utility.py 25.5 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
W
WenmuZhou 已提交
16
import os
W
WenmuZhou 已提交
17
import sys
文幕地方's avatar
文幕地方 已提交
18
import platform
L
LDOUBLEV 已提交
19 20
import cv2
import numpy as np
Z
zhoujun 已提交
21
import paddle
L
LDOUBLEV 已提交
22
from PIL import Image, ImageDraw, ImageFont
23
import math
W
WenmuZhou 已提交
24
from paddle import inference
L
LDOUBLEV 已提交
25 26
import time
from ppocr.utils.logging import get_logger
W
WenmuZhou 已提交
27

L
LDOUBLEV 已提交
28

29 30
def str2bool(v):
    return v.lower() in ("true", "t", "1")
L
LDOUBLEV 已提交
31 32


W
WenmuZhou 已提交
33
def init_args():
L
LDOUBLEV 已提交
34
    parser = argparse.ArgumentParser()
W
WenmuZhou 已提交
35
    # params for prediction engine
L
LDOUBLEV 已提交
36
    parser.add_argument("--use_gpu", type=str2bool, default=True)
X
xiaoting 已提交
37
    parser.add_argument("--use_xpu", type=str2bool, default=False)
L
LDOUBLEV 已提交
38 39
    parser.add_argument("--ir_optim", type=str2bool, default=True)
    parser.add_argument("--use_tensorrt", type=str2bool, default=False)
L
LDOUBLEV 已提交
40
    parser.add_argument("--min_subgraph_size", type=int, default=15)
L
LDOUBLEV 已提交
41
    parser.add_argument("--precision", type=str, default="fp32")
L
LDOUBLEV 已提交
42
    parser.add_argument("--gpu_mem", type=int, default=500)
L
LDOUBLEV 已提交
43

W
WenmuZhou 已提交
44
    # params for text detector
L
LDOUBLEV 已提交
45 46 47
    parser.add_argument("--image_dir", type=str)
    parser.add_argument("--det_algorithm", type=str, default='DB')
    parser.add_argument("--det_model_dir", type=str)
W
WenmuZhou 已提交
48 49
    parser.add_argument("--det_limit_side_len", type=float, default=960)
    parser.add_argument("--det_limit_type", type=str, default='max')
L
LDOUBLEV 已提交
50

W
WenmuZhou 已提交
51
    # DB parmas
L
LDOUBLEV 已提交
52
    parser.add_argument("--det_db_thresh", type=float, default=0.3)
L
LDOUBLEV 已提交
53 54
    parser.add_argument("--det_db_box_thresh", type=float, default=0.6)
    parser.add_argument("--det_db_unclip_ratio", type=float, default=1.5)
L
LDOUBLEV 已提交
55
    parser.add_argument("--max_batch_size", type=int, default=10)
littletomatodonkey's avatar
littletomatodonkey 已提交
56
    parser.add_argument("--use_dilation", type=str2bool, default=False)
littletomatodonkey's avatar
littletomatodonkey 已提交
57
    parser.add_argument("--det_db_score_mode", type=str, default="fast")
W
WenmuZhou 已提交
58
    # EAST parmas
L
LDOUBLEV 已提交
59 60 61 62
    parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
    parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
    parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)

W
WenmuZhou 已提交
63
    # SAST parmas
L
licx 已提交
64 65
    parser.add_argument("--det_sast_score_thresh", type=float, default=0.5)
    parser.add_argument("--det_sast_nms_thresh", type=float, default=0.2)
littletomatodonkey's avatar
littletomatodonkey 已提交
66
    parser.add_argument("--det_sast_polygon", type=str2bool, default=False)
L
licx 已提交
67

W
WenmuZhou 已提交
68 69 70 71
    # PSE parmas
    parser.add_argument("--det_pse_thresh", type=float, default=0)
    parser.add_argument("--det_pse_box_thresh", type=float, default=0.85)
    parser.add_argument("--det_pse_min_area", type=float, default=16)
文幕地方's avatar
文幕地方 已提交
72
    parser.add_argument("--det_pse_box_type", type=str, default='quad')
W
WenmuZhou 已提交
73 74
    parser.add_argument("--det_pse_scale", type=int, default=1)

