Config(model_file_path, params_file_path)
W
WenmuZhou 已提交
221

L
LDOUBLEV 已提交
222 223 224 225 226 227 228 229 230 231
    if hasattr(args, 'precision'):
        if args.precision == "fp16" and args.use_tensorrt:
            precision = inference.PrecisionType.Half
        elif args.precision == "int8":
            precision = inference.PrecisionType.Int8
        else:
            precision = inference.PrecisionType.Float32
    else:
        precision = inference.PrecisionType.Float32

W
WenmuZhou 已提交
232 233
    if args.use_gpu:
        config.enable_use_gpu(args.gpu_mem, 0)
L
LDOUBLEV 已提交
234 235
        if args.use_tensorrt:
            config.enable_tensorrt_engine(
L
LDOUBLEV 已提交
236 237
                precision_mode=inference.PrecisionType.Float32,
                max_batch_size=args.max_batch_size,
W
WenmuZhou 已提交
238
                min_subgraph_size=3)  # skip the minmum trt subgraph
L
LDOUBLEV 已提交
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
        if mode == "det" and "mobile" in model_file_path:
            min_input_shape = {
                "x": [1, 3, 50, 50],
                "conv2d_92.tmp_0": [1, 96, 20, 20],
                "conv2d_91.tmp_0": [1, 96, 10, 10],
                "nearest_interp_v2_1.tmp_0": [1, 96, 10, 10],
                "nearest_interp_v2_2.tmp_0": [1, 96, 20, 20],
                "nearest_interp_v2_3.tmp_0": [1, 24, 20, 20],
                "nearest_interp_v2_4.tmp_0": [1, 24, 20, 20],
                "nearest_interp_v2_5.tmp_0": [1, 24, 20, 20],
                "elementwise_add_7": [1, 56, 2, 2],
                "nearest_interp_v2_0.tmp_0": [1, 96, 2, 2]
            }
            max_input_shape = {
                "x": [1, 3, 2000, 2000],
                "conv2d_92.tmp_0": [1, 96, 400, 400],
                "conv2d_91.tmp_0": [1, 96, 200, 200],
                "nearest_interp_v2_1.tmp_0": [1, 96, 200, 200],
                "nearest_interp_v2_2.tmp_0": [1, 96, 400, 400],
                "nearest_interp_v2_3.tmp_0": [1, 24, 400, 400],
                "nearest_interp_v2_4.tmp_0": [1, 24, 400, 400],
                "nearest_interp_v2_5.tmp_0": [1, 24, 400, 400],
                "elementwise_add_7": [1, 56, 400, 400],
                "nearest_interp_v2_0.tmp_0": [1, 96, 400, 400]
            }
            opt_input_shape = {
                "x": [1, 3, 640, 640],
                "conv2d_92.tmp_0": [1, 96, 160, 160],
                "conv2d_91.tmp_0": [1, 96, 80, 80],
                "nearest_interp_v2_1.tmp_0": [1, 96, 80, 80],
                "nearest_interp_v2_2.tmp_0": [1, 96, 160, 160],
                "nearest_interp_v2_3.tmp_0": [1, 24, 160, 160],
                "nearest_interp_v2_4.tmp_0": [1, 24, 160, 160],
                "nearest_interp_v2_5.tmp_0": [1, 24, 160, 160],
                "elementwise_add_7": [1, 56, 40, 40],
                "nearest_interp_v2_0.tmp_0": [1, 96, 40, 40]
            }
        if mode == "det" and "server" in model_file_path:
            min_input_shape = {
                "x": [1, 3, 50, 50],
                "conv2d_59.tmp_0": [1, 96, 20, 20],
                "nearest_interp_v2_2.tmp_0": [1, 96, 20, 20],
                "nearest_interp_v2_3.tmp_0": [1, 24, 20, 20],
                "nearest_interp_v2_4.tmp_0": [1, 24, 20, 20],
                "nearest_interp_v2_5.tmp_0": [1, 24, 20, 20]
            }
            max_input_shape = {
                "x": [1, 3, 2000, 2000],
                "conv2d_59.tmp_0": [1, 96, 400, 400],
                "nearest_interp_v2_2.tmp_0": [1, 96, 400, 400],
                "nearest_interp_v2_3.tmp_0": [1, 24, 400, 400],
                "nearest_interp_v2_4.tmp_0": [1, 24, 400, 400],
                "nearest_interp_v2_5.tmp_0": [1, 24, 400, 400]
            }
            opt_input_shape = {
                "x": [1, 3, 640, 640],
                "conv2d_59.tmp_0": [1, 96, 160, 160],
                "nearest_interp_v2_2.tmp_0": [1, 96, 160, 160],
                "nearest_interp_v2_3.tmp_0": [1, 24, 160, 160],
                "nearest_interp_v2_4.tmp_0": [1, 24, 160, 160],
                "nearest_interp_v2_5.tmp_0": [1, 24, 160, 160]
            }
        elif mode == "rec":
            min_input_shape = {"x": [args.rec_batch_num, 3, 32, 10]}
            max_input_shape = {"x": [args.rec_batch_num, 3, 32, 2000]}
            opt_input_shape = {"x": [args.rec_batch_num, 3, 32, 320]}
        elif mode == "cls":
            min_input_shape = {"x": [args.rec_batch_num, 3, 48, 10]}
            max_input_shape = {"x": [args.rec_batch_num, 3, 48, 2000]}
            opt_input_shape = {"x": [args.rec_batch_num, 3, 48, 320]}
L
LDOUBLEV 已提交
309 310 311 312
        else:
            min_input_shape = {"x": [1, 3, 10, 10]}
            max_input_shape = {"x": [1, 3, 1000, 1000]}
            opt_input_shape = {"x": [1, 3, 500, 500]}
L
LDOUBLEV 已提交
313 314 315
        config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape,
                                          opt_input_shape)