文幕地方's avatar
文幕地方 已提交
75 76 77 78 79 80 81
    # FCE parmas
    parser.add_argument("--scales", type=list, default=[8, 16, 32])
    parser.add_argument("--alpha", type=float, default=1.0)
    parser.add_argument("--beta", type=float, default=1.0)
    parser.add_argument("--fourier_degree", type=int, default=5)
    parser.add_argument("--det_fce_box_type", type=str, default='poly')

W
WenmuZhou 已提交
82
    # params for text recognizer
A
andyjpaddle 已提交
83
    parser.add_argument("--rec_algorithm", type=str, default='SVTR_LCNet')
L
LDOUBLEV 已提交
84
    parser.add_argument("--rec_model_dir", type=str)
T
tink2123 已提交
85
    parser.add_argument("--rec_image_shape", type=str, default="3, 48, 320")
L
LDOUBLEV 已提交
86
    parser.add_argument("--rec_batch_num", type=int, default=6)
T
fix bug  
tink2123 已提交
87
    parser.add_argument("--max_text_length", type=int, default=25)
L
LDOUBLEV 已提交
88 89 90 91
    parser.add_argument(
        "--rec_char_dict_path",
        type=str,
        default="./ppocr/utils/ppocr_keys_v1.txt")
W
WenmuZhou 已提交
92 93
    parser.add_argument("--use_space_char", type=str2bool, default=True)
    parser.add_argument(
T
tink2123 已提交
94
        "--vis_font_path", type=str, default="./doc/fonts/simfang.ttf")
W
WenmuZhou 已提交
95
    parser.add_argument("--drop_score", type=float, default=0.5)
W
WenmuZhou 已提交
96

J
Jethong 已提交
97 98 99 100 101 102 103 104 105
    # params for e2e
    parser.add_argument("--e2e_algorithm", type=str, default='PGNet')
    parser.add_argument("--e2e_model_dir", type=str)
    parser.add_argument("--e2e_limit_side_len", type=float, default=768)
    parser.add_argument("--e2e_limit_type", type=str, default='max')

    # PGNet parmas
    parser.add_argument("--e2e_pgnet_score_thresh", type=float, default=0.5)
    parser.add_argument(
J
Jethong 已提交
106
        "--e2e_char_dict_path", type=str, default="./ppocr/utils/ic15_dict.txt")
J
Jethong 已提交
107
    parser.add_argument("--e2e_pgnet_valid_set", type=str, default='totaltext')
J
Jethong 已提交
108
    parser.add_argument("--e2e_pgnet_mode", type=str, default='fast')
J
Jethong 已提交
109

W
WenmuZhou 已提交
110 111 112 113 114
    # params for text classifier
    parser.add_argument("--use_angle_cls", type=str2bool, default=False)
    parser.add_argument("--cls_model_dir", type=str)
    parser.add_argument("--cls_image_shape", type=str, default="3, 48, 192")
    parser.add_argument("--label_list", type=list, default=['0', '180'])
L
LDOUBLEV 已提交
115
    parser.add_argument("--cls_batch_num", type=int, default=6)
W
WenmuZhou 已提交
116 117 118
    parser.add_argument("--cls_thresh", type=float, default=0.9)

    parser.add_argument("--enable_mkldnn", type=str2bool, default=False)
L
LDOUBLEV 已提交
119
    parser.add_argument("--cpu_threads", type=int, default=10)
W
WenmuZhou 已提交
120
    parser.add_argument("--use_pdserving", type=str2bool, default=False)
121 122 123 124 125 126 127
    parser.add_argument("--warmup", type=str2bool, default=False)

    #
    parser.add_argument(
        "--draw_img_save_dir", type=str, default="./inference_results")
    parser.add_argument("--save_crop_res", type=str2bool, default=False)
    parser.add_argument("--crop_res_save_dir", type=str, default="./output")
W
WenmuZhou 已提交
128

L
LDOUBLEV 已提交
129
    # multi-process
littletomatodonkey's avatar
littletomatodonkey 已提交
130
    parser.add_argument("--use_mp", type=str2bool, default=False)
131 132
    parser.add_argument("--total_process_num", type=int, default=1)
    parser.add_argument("--process_id", type=int, default=0)
W
WenmuZhou 已提交
133

littletomatodonkey's avatar
littletomatodonkey 已提交
134
    parser.add_argument("--benchmark", type=str2bool, default=False)
L
LDOUBLEV 已提交
135
    parser.add_argument("--save_log_path", type=str, default="./log_output/")
D
Double_V 已提交
136

W
WenmuZhou 已提交
137
    parser.add_argument("--show_log", type=str2bool, default=True)
T
tink2123 已提交
138
    parser.add_argument("--use_onnx", type=str2bool, default=False)
W
WenmuZhou 已提交
139
    return parser
W
WenmuZhou 已提交
140

141

142
def parse_args():
W
WenmuZhou 已提交
143
    parser = init_args()
L
LDOUBLEV 已提交
144 145 146
    return parser.parse_args()


W
WenmuZhou 已提交
147 148 149 150 151
def create_predictor(args, mode, logger):
    if mode == "det":
        model_dir = args.det_model_dir
    elif mode == 'cls':
        model_dir = args.cls_model_dir
J
Jethong 已提交
152
    elif mode == 'rec':
W
WenmuZhou 已提交
153
        model_dir = args.rec_model_dir
W
WenmuZhou 已提交
154 155
    elif mode == 'table':
        model_dir = args.table_model_dir
156 157
    elif mode == 'ser':
        model_dir = args.ser_model_dir
J
Jethong 已提交
158 159
    else:
        model_dir = args.e2e_model_dir
W
WenmuZhou 已提交
160 161 162 163

    if model_dir is None:
        logger.info("not find {} model file path {}".format(mode, model_dir))
        sys.exit(0)
T
tink2123 已提交
164 165 166 167 168 169 170 171
    if args.use_onnx:
        import onnxruntime as ort
        model_file_path = model_dir
        if not os.path.exists(model_file_path):
            raise ValueError("not find model file path {}".format(
                model_file_path))
        sess = ort.InferenceSession(model_file_path)
        return sess, sess.get_inputs()[0], None, None
L
LDOUBLEV 已提交
172

L
LDOUBLEV 已提交
173
    else:
T
tink2123 已提交
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
        model_file_path = model_dir + "/inference.pdmodel"
        params_file_path = model_dir + "/inference.pdiparams"
        if not os.path.exists(model_file_path):
            raise ValueError("not find model file path {}".format(
                model_file_path))
        if not os.path.exists(params_file_path):
            raise ValueError("not find params file path {}".format(
                params_file_path))

        config = inference.Config(model_file_path, params_file_path)

        if hasattr(args, 'precision'):
            if args.precision == "fp16" and args.use_tensorrt:
                precision = inference.PrecisionType.Half
            elif args.precision == "int8":
                precision = inference.PrecisionType.Int8
            else:
                precision = inference.PrecisionType.Float32
L
LDOUBLEV 已提交
192
        else:
T
tink2123 已提交
193 194 195 196 197
            precision = inference.PrecisionType.Float32