W
WenmuZhou 已提交
316 317
    else:
        config.disable_gpu()
L
LDOUBLEV 已提交
318 319 320
        if hasattr(args, "cpu_threads"):
            config.set_cpu_math_library_num_threads(args.cpu_threads)
        else:
W
WenmuZhou 已提交
321
            # default cpu threads as 10
L
LDOUBLEV 已提交
322
            config.set_cpu_math_library_num_threads(10)
W
WenmuZhou 已提交
323 324 325 326 327
        if args.enable_mkldnn:
            # cache 10 different shapes for mkldnn to avoid memory leak
            config.set_mkldnn_cache_capacity(10)
            config.enable_mkldnn()

L
LDOUBLEV 已提交
328 329
    # enable memory optim
    config.enable_memory_optim()
W
WenmuZhou 已提交
330 331
    config.disable_glog_info()

W
WenmuZhou 已提交
332 333
    config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
    config.switch_use_feed_fetch_ops(False)
W
WenmuZhou 已提交
334 335 336
    config.switch_ir_optim(True)
    if mode == 'structure':
        config.switch_ir_optim(False)
W
WenmuZhou 已提交
337 338
    # create predictor
    predictor = inference.create_predictor(config)
W
WenmuZhou 已提交
339 340
    input_names = predictor.get_input_names()
    for name in input_names:
W
WenmuZhou 已提交
341
        input_tensor = predictor.get_input_handle(name)
W
WenmuZhou 已提交
342 343 344
    output_names = predictor.get_output_names()
    output_tensors = []
    for output_name in output_names:
W
WenmuZhou 已提交
345
        output_tensor = predictor.get_output_handle(output_name)
W
WenmuZhou 已提交
346
        output_tensors.append(output_tensor)
L
LDOUBLEV 已提交
347
    return predictor, input_tensor, output_tensors, config
W
WenmuZhou 已提交
348 349


J
Jethong 已提交
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
def draw_e2e_res(dt_boxes, strs, img_path):
    src_im = cv2.imread(img_path)
    for box, str in zip(dt_boxes, strs):
        box = box.astype(np.int32).reshape((-1, 1, 2))
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
        cv2.putText(
            src_im,
            str,
            org=(int(box[0, 0, 0]), int(box[0, 0, 1])),
            fontFace=cv2.FONT_HERSHEY_COMPLEX,
            fontScale=0.7,
            color=(0, 255, 0),
            thickness=1)
    return src_im


L
LDOUBLEV 已提交
366
def draw_text_det_res(dt_boxes, img_path):
L
LDOUBLEV 已提交
367 368 369 370
    src_im = cv2.imread(img_path)
    for box in dt_boxes:
        box = np.array(box).astype(np.int32).reshape(-1, 2)
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
L
LDOUBLEV 已提交
371
    return src_im
L
LDOUBLEV 已提交
372 373


L
LDOUBLEV 已提交
374 375
def resize_img(img, input_size=600):
    """
L
LDOUBLEV 已提交
376
    resize img and limit the longest side of the image to input_size
L
LDOUBLEV 已提交
377 378 379 380 381
    """
    img = np.array(img)
    im_shape = img.shape
    im_size_max = np.max(im_shape[0:2])
    im_scale = float(input_size) / float(im_size_max)
W
WenmuZhou 已提交
382 383
    img = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
    return img
L
LDOUBLEV 已提交
384 385