        if args.use_gpu:
            gpu_id = get_infer_gpuid()
            if gpu_id is None:
L
LDOUBLEV 已提交
198
                logger.warning(
199
                    "GPU is not found in current device by nvidia-smi. Please check your device or ignore it if run on jetson."
T
tink2123 已提交
200 201 202 203
                )
            config.enable_use_gpu(args.gpu_mem, 0)
            if args.use_tensorrt:
                config.enable_tensorrt_engine(
L
LDOUBLEV 已提交
204
                    workspace_size=1 << 30,
T
tink2123 已提交
205 206
                    precision_mode=precision,
                    max_batch_size=args.max_batch_size,
207 208
                    min_subgraph_size=args.min_subgraph_size,
                    use_calib_mode=False)
T
tink2123 已提交
209
                # skip the minmum trt subgraph
L
fix trt  
LDOUBLEV 已提交
210
            use_dynamic_shape = True
L
fix  
LDOUBLEV 已提交
211
            if mode == "det":
T
tink2123 已提交
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
                min_input_shape = {
                    "x": [1, 3, 50, 50],
                    "conv2d_92.tmp_0": [1, 120, 20, 20],
                    "conv2d_91.tmp_0": [1, 24, 10, 10],
                    "conv2d_59.tmp_0": [1, 96, 20, 20],
                    "nearest_interp_v2_1.tmp_0": [1, 256, 10, 10],
                    "nearest_interp_v2_2.tmp_0": [1, 256, 20, 20],
                    "conv2d_124.tmp_0": [1, 256, 20, 20],
                    "nearest_interp_v2_3.tmp_0": [1, 64, 20, 20],
                    "nearest_interp_v2_4.tmp_0": [1, 64, 20, 20],
                    "nearest_interp_v2_5.tmp_0": [1, 64, 20, 20],
                    "elementwise_add_7": [1, 56, 2, 2],
                    "nearest_interp_v2_0.tmp_0": [1, 256, 2, 2]
                }
                max_input_shape = {
L
fix trt  
LDOUBLEV 已提交
227
                    "x": [1, 3, 1536, 1536],
T
tink2123 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
                    "conv2d_92.tmp_0": [1, 120, 400, 400],
                    "conv2d_91.tmp_0": [1, 24, 200, 200],
                    "conv2d_59.tmp_0": [1, 96, 400, 400],
                    "nearest_interp_v2_1.tmp_0": [1, 256, 200, 200],
                    "conv2d_124.tmp_0": [1, 256, 400, 400],
                    "nearest_interp_v2_2.tmp_0": [1, 256, 400, 400],
                    "nearest_interp_v2_3.tmp_0": [1, 64, 400, 400],
                    "nearest_interp_v2_4.tmp_0": [1, 64, 400, 400],
                    "nearest_interp_v2_5.tmp_0": [1, 64, 400, 400],
                    "elementwise_add_7": [1, 56, 400, 400],
                    "nearest_interp_v2_0.tmp_0": [1, 256, 400, 400]
                }
                opt_input_shape = {
                    "x": [1, 3, 640, 640],
                    "conv2d_92.tmp_0": [1, 120, 160, 160],
                    "conv2d_91.tmp_0": [1, 24, 80, 80],
                    "conv2d_59.tmp_0": [1, 96, 160, 160],
                    "nearest_interp_v2_1.tmp_0": [1, 256, 80, 80],
                    "nearest_interp_v2_2.tmp_0": [1, 256, 160, 160],
                    "conv2d_124.tmp_0": [1, 256, 160, 160],
                    "nearest_interp_v2_3.tmp_0": [1, 64, 160, 160],
                    "nearest_interp_v2_4.tmp_0": [1, 64, 160, 160],
                    "nearest_interp_v2_5.tmp_0": [1, 64, 160, 160],
                    "elementwise_add_7": [1, 56, 40, 40],
                    "nearest_interp_v2_0.tmp_0": [1, 256, 40, 40]
                }
                min_pact_shape = {
                    "nearest_interp_v2_26.tmp_0": [1, 256, 20, 20],
                    "nearest_interp_v2_27.tmp_0": [1, 64, 20, 20],
                    "nearest_interp_v2_28.tmp_0": [1, 64, 20, 20],
                    "nearest_interp_v2_29.tmp_0": [1, 64, 20, 20]
                }
                max_pact_shape = {
                    "nearest_interp_v2_26.tmp_0": [1, 256, 400, 400],
                    "nearest_interp_v2_27.tmp_0": [1, 64, 400, 400],
                    "nearest_interp_v2_28.tmp_0": [1, 64, 400, 400],
                    "nearest_interp_v2_29.tmp_0": [1, 64, 400, 400]
                }
                opt_pact_shape = {
                    "nearest_interp_v2_26.tmp_0": [1, 256, 160, 160],
                    "nearest_interp_v2_27.tmp_0": [1, 64, 160, 160],
                    "nearest_interp_v2_28.tmp_0": [1, 64, 160, 160],
                    "nearest_interp_v2_29.tmp_0": [1, 64, 160, 160]
                }
                min_input_shape.update(min_pact_shape)
                max_input_shape.update(max_pact_shape)
                opt_input_shape.update(opt_pact_shape)
            elif mode == "rec":
A
andyjpaddle 已提交
276
                if args.rec_algorithm not in ["CRNN", "SVTR_LCNet"]:
L
fix trt  
LDOUBLEV 已提交
277
                    use_dynamic_shape = False
278
                imgH = int(args.rec_image_shape.split(',')[-2])
littletomatodonkey's avatar
fix  
littletomatodonkey 已提交
279 280 281 282
                min_input_shape = {"x": [1, 3, imgH, 10]}
                max_input_shape = {"x": [args.rec_batch_num, 3, imgH, 2304]}
                opt_input_shape = {"x": [args.rec_batch_num, 3, imgH, 320]}
                config.exp_disable_tensorrt_ops(["transpose2"])
T
tink2123 已提交
283 284
            elif mode == "cls":
                min_input_shape = {"x": [1, 3, 48, 10]}
L
LDOUBLEV 已提交
285
                max_input_shape = {"x": [args.rec_batch_num, 3, 48, 1024]}
T
tink2123 已提交
286 287
                opt_input_shape = {"x": [args.rec_batch_num, 3, 48, 320]}
            else:
L
fix trt  
LDOUBLEV 已提交
288 289
                use_dynamic_shape = False
            if use_dynamic_shape:
A
andyjpaddle 已提交
290 291
                config.set_trt_dynamic_shape_info(
                    min_input_shape, max_input_shape, opt_input_shape)
L
LDOUBLEV 已提交
292

X
xiaoting 已提交
293 294
        elif args.use_xpu:
            config.enable_xpu(10 * 1024 * 1024)
L
LDOUBLEV 已提交
295
        else:
T
tink2123 已提交
296 297 298 299 300 301 302 303 304 305 306 307 308 309
            config.disable_gpu()
            if hasattr(args, "cpu_threads"):
                config.set_cpu_math_library_num_threads(args.cpu_threads)
            else:
                # default cpu threads as 10
                config.set_cpu_math_library_num_threads(10)
            if args.enable_mkldnn:
                # cache 10 different shapes for mkldnn to avoid memory leak
                config.set_mkldnn_cache_capacity(10)
                config.enable_mkldnn()
                if args.precision == "fp16":
                    config.enable_mkldnn_bfloat16()
        # enable memory optim
        config.enable_memory_optim()
littletomatodonkey's avatar
fix  
littletomatodonkey 已提交
310
        config.disable_glog_info()
T
tink2123 已提交
311
        config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
T
tink2123 已提交
312
        config.delete_pass("matmul_transpose_reshape_fuse_pass")
T
tink2123 已提交
313 314 315 316 317 318 319 320
        if mode == 'table':
            config.delete_pass("fc_fuse_pass")  # not supported for table
        config.switch_use_feed_fetch_ops(False)
        config.switch_ir_optim(True)

        # create predictor
        predictor = inference.create_predictor(config)
        input_names = predictor.get_input_names()
321 322 323 324 325 326 327
        if mode in ['ser','re']:
            input_tensor = []
            for name in input_names:
                input_tensor.append(predictor.get_input_handle(name))
        else:
            for name in input_names:
                input_tensor = predictor.get_input_handle(name)
L
LDOUBLEV 已提交
328 329 330 331 332 333 334
        output_tensors = get_output_tensors(args, mode, predictor)
        return predictor, input_tensor, output_tensors, config


def get_output_tensors(args, mode, predictor):
    output_names = predictor.get_output_names()
    output_tensors = []
A
andyjpaddle 已提交
335
    if mode == "rec" and args.rec_algorithm in ["CRNN", "SVTR_LCNet"]:
L
LDOUBLEV 已提交
336 337 338
        output_name = 'softmax_0.tmp_0'
        if output_name in output_names:
            return [predictor.get_output_handle(output_name)]
L
LDOUBLEV 已提交
339 340 341 342
        else:
            for output_name in output_names:
                output_tensor = predictor.get_output_handle(output_name)
                output_tensors.append(output_tensor)
L
LDOUBLEV 已提交
343
    else:
T
tink2123 已提交
344 345 346
        for output_name in output_names:
            output_tensor = predictor.get_output_handle(output_name)
            output_tensors.append(output_tensor)
L
LDOUBLEV 已提交
347
    return output_tensors
W
WenmuZhou 已提交
348 349


L
LDOUBLEV 已提交
350
def get_infer_gpuid():
文幕地方's avatar
文幕地方 已提交
351 352 353 354
    sysstr = platform.system()
    if sysstr == "Windows":
        return 0