W
WenmuZhou 已提交
386 387 388 389 390
def draw_ocr(image,
             boxes,
             txts=None,
             scores=None,
             drop_score=0.5,
L
LDOUBLEV 已提交
391
             font_path="./doc/fonts/simfang.ttf"):
392 393 394
    """
    Visualize the results of OCR detection and recognition
    args:
L
LDOUBLEV 已提交
395
        image(Image|array): RGB image
396 397 398 399
        boxes(list): boxes with shape(N, 4, 2)
        txts(list): the texts
        scores(list): txxs corresponding scores
        drop_score(float): only scores greater than drop_threshold will be visualized
W
WenmuZhou 已提交
400
        font_path: the path of font which is used to draw text
401 402 403
    return(array):
        the visualized img
    """
L
LDOUBLEV 已提交
404 405
    if scores is None:
        scores = [1] * len(boxes)
W
WenmuZhou 已提交
406 407 408 409
    box_num = len(boxes)
    for i in range(box_num):
        if scores is not None and (scores[i] < drop_score or
                                   math.isnan(scores[i])):
L
LDOUBLEV 已提交
410
            continue
W
WenmuZhou 已提交
411
        box = np.reshape(np.array(boxes[i]), [-1, 1, 2]).astype(np.int64)
L
LDOUBLEV 已提交
412
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
W
WenmuZhou 已提交
413
    if txts is not None:
L
LDOUBLEV 已提交
414
        img = np.array(resize_img(image, input_size=600))
415
        txt_img = text_visual(
W
WenmuZhou 已提交
416 417 418 419 420 421
            txts,
            scores,
            img_h=img.shape[0],
            img_w=600,
            threshold=drop_score,
            font_path=font_path)
422
        img = np.concatenate([np.array(img), np.array(txt_img)], axis=1)
L
LDOUBLEV 已提交
423 424
        return img
    return image
425 426


W
WenmuZhou 已提交
427 428 429 430 431 432
def draw_ocr_box_txt(image,
                     boxes,
                     txts,
                     scores=None,
                     drop_score=0.5,
                     font_path="./doc/simfang.ttf"):
433 434 435
    h, w = image.height, image.width
    img_left = image.copy()
    img_right = Image.new('RGB', (w, h), (255, 255, 255))
436 437

    import random
L
LDOUBLEV 已提交
438

439 440 441
    random.seed(0)
    draw_left = ImageDraw.Draw(img_left)
    draw_right = ImageDraw.Draw(img_right)
W
WenmuZhou 已提交
442 443 444
    for idx, (box, txt) in enumerate(zip(boxes, txts)):
        if scores is not None and scores[idx] < drop_score:
            continue
T
tink2123 已提交
445 446
        color = (random.randint(0, 255), random.randint(0, 255),
                 random.randint(0, 255))
447
        draw_left.polygon(box, fill=color)
T
tink2123 已提交
448 449 450 451 452 453 454 455 456 457
        draw_right.polygon(
            [
                box[0][0], box[0][1], box[1][0], box[1][1], box[2][0],
                box[2][1], box[3][0], box[3][1]
            ],
            outline=color)
        box_height = math.sqrt((box[0][0] - box[3][0])**2 + (box[0][1] - box[3][
            1])**2)
        box_width = math.sqrt((box[0][0] - box[1][0])**2 + (box[0][1] - box[1][
            1])**2)
458 459
        if box_height > 2 * box_width:
            font_size = max(int(box_width * 0.9), 10)
W
WenmuZhou 已提交
460
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
461 462 463
            cur_y = box[0][1]
            for c in txt:
                char_size = font.getsize(c)
T
tink2123 已提交
464 465
                draw_right.text(
                    (box[0][0] + 3, cur_y), c, fill=(0, 0, 0), font=font)
466 467 468
                cur_y += char_size[1]
        else:
            font_size = max(int(box_height * 0.8), 10)
W
WenmuZhou 已提交
469
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
T
tink2123 已提交
470 471
            draw_right.text(
                [box[0][0], box[0][1]], txt, fill=(0, 0, 0), font=font)
472 473 474 475
    img_left = Image.blend(image, img_left, 0.5)
    img_show = Image.new('RGB', (w * 2, h), (255, 255, 255))
    img_show.paste(img_left, (0, 0, w, h))
    img_show.paste(img_right, (w, 0, w * 2, h))
476 477 478
    return np.array(img_show)


479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
def str_count(s):
    """
    Count the number of Chinese characters,
    a single English character and a single number
    equal to half the length of Chinese characters.
    args:
        s(string): the input of string
    return(int):
        the number of Chinese characters
    """
    import string
    count_zh = count_pu = 0
    s_len = len(s)
    en_dg_count = 0
    for c in s:
        if c in string.ascii_letters or c.isdigit() or c.isspace():
            en_dg_count += 1
        elif c.isalpha():
            count_zh += 1
        else:
            count_pu += 1
    return s_len - math.ceil(en_dg_count / 2)