R
ronny1996 已提交
355 356 357 358
    if not paddle.fluid.core.is_compiled_with_rocm():
        cmd = "env | grep CUDA_VISIBLE_DEVICES"
    else:
        cmd = "env | grep HIP_VISIBLE_DEVICES"
L
LDOUBLEV 已提交
359 360 361 362 363 364 365 366
    env_cuda = os.popen(cmd).readlines()
    if len(env_cuda) == 0:
        return 0
    else:
        gpu_id = env_cuda[0].strip().split("=")[1]
        return int(gpu_id[0])


J
Jethong 已提交
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
def draw_e2e_res(dt_boxes, strs, img_path):
    src_im = cv2.imread(img_path)
    for box, str in zip(dt_boxes, strs):
        box = box.astype(np.int32).reshape((-1, 1, 2))
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
        cv2.putText(
            src_im,
            str,
            org=(int(box[0, 0, 0]), int(box[0, 0, 1])),
            fontFace=cv2.FONT_HERSHEY_COMPLEX,
            fontScale=0.7,
            color=(0, 255, 0),
            thickness=1)
    return src_im


L
LDOUBLEV 已提交
383
def draw_text_det_res(dt_boxes, img_path):
L
LDOUBLEV 已提交
384 385 386 387
    src_im = cv2.imread(img_path)
    for box in dt_boxes:
        box = np.array(box).astype(np.int32).reshape(-1, 2)
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
L
LDOUBLEV 已提交
388
    return src_im
L
LDOUBLEV 已提交
389 390


L
LDOUBLEV 已提交
391 392
def resize_img(img, input_size=600):
    """
L
LDOUBLEV 已提交
393
    resize img and limit the longest side of the image to input_size
L
LDOUBLEV 已提交
394 395 396 397 398
    """
    img = np.array(img)
    im_shape = img.shape
    im_size_max = np.max(im_shape[0:2])
    im_scale = float(input_size) / float(im_size_max)
W
WenmuZhou 已提交
399 400
    img = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
    return img
L
LDOUBLEV 已提交
401 402


W
WenmuZhou 已提交
403 404 405 406 407
def draw_ocr(image,
             boxes,
             txts=None,
             scores=None,
             drop_score=0.5,
L
LDOUBLEV 已提交
408
             font_path="./doc/fonts/simfang.ttf"):
409 410 411
    """
    Visualize the results of OCR detection and recognition
    args:
L
LDOUBLEV 已提交
412
        image(Image|array): RGB image
413 414 415 416
        boxes(list): boxes with shape(N, 4, 2)
        txts(list): the texts
        scores(list): txxs corresponding scores
        drop_score(float): only scores greater than drop_threshold will be visualized
W
WenmuZhou 已提交
417
        font_path: the path of font which is used to draw text
418 419 420
    return(array):
        the visualized img
    """
L
LDOUBLEV 已提交
421 422
    if scores is None:
        scores = [1] * len(boxes)
W
WenmuZhou 已提交
423 424 425 426
    box_num = len(boxes)
    for i in range(box_num):
        if scores is not None and (scores[i] < drop_score or
                                   math.isnan(scores[i])):
L
LDOUBLEV 已提交
427
            continue
W
WenmuZhou 已提交
428
        box = np.reshape(np.array(boxes[i]), [-1, 1, 2]).astype(np.int64)
L
LDOUBLEV 已提交
429
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
W
WenmuZhou 已提交
430
    if txts is not None:
L
LDOUBLEV 已提交
431
        img = np.array(resize_img(image, input_size=600))
432
        txt_img = text_visual(
W
WenmuZhou 已提交
433 434 435 436 437 438
            txts,
            scores,
            img_h=img.shape[0],
            img_w=600,
            threshold=drop_score,
            font_path=font_path)
439
        img = np.concatenate([np.array(img), np.array(txt_img)], axis=1)
L
LDOUBLEV 已提交
440 441
        return img
    return image
442 443