W
WenmuZhou 已提交
503 504 505 506 507 508
def text_visual(texts,
                scores,
                img_h=400,
                img_w=600,
                threshold=0.,
                font_path="./doc/simfang.ttf"):
509 510 511 512 513 514 515
    """
    create new blank img and draw txt on it
    args:
        texts(list): the text will be draw
        scores(list|None): corresponding score of each txt
        img_h(int): the height of blank img
        img_w(int): the width of blank img
W
WenmuZhou 已提交
516
        font_path: the path of font which is used to draw text
517 518 519 520 521 522 523 524 525
    return(array):
    """
    if scores is not None:
        assert len(texts) == len(
            scores), "The number of txts and corresponding scores must match"

    def create_blank_img():
        blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255
        blank_img[:, img_w - 1:] = 0
L
LDOUBLEV 已提交
526 527
        blank_img = Image.fromarray(blank_img).convert("RGB")
        draw_txt = ImageDraw.Draw(blank_img)
528
        return blank_img, draw_txt
L
LDOUBLEV 已提交
529

530 531 532 533
    blank_img, draw_txt = create_blank_img()

    font_size = 20
    txt_color = (0, 0, 0)
W
WenmuZhou 已提交
534
    font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
535 536 537

    gap = font_size + 5
    txt_img_list = []
L
LDOUBLEV 已提交
538
    count, index = 1, 0
539 540
    for idx, txt in enumerate(texts):
        index += 1
L
LDOUBLEV 已提交
541
        if scores[idx] < threshold or math.isnan(scores[idx]):
542 543 544 545 546 547 548 549 550 551 552
            index -= 1
            continue
        first_line = True
        while str_count(txt) >= img_w // font_size - 4:
            tmp = txt
            txt = tmp[:img_w // font_size - 4]
            if first_line:
                new_txt = str(index) + ': ' + txt
                first_line = False
            else:
                new_txt = '    ' + txt
L
LDOUBLEV 已提交
553
            draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
554 555 556 557 558
            txt = tmp[img_w // font_size - 4:]
            if count >= img_h // gap - 1:
                txt_img_list.append(np.array(blank_img))
                blank_img, draw_txt = create_blank_img()
                count = 0
L
LDOUBLEV 已提交
559
            count += 1
560 561 562
        if first_line:
            new_txt = str(index) + ': ' + txt + '   ' + '%.3f' % (scores[idx])
        else:
L
LDOUBLEV 已提交
563
            new_txt = "  " + txt + "  " + '%.3f' % (scores[idx])
L
LDOUBLEV 已提交
564
        draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
565
        # whether add new blank img or not
L
LDOUBLEV 已提交
566
        if count >= img_h // gap - 1 and idx + 1 < len(texts):
567 568 569
            txt_img_list.append(np.array(blank_img))
            blank_img, draw_txt = create_blank_img()
            count = 0
L
LDOUBLEV 已提交
570
        count += 1
571 572 573 574 575 576
    txt_img_list.append(np.array(blank_img))
    if len(txt_img_list) == 1:
        blank_img = np.array(txt_img_list[0])
    else:
        blank_img = np.concatenate(txt_img_list, axis=1)
    return np.array(blank_img)
L
LDOUBLEV 已提交
577 578


D
dyning 已提交
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
def base64_to_cv2(b64str):
    import base64
    data = base64.b64decode(b64str.encode('utf8'))
    data = np.fromstring(data, np.uint8)
    data = cv2.imdecode(data, cv2.IMREAD_COLOR)
    return data


def draw_boxes(image, boxes, scores=None, drop_score=0.5):
    if scores is None:
        scores = [1] * len(boxes)
    for (box, score) in zip(boxes, scores):
        if score < drop_score:
            continue
        box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
    return image


L
LDOUBLEV 已提交
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
def get_current_memory_mb(gpu_id=None):
    """
    It is used to Obtain the memory usage of the CPU and GPU during the running of the program.
    And this function Current program is time-consuming.
    """
    import pynvml
    import psutil
    import GPUtil
    pid = os.getpid()
    p = psutil.Process(pid)
    info = p.memory_full_info()
    cpu_mem = info.uss / 1024. / 1024.
    gpu_mem = 0
    gpu_percent = 0
    if gpu_id is not None:
        GPUs = GPUtil.getGPUs()
        gpu_load = GPUs[gpu_id].load
        gpu_percent = gpu_load
        pynvml.nvmlInit()
        handle = pynvml.nvmlDeviceGetHandleByIndex(0)
        meminfo = pynvml.nvmlDeviceGetMemoryInfo(handle)
        gpu_mem = meminfo.used / 1024. / 1024.
    return round(cpu_mem, 4), round(gpu_mem, 4), round(gpu_percent, 4)


L
LDOUBLEV 已提交
623
if __name__ == '__main__':
L
LDOUBLEV 已提交
624
    pass