W
WenmuZhou 已提交
444 445 446 447 448 449
def draw_ocr_box_txt(image,
                     boxes,
                     txts,
                     scores=None,
                     drop_score=0.5,
                     font_path="./doc/simfang.ttf"):
450 451 452
    h, w = image.height, image.width
    img_left = image.copy()
    img_right = Image.new('RGB', (w, h), (255, 255, 255))
453 454

    import random
L
LDOUBLEV 已提交
455

456 457 458
    random.seed(0)
    draw_left = ImageDraw.Draw(img_left)
    draw_right = ImageDraw.Draw(img_right)
W
WenmuZhou 已提交
459 460 461
    for idx, (box, txt) in enumerate(zip(boxes, txts)):
        if scores is not None and scores[idx] < drop_score:
            continue
T
tink2123 已提交
462 463
        color = (random.randint(0, 255), random.randint(0, 255),
                 random.randint(0, 255))
464
        draw_left.polygon(box, fill=color)
T
tink2123 已提交
465 466 467 468 469 470 471 472 473 474
        draw_right.polygon(
            [
                box[0][0], box[0][1], box[1][0], box[1][1], box[2][0],
                box[2][1], box[3][0], box[3][1]
            ],
            outline=color)
        box_height = math.sqrt((box[0][0] - box[3][0])**2 + (box[0][1] - box[3][
            1])**2)
        box_width = math.sqrt((box[0][0] - box[1][0])**2 + (box[0][1] - box[1][
            1])**2)
475 476
        if box_height > 2 * box_width:
            font_size = max(int(box_width * 0.9), 10)
W
WenmuZhou 已提交
477
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
478 479 480
            cur_y = box[0][1]
            for c in txt:
                char_size = font.getsize(c)
T
tink2123 已提交
481 482
                draw_right.text(
                    (box[0][0] + 3, cur_y), c, fill=(0, 0, 0), font=font)
483 484 485
                cur_y += char_size[1]
        else:
            font_size = max(int(box_height * 0.8), 10)
W
WenmuZhou 已提交
486
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
T
tink2123 已提交
487 488
            draw_right.text(
                [box[0][0], box[0][1]], txt, fill=(0, 0, 0), font=font)
489 490 491 492
    img_left = Image.blend(image, img_left, 0.5)
    img_show = Image.new('RGB', (w * 2, h), (255, 255, 255))
    img_show.paste(img_left, (0, 0, w, h))
    img_show.paste(img_right, (w, 0, w * 2, h))
493 494 495
    return np.array(img_show)


496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
def str_count(s):
    """
    Count the number of Chinese characters,
    a single English character and a single number
    equal to half the length of Chinese characters.
    args:
        s(string): the input of string
    return(int):
        the number of Chinese characters
    """
    import string
    count_zh = count_pu = 0
    s_len = len(s)
    en_dg_count = 0
    for c in s:
        if c in string.ascii_letters or c.isdigit() or c.isspace():
            en_dg_count += 1
        elif c.isalpha():
            count_zh += 1
        else:
            count_pu += 1
    return s_len - math.ceil(en_dg_count / 2)


W
WenmuZhou 已提交
520 521 522 523 524 525
def text_visual(texts,
                scores,
                img_h=400,
                img_w=600,
                threshold=0.,
                font_path="./doc/simfang.ttf"):
526 527 528 529 530 531 532
    """
    create new blank img and draw txt on it
    args:
        texts(list): the text will be draw
        scores(list|None): corresponding score of each txt
        img_h(int): the height of blank img
        img_w(int): the width of blank img
W
WenmuZhou 已提交
533
        font_path: the path of font which is used to draw text
534 535 536 537 538 539 540 541 542
    return(array):
    """
    if scores is not None:
        assert len(texts) == len(
            scores), "The number of txts and corresponding scores must match"

    def create_blank_img():
        blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255
        blank_img[:, img_w - 1:] = 0
L
LDOUBLEV 已提交
543 544
        blank_img = Image.fromarray(blank_img).convert("RGB")
        draw_txt = ImageDraw.Draw(blank_img)
545
        return blank_img, draw_txt
L
LDOUBLEV 已提交
546

547 548 549 550
    blank_img, draw_txt = create_blank_img()

    font_size = 20
    txt_color = (0, 0, 0)
W
WenmuZhou 已提交
551
    font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
552 553 554

    gap = font_size + 5
    txt_img_list = []
L
LDOUBLEV 已提交
555
    count, index = 1, 0
556 557
    for idx, txt in enumerate(texts):
        index += 1
L
LDOUBLEV 已提交
558
        if scores[idx] < threshold or math.isnan(scores[idx]):
559 560 561 562 563 564 565 566 567 568 569
            index -= 1
            continue
        first_line = True
        while str_count(txt) >= img_w // font_size - 4:
            tmp = txt
            txt = tmp[:img_w // font_size - 4]
            if first_line:
                new_txt = str(index) + ': ' + txt
                first_line = False
            else:
                new_txt = '    ' + txt
L
LDOUBLEV 已提交
570
            draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
571 572 573 574 575
            txt = tmp[img_w // font_size - 4:]
            if count >= img_h // gap - 1:
                txt_img_list.append(np.array(blank_img))
                blank_img, draw_txt = create_blank_img()
                count = 0
L
LDOUBLEV 已提交
576
            count += 1
577 578 579
        if first_line:
            new_txt = str(index) + ': ' + txt + '   ' + '%.3f' % (scores[idx])
        else:
L
LDOUBLEV 已提交
580
            new_txt = "  " + txt + "  " + '%.3f' % (scores[idx])
L
LDOUBLEV 已提交
581
        draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
582
        # whether add new blank img or not
L
LDOUBLEV 已提交
583
        if count >= img_h // gap - 1 and idx + 1 < len(texts):
584 585 586
            txt_img_list.append(np.array(blank_img))
            blank_img, draw_txt = create_blank_img()
            count = 0
L
LDOUBLEV 已提交
587
        count += 1
588 589 590 591 592 593
    txt_img_list.append(np.array(blank_img))
    if len(txt_img_list) == 1:
        blank_img = np.array(txt_img_list[0])
    else:
        blank_img = np.concatenate(txt_img_list, axis=1)
    return np.array(blank_img)
L
LDOUBLEV 已提交
594 595


D
dyning 已提交
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
def base64_to_cv2(b64str):
    import base64
    data = base64.b64decode(b64str.encode('utf8'))
    data = np.fromstring(data, np.uint8)
    data = cv2.imdecode(data, cv2.IMREAD_COLOR)
    return data


def draw_boxes(image, boxes, scores=None, drop_score=0.5):
    if scores is None:
        scores = [1] * len(boxes)
    for (box, score) in zip(boxes, scores):
        if score < drop_score:
            continue
        box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
    return image


W
WenmuZhou 已提交
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
def get_rotate_crop_image(img, points):
    '''
    img_height, img_width = img.shape[0:2]
    left = int(np.min(points[:, 0]))
    right = int(np.max(points[:, 0]))
    top = int(np.min(points[:, 1]))
    bottom = int(np.max(points[:, 1]))
    img_crop = img[top:bottom, left:right, :].copy()
    points[:, 0] = points[:, 0] - left
    points[:, 1] = points[:, 1] - top
    '''
    assert len(points) == 4, "shape of points must be 4*2"
    img_crop_width = int(
        max(
            np.linalg.norm(points[0] - points[1]),
            np.linalg.norm(points[2] - points[3])))
    img_crop_height = int(
        max(
            np.linalg.norm(points[0] - points[3]),
            np.linalg.norm(points[1] - points[2])))
    pts_std = np.float32([[0, 0], [img_crop_width, 0],
                          [img_crop_width, img_crop_height],
                          [0, img_crop_height]])
    M = cv2.getPerspectiveTransform(points, pts_std)
    dst_img = cv2.warpPerspective(
        img,
        M, (img_crop_width, img_crop_height),
        borderMode=cv2.BORDER_REPLICATE,
        flags=cv2.INTER_CUBIC)
    dst_img_height, dst_img_width = dst_img.shape[0:2]
    if dst_img_height * 1.0 / dst_img_width >= 1.5:
        dst_img = np.rot90(dst_img)
    return dst_img


Z
zhoujun 已提交
650 651 652 653 654 655
def check_gpu(use_gpu):
    if use_gpu and not paddle.is_compiled_with_cuda():
        use_gpu = False
    return use_gpu


L
LDOUBLEV 已提交
656
if __name__ == '__main__':
L
LDOUBLEV 已提交
657
    pass